
THIS INFORMATION IS NOT EXPORT CONTROLLED. THIS INFORMATION IS APPROVED FOR PUBLISHING

PER THE ITAR AS 'FUNDAMENTAL RESEARCH.'

PARALLEL IMPLEMENTATION OF HIDDEN MARKOV MODELS

FOR WIRELESS APPLICATIONS

Shawn Hymel (Wireless@Virginia Tech, Virginia Tech, Blacksburg, VA, USA;

hymelsr@vt.edu); Ihsan Akbar (Harris Corporation, Lynchburg, VA, USA);

Jeffrey H. Reed (Wireless@Virginia Tech, Virginia Tech, Blacksburg, VA, USA)

ABSTRACT

Hidden Markov Models (HMMs) provide the means to

model sequential data that go through a series of states over

space or time. HMMs are widely used in speech recognition

algorithms and have seen application in wireless

communications, including channel modeling, specific

emitter identification, and signal detection and

classification. Unfortunately, the use of HMMs in cognitive

radio is hindered by their computational complexity. This

paper proposes an extremely fast accelerator using graphics

processing units (GPUs) that allows for model training and

pattern recognition on the fly. Specifically, the Baum-

Welch, Forward, and the Viterbi algorithms are written to

take advantage of the GPU's ability to handle single

instruction, multiple data (SIMD) parallelization.

 This paper shows that the speed benefits from

parallelization are maximized when a large number of

HMM states are used. While general purpose computing on

graphics processing units (GPGPU) is a fairly recent field,

the advent of low-power, small profile graphics accelerators

for handheld devices opens new doors for parallel

processing in the realm of software defined radios.

Additionally, several applications for HMMs in software

defined radios are discussed as potential beneficiaries of the

proposed accelerator.

1. INTRODUCTION

HMMs have been widely utilized (in research) as a means

of pattern recognition in specific emitter identification and

signal identification [1][2] but often compete against other

well known algorithms, such as neural networks [3].

 One of the major issues surrounding the use of

HMMs in cognitive radio is its computational complexity.

The evaluation problem, which is discussed in detail later,

requires a O(TN
2
) algorithm, where T denotes the number of

observations and N is the number of states in the HMM. For

an especially large number of observations and/or large

number of states, this computational cost can be quite

prohibitive on many systems, including powerful desktops

and is especially costly on power-thrifty digital signal

processors (DSPs). Fortunately, the advent of handheld

devices, such as smart phones and tablets, has ushered in a

new era of graphics processing hardware.

 Graphics processing units (GPUs) were conceived to

handle computer graphics by focusing on massively

parallelizing operations using large data sets with a single

operation - known as single instruction, multiple-data

(SIMD) operations. Ideally, the computational complexity

can be reduced to a more manageable limit and allow for

near real-time results for methods such as spectrum sensing

and identification when utilizing HMMs.

 The structure of the paper is as follows: previous

work is examined in section 2; a brief overview of HMMs

and subsequent algorithms are given in section 3, along with

the parallel implementation analysis; section 4 looks at

problems encountered with the GPU architecture; section 5

describes how the performance of the algorithms were

evaluated; section 6 gives the results of the evaluation; and

finally, several conclusions and potential future work are

outlined in section 7.

2. RELATED WORK

Due to the complexity of many of the HMM algorithms,

there has been ample research on the topic of parallel

implementations. GPUs are a natural fit for parallelization

work and have been the subject of many studies.

 Jun Li et al. examines how the Forward-Backward

algorithm can be used to evaluate the fit of several HMMs

to a single observation sequence [4]. In their examination,

Li et al. create a Compute Unified Device Architecture

(CUDA) implementation of the Forward-Backward

algorithm as well as analyze several models in parallel using

the GPU. As a result, they find that a speed increase of 3.5x

is gained from C to CUDA when using 60 HMMs with 8

states, 8 symbols, and 200 observations each.

 Chuan Liu, however, assesses the effects of

evaluating multiple observation sequences and a single

model in parallel using CUDA [5]. With 512 states and 512

Proceedings of the SDR 11 Technical Conference and Product Exposition, Copyright © 2011 Wireless Innovation Forum All
Rights Reserved

94

sequences of 10 observations each, the author achieved an

880x speedup from C to CUDA for the Forward Only

algorithm and a 180x speedup for Baum-Welch Algorithm

(BWA).

 Additionally, Zhang et al. implemented the Viterbi

algorithm in CUDA and observed an average of 3x speedup

[6]. Their implementation focused on speech recognition

and utilized 2000-3000 words (states).

 In the field of communications, many studies have

been published proposing new technologies to increase the

speed of algorithms, reduce power consumption, and

provide greater throughput. One such study [7] evaluates a

new SIMD architecture known as Ardbeg and finds that the

parallel operation allows for a 1.5-7x speedup over its

predecessor. These findings promise speed improvements in

the areas of filtering, modulation, synchronization, and error

correction. However, Signal-processing On-Demand

Architecture (SODA) and Ardbeg are specifically designed

for Software Defined Radio (SDR) applications. GPUs, on

the other hand, require more power, but are now ubiquitous

in smart phones, tablets, and small computers.

 While GPUs may be less power efficient for

communication applications than their DSP counterparts,

they have the potential to become powerful coprocessors in

SDR and cognitive radio. Othman and Aboulnasr examine

2D HMMs and their use for facial recognition [8]. Similar

techniques could prove useful for pattern matching in

signals analysis. 2D and 3D HMMs are even more

computationally complex than their 1D equivalents and

would benefit from SIMD-type architectures.

3. ANALYSIS

A Hidden Markov Model is a statistical model that assigns

output probabilities based on a series of unobservable states.

The modeled system is assumed to be a Markov process,

namely one that exhibits the Markov property:

1 1 0 0 1 1Pr[| ...] Pr[|]n n n n n n n nX x X x X x X x X x− − − −= = = = = = (1)

 This paper uses the HMM notation put forth by

Rabiner [10]. As such, the HMM can be described by the

triplet:

 (, ,)A Bλ = Π (2)

 Where A is an N × N matrix describing the probabilities of

transitioning between N states, B is an M × N matrix that

gives the probabilities of a given state producing 1 of M

output symbols, and Π is a 1 × N matrix which describes the

probabilities that the model will initialize one of N states.

 The three canonical problems involving HMMs are

as follows:

 Problem 1: Given an observation sequence O =

O1O2...OT and a model λ, find the

probability that the model will generate O:

Pr[O|λ].

 Problem 2: Given an observation sequence O and a

model λ, find the most likely state

sequence Q = q1q2...qT.

 Problem 3: Given an observation sequence O, find a

model λ that maximizes Pr[O|λ].

 Problem 1 is known as the "evaluation problem" and

is used in pattern recognition to determine which model best

fits an observed sequence. Both the Forward and Backward

algorithms are capable of solving the first problem.

 Problem 2 attempts to reveal the "hidden" portion of

the HMM, in which the exact sequence of states are

discovered. Using the Viterbi algorithm [11], we can

estimate the most likely sequence of states based on the

HMM properties. This algorithm sees use in convolutional

decoders as well as areas such as speech recognition.

 Problem 3 shows that given a starting model λ and a

training sequence O, we can re-estimate the parameters of

the HMM to produce λ'. HMM training can be accomplished

via the Baum-Welch Algorithm [12], the Viterbi algorithm,

or the Segmental K-Means Algorithm [13]. Unfortunately,

the re-estimation process is intractable, as only a local

maximum for Pr[O|λ] is solved and finding the global

maximum is nearly impossible.

3.1. Parallelizing the Forward Algorithm

The Forward Algorithm [10] is given as follows:

 1) Initialization:

1 1
() (), 1,2,...

i i
i b O i Nα π= = (3)

 2) Induction:

 1 1

1

() () (),
N

t t ij j t

i

j i a b Oα α+ +
=

=

∑ (4)

 1 1, 1t T j N≤ ≤ − ≤ ≤

3) Termination:

1

Pr[|] ()
N

T

i

O iλ α
=

=∑ (5)

 Looking closely at the serial implementation of the

Forward Algorithm, we notice that the initialization step is

O(N), as each element in the Π matrix is multiplied by the

corresponding element in the B matrix, it is indexed by the

observation at time t = 1. The induction step relies on a 1 ×

95

N by N × N matrix multiplication at each time instant t,

resulting in a complexity of O(TN
2
). The termination step

requires O(N) operations to sum the final α values at time t

= T. As a result, the Forward Algorithm is O(TN
2
).

 Without knowledge of the HMM structure, we cannot

parallelize the recursive portion of the Forward Algorithm.

However, we can parallelize operations across the number

of states (N). Operations that utilize different elements of

the array can be parallelized into an O(1) operation, and

functions that sum, multiply, etc. over an array require

O(log N) operations, as opposed to O(N), using a technique

known as "reduction". The initialization step can be reduced

to an O(1) operation, as different array elements are used.

For the induction step, matrix multiplication ultimately

requires a multiply and sum for each element, resulting in

O(log N) operations for each t. Therefore, the induction step

can be parallelized to produce an O(T log N) function.

Finally, the termination step is a summation, requiring

O(log N) operations. Given these, the total number of

operations in the Forward Algorithm can be reduced to O(T

log N).

3.2. Parallelizing the Viterbi Algorithm

The Viterbi Algorithm finds the most likely state sequence

given a model and an observation sequence. This is

accomplished by:

 1) Initialization:

 1 1() (), 1,2,...
i i

i b O i Nδ π= = (6)

 2) Recursion:

 1 1() max () (),t t ij j t
j

i j a b Oδ δ+ +
 = (7)

 1 , 1 1i N t T≤ ≤ ≤ ≤ −

 () arg max () ,t t ij
j

i j aψ δ = (8)

 1 , 1 1i N t T≤ ≤ ≤ ≤ −

 3) Termination:

 ()* arg max ()T T
i

q iδ= (9)

 4) Path backtracking:

 ()* *

1 1 , 1, 2,...1t t tq q t T Tψ + += = − − (10)

 Again, we examine the serial and parallel

implementations of the algorithm. The initialization step is

O(N) operations. The recursion step is O(TN2) operations, as

we must first compute δt-1(i)aij, find its maximum value,

multiply that answer by bj(Ot), and then iterate that function

over all t. The termination is simply O(N) to find the

maximum value, and the path backtracking is O(T).

 Because the Viterbi Algorithm is recursive, much

like the Forward Algorithm, we cannot parallelize across T.

However, we are still able to compute the data sets in

parallel across N, which gives us O(1) for the initialization,

O(T log N) for the recursive step, O(log N) for the

termination, and O(T) for the path backtracking. A

cumulative complexity of O(T log N) for entire algorithm

written in parallel is achieved.

3.3. Parallelizing the Baum-Welch Algorithm

The BWA can be used to re-estimate the parameters in a

HMM given an observation sequence. This is accomplished

by the following method [14]:

Step 0: Start with an initial model λ

Step 1: Compute the Forward variables (α)

 Initialization:

 1 1() (), 1,2,...
i i

i b O i Nα π= = (11)

 Induction:

 1 1

1

() () (),
N

t t ij j t

i

j i a b Oα α+ +
=

=

∑ (12)

 1 1, 1t T j N≤ ≤ − ≤ ≤

 Termination:

1

Pr[|] ()
N

T

i

O iλ α
=

=∑ (13)

Step 2: Compute the Backward variables (β)

 Initialization:

 () 1, 1, 2,...
T

i i Nβ = = (14)

 Induction:

 1 1

1

() () () ,
N

t t j t ij

j

i j b O aβ β + +
=

=∑ (15)

 1 1, 1t T j N≤ ≤ − ≤ ≤

Step 3: Compute γ

() ()

() , 1, 2,...
Pr[|]

t t

t

i i
i i N

O

α β
γ

λ
= = (16)

Step 4: Compute ξ

1 1() () ()

(,)
Pr[|]

t ij j t t

t

i a b O j
i j

O

α β
ξ

λ

+ +
= (17)

96

Step 5: Re-estimate the HMM parameters

1

1

1

1

(,)

ˆ

()

T

t

t

ij T

t

t

i j

a

i

ξ

γ

−

=

−

=

=
∑

∑
 (18)

1|

1

()

ˆ ()

()

t k

T

t

t O e

j k T

t

t

j

b e

j

γ

γ

= =

=

=

∑

∑
 (19)

 1 1
ˆ () ()

i
i iπ α β= (20)

Step 6: Go back to step 1 using the re-estimated parameters

as the initial model and repeat for a set number of

iterations or until a desired level of convergence is

reached.

 Since the Forward variable calculation is the same as

Forward Algorithm, the computational complexity is

O(TN
2
). Similarly, the Backward variables are O(TN

2
). The

γ variables require O(TN) operations, and the ξ variables

require O(TN
2
) operations. Re-estimating the A matrix

requires O(N
2
) complexity; re-estimating B requires

O(TMN), where M is the number of possible output

symbols; and re-estimating Π requires O(N) operations. The

entire algorithm's complexity can be expressed as

2

(),

(),

O TMN M N

O TN else

>

 (21)

 Much like the Forward and Viterbi algorithms, we

can parallelize the BWA across states. For the Forward and

Backward variables, this gives us O(T log N). γ requires

O(T), and ξ requires O(T log N). Re-estimating A utilizes

O(log N) operations. Re-estimating B requires O(T log N) +

O(log M) = O(T log N) for T > log M. Finally, re-estimating

Π uses O(log N) operations. Except for unusually large

values of M, we can assume that the computational

complexity of the parallelized BWA will be O(T log N).

3.4. Complexity Summary

Table 1 shows the computational complexity for the serial

and parallel versions of the various HMM algorithms.

4. GPU ARCHITECTURE

The GPU is divided into software and hardware logical

sections that map to each other in various ways. On the

software side the programmer makes use of kernels, which

is the heart of NVIDIA's CUDA extension of C [9]. A

kernel is similar to a function call, but it is executed on the

GPU. This SIMD operation is accomplished via threads in

hardware. The code in the kernel is executed at the same

time on each thread. However, each thread may be told to

operate on different data.

Table 1. Computational Complexity Comparison

Algorithm Serial Parallel

Forward O(TN
2
) O(T log N)

Viterbi O(TN
2
) O(T log N)

Baum-Welch O(TN
2
) or O(TMN) O(T log N)

 On the hardware side, blocks are composed of a

number of threads. Threads within a block are capable of

communicating and sharing data through the use of shared

memory. All of the blocks that are executed run on a grid.

Generally, a GPU can handle a single grid at a time, but this

can be overcome by using multiple GPUs or architectures

that support multiple grids. Blocks within a grid have no

good means to communicate with each other, offer no

guarantee of parallel execution, and can preempt execution

of other blocks.

 Due to the limited guarantee of block concurrency,

the parallel execution of kernels sees a speedup increase

only to a certain degree. Once a grid is saturated with

executing blocks, the other blocks must wait their turn. As a

result, the speedup over serial execution will reach a point

of diminishing returns. Diminishing returns have specific

ramifications on HHMs.

 Additionally, the lack of true inter-block

communication poses a problem for HMMs, specifically the

Viterbi algorithm. Step 2 of the Viterbi requires the

maximum value or argument to be found. Normally, this can

be done in a O(N) serial operation. With an SIMD

operation, a technique known as a reduction is used, which

reduces the computational complexity to O(log N). Once the

dataset becomes large enough (i.e. more data than threads

per block), inter-block communication is required to

accomplish a full reduction. The only true inter-block

communication is done by performing multiple kernel calls,

each of which can add micro- to milli-seconds of overhead.

Until a better method of inter-block communication is

supported, reductions such as the one in the Viterbi

algorithm will suffer additional time delays.

 The biggest drawback to using GPGPU is the large

overhead incurred during memory transfers to and from the

GPU. Generally, the accepted GPGPU practice is to transfer

a large chunk of data to the GPU's memory at the beginning

of the program, run the necessary calculations, then transfer

the results back. This model was followed for the HMM

implementation outlined in this paper. However, several of

97

the algorithms such as the BWA ran out of GPU memory

when performing calculations using a large number of

HMM states (greater than 10,000). If more states are

required, the program will have to be re-written for the

current hardware to support freeing of GPU memory during

calculations. This action, however, could incur severe

penalties on the execution time of the algorithm(s).

5. PERFORMANCE EVALUATION

In order to evaluate the performance of the different

algorithms, each algorithm was programmed first in C,

utilizing a serial implementation. Then the algorithms were

programmed in NVIDIA's CUDA language. Several

functions relied on the CUDA-implemented Basic Linear

Algebra Subprograms (CUBLAS), which takes advantage of

CUDA functions to accomplish various matrix operations.

 The algorithms were then given different HMM

parameters and timed. First, the number of states were

varied, followed by the number of symbols, and finally, the

number of observations. For the given hardware, the C and

CUDA implementations for all algorithms took the same

amount of time with about 60 states. Therefore the other

tests (symbol varying and time varying), were conducted

with N = 60 for a more accurate comparison.

 Additionally, the power measurement tool

PowerTOP was used to estimate the power consumption of

the CPU and GPU under load. Each algorithm was run for 1

minute before a reading from PowerTOP was taken.

 The tests were conducted on the hardware given in

Table 2.

Table 2. Test Hardware

Component Specification

CPU Intel Core 2 Duo U7300 @ 1.30GHz

GPU NVIDIA GeForce GT 335M

GPU Core

Speed
450 MHz

GPU Shader

Speed
1080 MHz

GPU Memory

Speed
1066 MHz

CUDA Cores 72

6. RESULTS

The various algorithms were each timed on the CPU and

GPU. Figures 1-3 show the various timing results from the

Forward Algorithm. The Viterbi Algorithm is depicted in

figures 4-6, and figures 7-9 show the timing results from the

Baum-Welch Algorithm.

 Examining the graphs given in figures 1-9, it is

apparent that the greatest increase in speed comes from

utilizing the GPU with a large number of states, typically

more than 60. Table 3 gives the speed increases for a select

number of states.

Table 3. Speed Increase for Each Algorithm

Number

of States

CPU

Runtime (s)

GPU

Runtime (s)

Speed

Increase

Forward Algorithm

4 0.0010 0.1531 0.007x

40 0.0400 0.1393 0.287x

400 4.2816 0.2379 17.99x

4000 534.2028 2.9495 181.12 x

Viterbi Algorithm

4 0.0033 0.1605 0.021x

40 0.0436 0.1801 0.242x

400 4.2684 1.6595 2.57x

4000 534.5543 116.2531 4.60 x

Baum-Welch Algorithm

4 0.0021 0.4142 0.005x

40 0.1946 0.4299 0.453x

400 17.6719 0.7502 23.56x

4000 1834.672 28.1271 65.23 x

 It can be seen that for a low number of states, the

GPU performs far worse than the CPU. This is due to the

overhead incurred when utilizing the GPU, as data must be

copied to the GPU's memory and copied back to the host.

Additionally, most GPU clock speeds are not as fast as

those found in CPUs; GPUs are simply not designed to

handle serial data computations. However, applications that

require a large number of states (60+ in this case) perform

quite well with a GPU.

 This speedup works up to a certain point, however.

As shown by figures 10-12, the GPU begins to lose its strict

parallel processing after about 200-500 states. These

diminished returns can be attributed to saturating the

processing blocks found within the GPU. Once this point is

reached, other blocks must wait their turn to be processed.

As a result, the speedup gains do not improve as drastically

after a certain point. This can be remedied with larger, more

powerful GPUs that can handle more blocks at a time or

several GPUs working in parallel.

 Additionally, it was found that varying the number of

symbols and number of observations had little impact on the

execution speed difference between the CPU and GPU. In

most cases, the CPU performed slightly better due to the

increased overhead found in the GPU.

 As shown in table 3, the speed increases can reach

180x for the Forward Algorithm, 65x the BWA, and 4x for

the Viterbi Algorithm with 4000 states. These speed

98

increases at a high number of states are well within the

block saturation point of the GPU, but still continue to

outperform the CPU. As noted in section 4, the lackluster

performance of the parallel implementation of the Viterbi

algorithm can be attributed to the reduction technique

requiring multiple kernel calls.

 The results of the speedup from the Viterbi algorithm

compares to the work of Zhang et al. [6]. However, the

other algorithms do not quite line up with the results from

[4] and [5] as their work included additional parallel steps,

such as evaluating multiple models at a time. The

implementations found in this paper focuses strictly on the

algorithms themselves. Any additional parallel steps can

only improve the performance of the application.

 In addition to the performance times, the energy

consumed for each of the algorithms in the CPU versus the

GPU was assessed. This value was estimated by measuring

the power utilization during the algorithm and multiplying

by the computation time. Table 4 shows the measured

power for each algorithm and figures 13-15 depict the total

energy consumed during the algorithm runtime. Note that

the idle power was measured at 13.8W. Due to the increase

in power requirements of the GPU, the break-even point for

energy consumption is 100 states for the forward algorithm,

120 states for the Viterbi algorithm, and 70 states for the

BWA.

Table 4. Power Utilization

Algorithm
Power (W)

C CUDA

Forward 18.5 26.5

Viterbi 18.5 29.1

BWA 18.3 26.1

7. CONCLUSION AND FUTURE WORK

GPUs currently boast some of the most impressive

computing power vs. electrical power efficiency ratings

(measured in GFLOPS/Watt). However, this kind of power

can only be utilized under special circumstances. If an

algorithm cannot be parallelized, then many GPU

computing blocks remain dormant, and efficiency is lost.

For HMMs, this means that only models with a large

number of states can truly take advantage of the GPU's

parallel computing capabilities.

 Applications such as geolocation and spectrum

sensing and classification could potentially use HMMs with

hundreds of states. 2D and 3D HMMs could be used in

these applications, but suffer from large computational

complexity. While the power requirements of a GPU still

exceeds that of a CPU for the same functions, massively

parallel computations can still prove more power efficient in

a GPU. This is especially true of new technology that

promises smaller, more efficient GPUs in handheld devices.

 Additionally, HMMs are also used in other fields

outside of wireless technology, such as speech/handwriting

recognition, financial research, economics, and protein

folding. Some of these applications use hundreds or

thousands of states, and would benefit greatly from GPUs.

 It should be noted that the code used to test the

algorithm runtimes contained minimal optimization (e.g.

only that offered by the compiler and the use of the

CUBLAS library). Both the C and CUDA implementations

could undoubtedly benefit from programming optimizations

to take advantage of other hardware speed increases,

including optimizing the reduction techniques used for the

Viterbi algorithm. Furthermore, some applications, such as

pattern recognition, rely on solving the same algorithm with

different sets of data. For example, to find the best model

match to an observed pattern, the Forward Algorithm is run

on the observation sequence a number of times equal to the

number of models in the database. This kind of parallelism

could also see potential gains in a GPU.

 In summary, the GPU provides promising runtime

improvements over the CPU for the various HMM

algorithms, given that the model contains a large number of

states. As GPUs become smaller and more efficient, they

could indeed prove to be a contender or supplement to

CPUs, DSPs, and FPGAs for wireless applications.

8. REFERENCES

[1] Z. Chen, Z. Hu, and R. C. Qui, "Quickest Spectrum Detection

Using Hidden Markov Models for Cognitive Radio," Milcom,
2009.

[2] K. Kim, I. Akbar, K. K. Bae, J. Um, C. M. Spooner, and J. H.
Reed, "Specific Emitter Identification for Cognitive Radio
with Application to IEEE 802.11," IEEE Globecom, 2008.

[3] A. Fehske, J. Gaeddert, and J. H. Reed, "A New Approach to
Signal Classification Using Spectral Correlation and Neural
Networks," IEEE International Symposium on New Frontiers
in DySpan, Nov. 2005.

[4] J. Li, S. Chen,and Y. Li, "The Fast Evaluation of Hidden
Markov Models on GPU," IEEE International Conference on
Intelligent Computing and Intelligent Systems, Nov. 2009.

[5] C. Liu. (2006, May). cuHMM: a CUDA Implementation of
Hidden Markov Model Training and Classification. [Online].
Available: http://liuchuan.org/pub/cuHMM.pdf

[6] D. Zhang, R. Zhao, L. Han, T. Wang, and J. Qu, "An
Implementation of Viterbi Algorithm on GPU," International
Conference on Information Science and Engineering, 2009.

[7] M. Woh et al, "From SODA to Scotch: The Evolution of a
Wireless Baseband Processor," International Symposium on
Microarchitecture, 2008. Nov. 2008.

[8] H. Othman and T. Aboulnasr, "A Separable Low Complexity
2D HMM with Application to Face Recognition," IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 25, no. 10, Oct. 2003.

[9] NVidia, NVidia CUDA Compute Unified Device Architecture
Programming Guide, 2009.

99

[10] L. Rabiner, "A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition," Proceedings of

the IEEE, vol. 77, no. 2, Feb. 1989.
[11] A. J. Viterbi, "Error Bounds for Convolutional Codes and an

Asymptotically Optimum Decoding Algorithm," IEEE

Transactions on Information Theory, vol. IT-13, pp. 260-269,
April 1967.

[12] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, "A
Maximization Technique Occurring in the Statistical Analysis
of Probabilistic Functions of Markov Chains," The Annals of
Mathematical Statistics, vol. 41, pp. 164-171, 1970.

[13] B. Juang and L. Rabiner, "The Segmental K-Means
Algorithm for Estimating Parameters of Hidden Markov
Models," IEEE Transactions on Acoustics, Speech, and

Signal Processing, vol. 38, no. 9, Sep. 1990.
 [14] W. Tranter, et al., Principles of Communication Systems

Simulation with Wireless Applications, Upper Saddle River,
New Jersey; Prentice Hall, 2004, ch. 15, pp. 605-611.

Figure 1. Varying States in the Forward Algorithm

Figure 2. Varying Symbols in the Forward Algorithm

Figure 3. Varying Sequence in the Forward Algorithm

Figure 4. Varying States in the Viterbi Algorithm

Figure 5. Varying Symbols in the Viterbi Algorithm

Figure 6. Varying Sequence in the Viterbi Algorithm

Figure 7. Varying States in the BWA

Figure 8. Varying Symbols in the BWA

Figure 9. Varying Sequence in the BWA

0

200

400

600

0 1000 2000 3000 4000 5000E
x

e
cu

ti
o

n
 T

im
e

 (
s)

Number of States

Execution Time for Forward Algorithm

CPU

GPU

0

0.05

0.1

0.15

0.2

0 1000 2000 3000 4000 5000 6000 7000 8000

E
x

e
cu

ti
o

n
 T

im
e

 (
s)

Number of Symbols

Execution Time for Forward Algorithm

CPU

GPU

0

0.5

1

1.5

0 2000 4000 6000 8000 10000E
x

e
cu

ti
o

n
 T

im
e

 (
s)

Number of Observations

Execution Time for Forward Algorithm

CPU

GPU

0

200

400

600

0 1000 2000 3000 4000 5000

E
x

e
cu

ti
o

n
 T

im
e

 (
s)

Number of States

Execution Time for Viterbi Algorithm

CPU

GPU

0

0.05

0.1

0.15

0.2

0 1000 2000 3000 4000 5000 6000 7000 8000

E
x

e
cu

ti
o

n
 T

im
e

 (
s)

Number of Symbols

Execution Time for Viterbi Algorithm

CPU

GPU

0

0.5

1

1.5

2

0 2000 4000 6000 8000 10000E
x

e
cu

ti
o

n
 T

im
e

 (
s)

Number of Observations

Execution Time for Viterbi Algorithm

CPU

GPU

0

500

1000

1500

2000

0 1000 2000 3000 4000 5000

E
x

e
cu

ti
o

n
 T

im
e

 (
s)

Number of States

Execution Time for Baum-Welch Algorithm

CPU

GPU

0.35

0.4

0.45

0.5

0.55

0 1000 2000 3000 4000 5000 6000 7000 8000

E
x

e
cu

ti
o

n
 T

im
e

 (
s)

Number of Symbols

Execution Time for Baum-Welch Algorithm

CPU

GPU

0

1

2

3

4

0 2000 4000 6000 8000 10000E
x

e
cu

ti
o

n
 T

im
e

 (
s)

Number of Observations

Execution Time for Baum-Welch Algorithm

CPU

GPU

100

Figure 10. Varying States for Forward Algorithm on GPU

Figure 11. Varying States for Viterbi Algorithm on GPU

Figure 12. Varying States for BWA on GPU

Figure 13. Energy Consumption for Forward Algorithm

Figure 14. Energy Consumption for Viterbi Algorithm

Figure 15. Energy Consumption for BWA

0

5

10

15

20

1 10 100 1000 10000

E
x

e
cu

ti
o

n
 T

im
e

 (
s)

Number of States

Execution Time for Forward Alg. on GPU

0

100

200

300

400

500

1 10 100 1000 10000

E
x

e
cu

ti
o

n
 T

im
e

 (
s)

Number of States

Execution Time for Viterbi on GPU

0

20

40

60

80

100

1 10 100 1000 10000

E
x

e
cu

ti
o

n
 T

im
e

 (
s)

Number of States

Execution Time for BWA on GPU

0

0.000002

0.000004

0.000006

0 50 100 150 200 250

E
n

e
rg

y
 C

o
n

su
m

e
d

 (
k

W
h

)

Number of States

Energy Consumption for Forward Algorithm

CPU

GPU

0

0.000002

0.000004

0.000006

0 50 100 150 200 250

E
n

e
rg

y
 C

o
n

su
m

e
d

 (
k

W
h

)

Number of States

Energy Consumption for Viterbi Algorithm

CPU

GPU

0

0.000005

0.00001

0.000015

0.00002

0.000025

0 50 100 150 200 250

E
n

e
rg

y
 C

o
n

su
m

e
d

 (
k

W
h

)

Number of States

Energy Consumption for BWA

CPU

GPU

101

