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ABSTRACT 

 

Hidden Markov Models (HMMs) provide the means to 

model sequential data that go through a series of states over 

space or time. HMMs are widely used in speech recognition 

algorithms and have seen application in wireless 

communications, including channel modeling, specific 

emitter identification, and signal detection and 

classification. Unfortunately, the use of HMMs in cognitive 

radio is hindered by their computational complexity. This 

paper proposes an extremely fast accelerator using graphics 

processing units (GPUs) that allows for model training and 

pattern recognition on the fly. Specifically, the Baum-

Welch, Forward, and the Viterbi algorithms are written to 

take advantage of the GPU's ability to handle single 

instruction, multiple data (SIMD) parallelization. 

 This paper shows that the speed benefits from 

parallelization are maximized when a large number of 

HMM states are used. While general purpose computing on 

graphics processing units (GPGPU) is a fairly recent field, 

the advent of low-power, small profile graphics accelerators 

for handheld devices opens new doors for parallel 

processing in the realm of software defined radios. 

Additionally, several applications for HMMs in software 

defined radios are discussed as potential beneficiaries of the 

proposed accelerator. 

 

 

1. INTRODUCTION 

 

HMMs have been widely utilized (in research) as a means 

of pattern recognition in specific emitter identification and 

signal identification [1][2] but  often compete against other 

well known algorithms, such as neural networks [3].   

 One of the major issues surrounding the use of 

HMMs in cognitive radio is its computational complexity. 

The evaluation problem, which is discussed in detail later, 

requires a O(TN
2
) algorithm, where T denotes the number of 

observations and N is the number of states in the HMM. For 

an especially large number of observations and/or large 

number of states, this computational cost can be quite 

prohibitive on many systems, including powerful desktops 

and is especially costly on power-thrifty digital signal 

processors (DSPs). Fortunately, the advent of handheld 

devices, such as smart phones and tablets, has ushered in a 

new era of graphics processing hardware. 

 Graphics processing units (GPUs) were conceived to 

handle computer graphics by focusing on massively 

parallelizing operations using large data sets with a single 

operation - known as single instruction, multiple-data 

(SIMD) operations.  Ideally, the computational complexity 

can be reduced to a more manageable limit and allow for 

near real-time results for methods such as spectrum sensing 

and identification when utilizing HMMs.  

 The structure of the paper is as follows: previous 

work is examined in section 2; a brief overview of HMMs 

and subsequent algorithms are given in section 3, along with 

the parallel implementation analysis; section 4 looks at 

problems encountered with the GPU architecture; section 5 

describes how the performance of the algorithms were 

evaluated; section 6 gives the results of the evaluation; and 

finally, several conclusions and potential future work are 

outlined in section 7. 

 

2. RELATED WORK 

 

Due to the complexity of many of the HMM algorithms, 

there has been ample research on the topic of parallel 

implementations. GPUs are a natural fit for parallelization 

work and have been the subject of many studies. 

 Jun Li et al. examines how the Forward-Backward 

algorithm can be used to evaluate the fit of several HMMs 

to  a single observation sequence [4]. In their examination, 

Li et al. create a Compute Unified Device Architecture 

(CUDA) implementation of the Forward-Backward 

algorithm as well as analyze several models in parallel using 

the GPU. As a result, they find that a speed increase of 3.5x 

is gained from C to CUDA when using 60 HMMs with 8 

states, 8 symbols, and 200 observations each. 

 Chuan Liu, however, assesses the effects of 

evaluating multiple observation sequences and a single 

model in parallel using CUDA [5]. With 512 states and 512 
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sequences of 10 observations each, the author achieved an 

880x speedup from C to CUDA for the Forward Only 

algorithm and a 180x speedup for Baum-Welch Algorithm 

(BWA). 

 Additionally, Zhang et al. implemented the Viterbi 

algorithm in CUDA and observed an average of 3x speedup 

[6]. Their implementation focused on speech recognition 

and utilized 2000-3000 words (states).  

 In the field of communications, many studies have 

been published proposing new technologies to increase the 

speed of algorithms, reduce power consumption, and 

provide greater throughput. One such study [7] evaluates a 

new SIMD architecture known as Ardbeg and finds that the 

parallel operation allows for a 1.5-7x speedup over its 

predecessor. These findings promise speed improvements in 

the areas of filtering, modulation, synchronization, and error 

correction. However, Signal-processing On-Demand 

Architecture (SODA) and Ardbeg are specifically designed 

for Software Defined Radio (SDR) applications. GPUs, on 

the other hand, require more power, but are now ubiquitous 

in smart phones, tablets, and small computers. 

 While GPUs may be less power efficient for 

communication applications than their DSP counterparts, 

they have the potential to become powerful coprocessors in 

SDR and cognitive radio. Othman and Aboulnasr examine 

2D HMMs and their use for facial recognition [8]. Similar 

techniques could prove useful for pattern matching in 

signals analysis. 2D and 3D HMMs are even more 

computationally complex than their 1D equivalents and 

would benefit from SIMD-type architectures. 

 

3. ANALYSIS 

 

A Hidden Markov Model is a statistical model that assigns 

output probabilities based on a series of unobservable states. 

The modeled system is assumed to be a Markov process, 

namely one that exhibits the Markov property:  

 

 
1 1 0 0 1 1Pr[ | ... ] Pr[ | ]n n n n n n n nX x X x X x X x X x− − − −= = = = = =  (1) 

 

 This paper uses the HMM notation put forth by 

Rabiner [10]. As such, the HMM can be described by the 

triplet: 

 

 ( , , )A Bλ = Π  (2) 

 

 Where A is an N × N matrix describing the probabilities of 

transitioning between N states, B is an M × N matrix that 

gives the probabilities of a given state producing 1 of M 

output symbols, and Π is a 1 × N matrix which describes the 

probabilities that the model will initialize one of N states. 

 The three canonical problems involving HMMs are 

as follows: 

 

 Problem 1: Given an observation sequence O = 

O1O2...OT and a model λ, find the 

probability that the model will generate O: 

Pr[O|λ]. 

 Problem 2: Given an observation sequence O and a 

model λ, find the most likely state 

sequence Q = q1q2...qT. 

 Problem 3: Given an observation sequence O, find a 

model λ that maximizes Pr[O|λ]. 

  

  Problem 1 is known as the "evaluation problem" and 

is used in pattern recognition to determine which model best 

fits an observed sequence. Both the Forward and Backward 

algorithms are capable of solving the first problem.  

 Problem 2 attempts to reveal the "hidden" portion of 

the HMM, in which the exact sequence of states are 

discovered. Using the Viterbi algorithm [11], we can 

estimate the most likely sequence of states based on the 

HMM properties. This algorithm sees use in convolutional 

decoders as well as areas such as speech recognition. 

 Problem 3 shows that given a starting model λ and a 

training sequence O, we can re-estimate the parameters of 

the HMM to produce λ'. HMM training can be accomplished 

via the Baum-Welch Algorithm [12], the Viterbi algorithm, 

or the Segmental K-Means Algorithm [13]. Unfortunately, 

the re-estimation process is intractable, as only a local 

maximum for  Pr[O|λ] is solved and finding the global 

maximum is nearly impossible. 

 

3.1. Parallelizing the Forward Algorithm 

 

The Forward Algorithm [10] is given as follows: 

 

 1) Initialization: 

 
1 1
( ) ( ), 1,2,...

i i
i b O i Nα π= =  (3)  

  

 2) Induction: 

 1 1

1

( ) ( ) ( ),
N

t t ij j t

i

j i a b Oα α+ +
=

 
=  
 
∑  (4) 

                                1 1, 1t T j N≤ ≤ − ≤ ≤             

  

  

3) Termination: 

 
1

Pr[ | ] ( )
N

T

i

O iλ α
=

=∑  (5) 

 

 Looking closely at the serial implementation of the 

Forward Algorithm, we notice that the initialization step is 

O(N), as each element in the Π matrix is multiplied by the 

corresponding element in the B matrix, it is indexed by the 

observation at time t = 1. The induction step relies on a 1 × 
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N by N × N matrix multiplication at each time instant t, 

resulting in a complexity of O(TN
2
). The termination step 

requires O(N) operations to sum the final α values at time t 

= T. As a result, the Forward Algorithm is O(TN
2
). 

 Without knowledge of the HMM structure, we cannot 

parallelize the recursive portion of the Forward Algorithm. 

However, we can parallelize operations across the number 

of states (N). Operations that utilize different elements of 

the array can be parallelized into an O(1) operation, and 

functions that sum, multiply, etc. over an array require 

O(log N) operations, as opposed to O(N), using a technique 

known as "reduction". The initialization step can be reduced 

to an O(1) operation, as different array elements are used. 

For the induction step, matrix multiplication ultimately 

requires a multiply and sum for each element, resulting in 

O(log N) operations for each t. Therefore, the induction step 

can be parallelized to produce an O(T log N) function. 

Finally, the termination step is a summation, requiring 

O(log N) operations. Given these, the total number of 

operations in the Forward Algorithm can be reduced to O(T 

log N). 

 

3.2. Parallelizing the Viterbi Algorithm 

 

The Viterbi Algorithm finds the most likely state sequence 

given a model and an observation sequence. This is 

accomplished by: 

 

 1) Initialization: 

 1 1( ) ( ), 1,2,...
i i

i b O i Nδ π= =  (6) 

  

 2) Recursion: 

 1 1( ) max ( ) ( ),t t ij j t
j

i j a b Oδ δ+ +
 =    (7) 

                             1 , 1 1i N t T≤ ≤ ≤ ≤ −  

  

 ( ) arg max ( ) ,t t ij
j

i j aψ δ =    (8)                 

                             1 , 1 1i N t T≤ ≤ ≤ ≤ −  

         

  

 

 3) Termination: 

 ( )* arg max ( )T T
i

q iδ=  (9) 

  

 4) Path backtracking: 

 ( )* *

1 1 , 1, 2,...1t t tq q t T Tψ + += = − −  (10) 

 

 Again, we examine the serial and parallel 

implementations of the algorithm. The initialization step is 

O(N) operations. The recursion step is O(TN2) operations, as 

we must first compute δt-1(i)aij, find its maximum value,  

multiply that answer by bj(Ot), and then iterate that function 

over all t. The termination is simply O(N) to find the 

maximum value, and the path backtracking is O(T). 

 Because the Viterbi Algorithm is recursive, much 

like the Forward Algorithm, we cannot parallelize across T. 

However, we are still able to compute the data sets in 

parallel across N, which gives us O(1) for the initialization, 

O(T log N) for the recursive step, O(log N) for the 

termination, and O(T) for the path backtracking. A 

cumulative complexity of O(T log N) for entire algorithm 

written in parallel is achieved. 

 

3.3. Parallelizing the Baum-Welch Algorithm 

 

The BWA can be used to re-estimate the parameters in a 

HMM given an observation sequence. This is accomplished 

by the following method [14]: 

 

Step 0: Start with an initial model λ 

 

Step 1: Compute the Forward variables (α) 

 Initialization: 

 1 1( ) ( ), 1,2,...
i i

i b O i Nα π= =  (11) 

  

 Induction: 

 1 1

1

( ) ( ) ( ),
N

t t ij j t

i

j i a b Oα α+ +
=

 
=  
 
∑  (12) 

                            1 1, 1t T j N≤ ≤ − ≤ ≤       

  

 Termination: 

 
1

Pr[ | ] ( )
N

T

i

O iλ α
=

=∑  (13) 

 

 

 

Step 2: Compute the Backward variables (β) 

 Initialization:  

 ( ) 1, 1, 2,...
T

i i Nβ = =  (14) 

  

 Induction: 

 1 1

1

( ) ( ) ( ) ,
N

t t j t ij

j

i j b O aβ β + +
=

=∑  (15) 

                      1 1, 1t T j N≤ ≤ − ≤ ≤  

        
Step 3: Compute γ 

 
( ) ( )

( ) , 1, 2,...
Pr[ | ]

t t

t

i i
i i N

O

α β
γ

λ
= =  (16) 

 

Step 4: Compute ξ 

 
1 1( ) ( ) ( )

( , )
Pr[ | ]

t ij j t t

t

i a b O j
i j

O

α β
ξ

λ

+ +
=  (17) 
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Step 5: Re-estimate the HMM parameters 

 

1

1

1

1
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ˆ

( )
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 1 1
ˆ ( ) ( )

i
i iπ α β=  (20) 

 

Step 6: Go back to step 1 using the re-estimated parameters 

as the initial model and repeat for a set number of 

iterations or until a desired level of convergence is 

reached. 

 

 Since the Forward variable calculation is the same as 

Forward Algorithm, the computational complexity is 

O(TN
2
). Similarly, the Backward variables are O(TN

2
). The 

γ variables require O(TN) operations, and the ξ variables 

require O(TN
2
) operations. Re-estimating the A matrix 

requires O(N
2
) complexity; re-estimating B requires 

O(TMN), where M is the number of possible output 

symbols; and re-estimating Π requires O(N) operations. The 

entire algorithm's complexity can be expressed as  

 

 
2

( ),

( ),

O TMN M N

O TN else

>



 (21) 

 

 Much like the Forward and Viterbi algorithms, we 

can parallelize the BWA across states. For the Forward and 

Backward variables, this gives us O(T log N). γ requires 

O(T), and ξ requires O(T log N). Re-estimating A utilizes 

O(log N) operations. Re-estimating B requires O(T log N) + 

O(log M) = O(T log N) for T > log M. Finally, re-estimating 

Π uses O(log N) operations. Except for unusually large 

values of M, we can assume that the computational 

complexity of the parallelized BWA will be O(T log N). 

 

3.4. Complexity Summary 

 

Table 1 shows the computational complexity for the serial 

and parallel versions of the various HMM algorithms. 

 

4. GPU ARCHITECTURE 

 

The GPU is divided into software and hardware logical 

sections that map to each other in various ways. On the 

software side the programmer makes use of kernels, which 

is the heart of NVIDIA's CUDA extension of C [9]. A 

kernel is similar to a function call, but it is executed on the 

GPU. This SIMD operation is accomplished via threads in 

hardware. The code in the kernel is executed at the same 

time on each thread. However, each thread may be told to 

operate on different data. 

 

Table 1. Computational Complexity Comparison 

Algorithm Serial Parallel 

Forward O(TN
2
) O(T log N) 

Viterbi O(TN
2
) O(T log N) 

Baum-Welch O(TN
2
) or O(TMN) O(T log N) 

 

 On the hardware side, blocks are composed of a 

number of threads. Threads within a block are capable of 

communicating and sharing data through the use of shared 

memory. All of the blocks that are executed run on a grid. 

Generally, a GPU can handle a single grid at a time, but this 

can be overcome by using multiple GPUs or architectures 

that support multiple grids. Blocks within a grid have no 

good means to communicate with each other, offer no 

guarantee of parallel execution, and can preempt execution 

of other blocks. 

 Due to the limited guarantee of block concurrency, 

the parallel execution of kernels sees a speedup increase 

only to a certain degree. Once a grid is saturated with 

executing blocks, the other blocks must wait their turn. As a 

result, the speedup over serial execution will reach a point 

of diminishing returns. Diminishing returns have specific 

ramifications on HHMs. 

 Additionally, the lack of true inter-block 

communication poses a problem for HMMs, specifically the 

Viterbi algorithm. Step 2 of the Viterbi requires the 

maximum value or argument to be found. Normally, this can 

be done in a O(N) serial operation. With an SIMD 

operation, a technique known as a reduction is used, which 

reduces the computational complexity to O(log N). Once the 

dataset becomes large enough (i.e. more data than threads 

per block), inter-block communication is required to 

accomplish a full reduction. The only true inter-block 

communication is done by performing multiple kernel calls, 

each of which can add micro- to milli-seconds of overhead. 

Until a better method of inter-block communication is 

supported, reductions such as the one in the Viterbi 

algorithm will suffer additional time delays.  

 The biggest drawback to using GPGPU is the large 

overhead incurred during memory transfers to and from the 

GPU. Generally, the accepted GPGPU practice is to transfer 

a large chunk of data to the GPU's memory at the beginning 

of the program, run the necessary calculations, then transfer 

the results back. This model was followed for the HMM 

implementation outlined in this paper. However, several of 
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the algorithms such as the BWA ran out of GPU memory 

when performing calculations using a large number of 

HMM states (greater than 10,000). If more states are 

required, the program will have to be re-written for the 

current hardware to support freeing of GPU memory during 

calculations. This action, however, could incur severe 

penalties on the execution time of the algorithm(s). 

 

5. PERFORMANCE EVALUATION 

 

In order to evaluate the performance of the different 

algorithms, each algorithm was programmed first in C, 

utilizing a serial implementation. Then the algorithms were 

programmed in NVIDIA's CUDA language. Several 

functions relied on the CUDA-implemented Basic Linear 

Algebra Subprograms (CUBLAS), which takes advantage of 

CUDA functions to accomplish various matrix operations. 

 The algorithms were then given different HMM 

parameters and timed. First, the number of states were 

varied, followed by the number of symbols, and finally, the 

number of observations. For the given hardware, the C and 

CUDA implementations for all algorithms took the same 

amount of time with about 60 states. Therefore the other 

tests (symbol varying and time varying), were conducted 

with N = 60 for a more accurate comparison. 

 Additionally, the power measurement tool 

PowerTOP was used to estimate the power consumption of 

the CPU and GPU under load. Each algorithm was run for 1 

minute before a reading from PowerTOP was taken. 

 The tests were conducted on the hardware given in 

Table 2. 

 

Table 2. Test Hardware 

Component Specification 

CPU Intel Core 2 Duo U7300 @ 1.30GHz 

GPU NVIDIA GeForce GT 335M 

GPU Core 

Speed 
450 MHz 

GPU Shader 

Speed 
1080 MHz 

GPU Memory 

Speed 
1066 MHz 

CUDA Cores 72 

 

 

6. RESULTS 

 

The various algorithms were each timed on  the CPU and 

GPU. Figures 1-3 show the various timing results from the 

Forward Algorithm. The Viterbi Algorithm is depicted in 

figures 4-6, and figures 7-9 show the timing results from the 

Baum-Welch Algorithm. 

 Examining the graphs given in figures 1-9, it is 

apparent that the greatest increase in speed comes from 

utilizing the GPU with a large number of states, typically 

more than 60. Table 3 gives the speed increases for a select 

number of states. 

 

Table 3. Speed Increase for Each Algorithm 

Number 

of States 

CPU 

Runtime (s) 

GPU 

Runtime (s) 

Speed 

Increase 

Forward Algorithm 

4 0.0010 0.1531 0.007x 

40 0.0400 0.1393 0.287x 

400 4.2816 0.2379 17.99x 

4000 534.2028 2.9495 181.12 x 

Viterbi Algorithm 

4 0.0033 0.1605 0.021x 

40 0.0436 0.1801 0.242x 

400 4.2684 1.6595 2.57x 

4000 534.5543 116.2531 4.60 x 

Baum-Welch Algorithm 

4 0.0021 0.4142 0.005x 

40 0.1946 0.4299 0.453x 

400 17.6719 0.7502 23.56x 

4000 1834.672 28.1271 65.23 x 

 

 It can be seen that for a low number of states, the 

GPU performs far worse than the CPU. This is due to the 

overhead incurred when utilizing the GPU, as data must be 

copied to the GPU's memory and copied back to the host. 

Additionally, most GPU clock speeds are not as fast as 

those found in CPUs; GPUs are simply not designed to 

handle serial data computations. However, applications that 

require a large number of states (60+ in this case) perform 

quite well with a GPU. 

 This speedup works up to a certain point, however. 

As shown by figures 10-12, the GPU begins to lose its strict 

parallel processing after about 200-500 states. These 

diminished returns can be attributed to saturating the 

processing blocks found within the GPU. Once this point is 

reached, other blocks must wait their turn to be processed. 

As a result, the speedup gains do not improve as drastically 

after a certain point. This can be remedied with larger, more 

powerful GPUs that can handle more blocks at a time or 

several GPUs working in parallel. 

 Additionally, it was found that varying the number of 

symbols and number of observations had little impact on the 

execution speed difference between the CPU and GPU. In 

most cases, the CPU performed slightly better due to the 

increased overhead found in the GPU. 

 As shown in table 3, the speed increases can reach 

180x for the Forward Algorithm, 65x the BWA, and 4x for 

the Viterbi Algorithm with 4000 states. These speed 
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increases at a high number of states are well within the 

block saturation point of the GPU, but still continue to 

outperform the CPU. As noted in section 4, the lackluster 

performance of the parallel implementation of the Viterbi 

algorithm can be attributed to the reduction technique 

requiring multiple kernel calls. 

 The results of the speedup from the Viterbi algorithm 

compares to the work of Zhang et al. [6]. However, the 

other algorithms do not quite line up with the results from 

[4] and [5] as their work included additional parallel steps, 

such as evaluating multiple models at a time. The 

implementations found in this paper focuses strictly on the 

algorithms themselves. Any additional parallel steps can 

only improve the performance of the application. 

 In addition to the performance times,  the energy 

consumed for each of the algorithms in the CPU versus the 

GPU was assessed. This value was estimated by measuring 

the power utilization during the algorithm and multiplying 

by the computation time. Table 4 shows the measured 

power for each algorithm and figures 13-15 depict the total 

energy consumed during the algorithm runtime. Note that 

the idle power was measured at 13.8W. Due to the increase 

in power requirements of the GPU, the break-even point for 

energy consumption is 100 states for the forward algorithm, 

120 states for the Viterbi algorithm, and 70 states for the 

BWA. 

 

Table 4. Power Utilization 

Algorithm 
Power (W) 

C CUDA 

Forward 18.5 26.5 

Viterbi 18.5 29.1 

BWA 18.3 26.1 

 

 

7. CONCLUSION AND FUTURE WORK 

 

GPUs currently boast some of the most impressive 

computing power vs. electrical power efficiency ratings 

(measured in GFLOPS/Watt). However, this kind of power 

can only be utilized under special circumstances. If an 

algorithm cannot be parallelized, then many GPU 

computing blocks remain dormant, and  efficiency is lost. 

For HMMs, this means that only models with a large 

number of states can truly take advantage of the GPU's 

parallel computing capabilities. 

 Applications such as geolocation and spectrum 

sensing and classification could potentially use HMMs with 

hundreds of states. 2D and 3D HMMs could be used in 

these applications, but suffer from large computational 

complexity.  While the power requirements of a GPU still 

exceeds that of a CPU for the same functions, massively 

parallel computations can still prove more power efficient in 

a GPU. This is especially true of new technology that 

promises smaller, more efficient GPUs in handheld devices. 

 Additionally, HMMs are also used in other fields 

outside of wireless technology, such as speech/handwriting 

recognition, financial research, economics, and protein 

folding. Some of these applications use hundreds or 

thousands of states, and would benefit greatly from GPUs. 

 It should be noted that the code used to test the 

algorithm runtimes contained minimal optimization (e.g. 

only that offered by the compiler and the use of the 

CUBLAS library). Both the C and CUDA implementations 

could undoubtedly benefit from programming optimizations 

to take advantage of other hardware speed increases, 

including optimizing the reduction techniques used for the 

Viterbi algorithm. Furthermore, some applications, such as 

pattern recognition, rely on solving the same algorithm with 

different sets of data. For example, to find the best model 

match to an observed pattern, the Forward Algorithm is run 

on the observation sequence a number of times equal to the 

number of models in the database. This kind of parallelism 

could also see potential gains in a GPU. 

 In summary, the GPU provides promising runtime 

improvements over the CPU for the various HMM 

algorithms, given that the model contains a large number of 

states. As GPUs become smaller and more efficient, they 

could indeed prove to be a contender or supplement to 

CPUs, DSPs, and FPGAs for wireless applications. 
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Figure 1. Varying States in the Forward Algorithm 

 

 

 
Figure 2. Varying Symbols in the Forward Algorithm 

 

 

 
Figure 3. Varying Sequence in the Forward Algorithm 

 

 

 
Figure 4. Varying States in the Viterbi Algorithm 

 

 

 

 

 

 

 
Figure 5. Varying Symbols in the Viterbi Algorithm 

 

 

 
Figure 6. Varying Sequence in the Viterbi Algorithm 

 

 

 
Figure 7. Varying States in the BWA 

 

 

 
Figure 8. Varying Symbols in the BWA 

 

 

 
Figure 9. Varying Sequence in the BWA 
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Figure 10. Varying States for Forward Algorithm on GPU 

 

 

 
Figure 11. Varying States for Viterbi Algorithm on GPU 

 

 

 
Figure 12. Varying States for BWA on GPU 

 

 

 

 

 
Figure 13. Energy Consumption for Forward Algorithm 

 

 

 

 
Figure 14. Energy Consumption for Viterbi Algorithm 

 

 

 

 
Figure 15. Energy Consumption for BWA
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