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ABSTRACT

This paper describes a hardware processor architecture that
can achieve the holy grail of SDR: a general-purpose proces-
sor that enables high-throughput, low-latency processing for
layer 1 through layer 3 for a complete basestation on a chip,
while meeting the highest demands of WCDMA and LTE-ad-
vanced.

The starting point for this architecture is IBM's Pow-
erEN processor, a multicore, massively multithreaded plat-
form that employs general-purpose Power processor cores
and includes extensions that address functions appropriate
for wired network-edge applications.  We consider here a po-
tential evolution of PowerEN to address layer 1 functions,
implementing SDR on a general-purpose processor platform
for 3G and 4G basestations.  Incorporation of a vector-based
accelerator (VBA) enables an enhanced PowerEN to support
the evolving 3G and 4G standards at a sufficient level of per-
formance for LTE-advanced and beyond, in a fully program-
mable and scalable fashion.  VBA has the appearance of a
traditional SIMD unit attached to each general-purpose pro-
cessor, but includes features that dramatically increase its
processing capability for SDR.  We provide details of the
VBA architecture and describe aspects of programming mod-
els for its use.  In addition, we describe aspects of the imple-
mentation of a 4x4 MIMO LTE uplink receive chain on an
enhanced PowerEN platform

1.  INTRODUCTION

The rapid proliferation of tablets, smartphones, and other
user devices that support high-speed wireless connectivity
has led to an explosion of traffic types and traffic volume in
wireless networks.  It also has the potential to drive a tighter
coupling between the signal- and network-processing func-
tions traditionally implemented in basestations using applica-

tion-specific hardware platforms, and information-technol-
ogy (IT) functions that have usually been implemented in or
behind the core network using general-purpose processing
platforms.  This latter factor significantly increases the attrac-
tiveness of software-defined radio (SDR) with the layer 1
functions running on a general-purpose processor platform.
This would enable the signal processing for layer 1 as well as
higher-layer functions and IT-oriented functions to be run on
a common computing platform with a single architecture, a
single toolset, and a single programming model.

The explosion of traffic volume and the associated de-
mand for higher data rates per user have led to new OFDM-
based standards as well as evolution of existing WCDMA-
based standards;  this also increases the attractiveness of
SDR, since ideally an SDR-based basestation should have the
capability to support different layer 1 mechanisms in a flexi-
ble and scalable fashion.  At the same time however, the new
standards, and their projected evolution over the next 10
years, drive performance requirements for any implementa-
tion of layer 1 function, traditional or SDR-based, that will be
difficult to meet, and the possibility of satisfying them with a
fully programmable SDR solution, especially one based on
use of a general-purpose processor platform, may seem re-
mote at best.  

This paper describes a hardware processor architecture
that can achieve the holy grail of SDR:  a general-purpose
processor that enables high-throughput, low-latency process-
ing for layer 1 through layer 3 for a complete basestation on a
chip, while meeting the highest demands of WCDMA and
LTE-advanced.  The starting point for this architecture is
IBM's PowerEN processor [1],[2], a multicore, massively
multithreaded platform that employs general-purpose Power
processor cores and includes extensions that address func-
tions appropriate for wired network-edge applications.

The layer 1 functions implemented in an SDR platform
can be viewed as a set of “network-edge” functions specific
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to the boundary between wireless and core networks.  We de-
scribe here a set of possible extensions to the PowerEN plat-
form that would enable it to support the evolving 3G and 4G
standards at a level of performance appropriate for what is
projected through LTE-advanced and beyond, in a fully pro-
grammable fashion.  The key extension is a vector unit added
as an “auxiliary execution unit” (AXU) to each of the Power
processor cores on the chip and providing vector-based accel-
eration (VBA).  The vector unit has the appearance of a tradi-
tional SIMD unit incorporated in a general-purpose proces-
sor, but it includes a number of features that dramatically
increase its processing capability for SDR.  These include a
very large architected register file, a means for dynamically
addressing data elements in this register file, gather and scat-
ter functions for data in the register file, and high-bandwidth,
low-latency data movement into and out of the register file.

Following an overview of the PowerEN platform and a
detailed description of the VBA unit, we discuss in Section 4
the implementation using VBA of two classes of algorithms
of particular importance for LTE, namely FFT and matrix in-
version;  we also present a brief summary of results devel-
oped in [3] for the VBA implementation of the LTE turbo de-
coder.  An assessment of the processing load of an LTE
digital baseband implementation on an evolved PowerEN
platform, for a single sector supporting 4x4 MIMO in a
20MHz channel, is presented in Section 5.  These results, to-
gether with results presented in [3] for WCDMA chip-rate
processing implemented on VBA, indicate that the essen-
tially general-purpose processor platform  proposed here is
capable of supporting both WCDMA and LTE at appropriate
performance levels in a fully programmable and scalable
fashion.

2.  POWEREN OVERVIEW

The PowerEN processor is a multicore, massively multi-
threaded platform that employs general-purpose Power pro-
cessor cores and includes extensions that address functions
appropriate for wired network-edge applications.  A photo-
graph of the chip is shown in Fig. 1.  The chip integrates 16
Book-E 64-bit Power processor cores, identified as A2 cores
in the figure, along with a set of hardware accelerators sup-
porting symmetric and asymmetric cryptography, multi-pat-
tern search for deep-packet inspection, gzip-style compres-
sion and decompression, and XML processing.  Also
included in the chip are four 10Gbits/s Ethernet interfaces
with a controller (HEA) that provides frame classification
and protocol acceleration capabilities.  The chip is imple-
mented in 45nm and in typical applications runs at 2.3GHz.
Details on chip area, and on power consumption in different
configurations, can be found in [2].

The A2 cores support simultaneous multithreading
(SMT) with four threads per core.  The A2 is a small, effi-
cient, scalar, integer core, but includes an AXU interface that

permits attachment of execution units providing additional
capabilities.  In PowerEN, the AXUs support scalar floating-
point instructions.

The A2 cores are organized into AT nodes of four cores
each, sharing a 2MB L2 cache.  The Pbus in PowerEN con-
nects the four AT nodes, the accelerators and HEA noted
above, interfaces to external memory, and other I/O.  It pro-
vides hardware-managed coherence for all accesses to data
by any of the attached entities.  It also implements an archi-
tecturally defined mechanism for communication between
A2 cores and accelerators, with accelerators running in the
same virtual address space as the invoking threads, and each
accelerator supporting complete address translation.  In addi-
tion, the Pbus supports cache injection, which allows data
from an accelerator or an Ethernet interface to be written di-
rectly into the L2 cache of a target thread, thereby avoiding
unnecessary traffic to and from external memory, with a sig-
nificant reduction in latency.  Supporting low-latency inter-
thread communication is important as well.  The Pbus pro-
vides for low-latency data transfers between L2 caches.  For
even lower latency, applications can group related threads on
top of the same L2 cache.

The latency to transfer data from one thread to another
on the same node is trivial compared to the processing on
each thread.  On PowerEN, this has been measured at around

Figure 1.   PowerEN die photo
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300 processor cycles with a lockless single-produce, single-
consumer message queue.

In the Power architecture this can be done using normal
loads and stores to access the message.  The producer still re-
quires a light-weight sync when writing a message, to ensure
all prior data is written first.  The consumer must use an isync
to ensure loads after the message is received do not execute
out-of-order early, and receive stale data.

The message transfer time of 300 cycles is measured
from the start of message send on the producer, until end of
message receive on the consumer on the PowerEN chip.  The
consumer is not stalled for most of the transfer time, and
spends about 130 cycles sending the message.

This assumes the worst case, in which the consumer
must wait for the producer.  Preferably, the producer runs
ahead of the consumer, and the consumer finds the data avail-
able immediately, in which case the consumer takes about 70
cycles to determine that data is present and receive a mes-
sage.  The remainder of our analysis conservatively assumes
the longer scenario.

Several features aid communication between L2 caches.
To aid with streaming data, cores can issue special touch in-
structions which mark cache lines as least-recently-used.  By
marking lines as ready for replacement, the streaming data is
confined to a single way of the L2 cache.  This can be used ei-
ther prior to accessing the data, as an actual prefetch, or after
using the data, as a replacement hint.  The Replacement Man-
agement Table is a similar but more automated mechanism
where particular address ranges can be confined to one or
more ways of the L2 cache.

Prefetching, whether software-driven or hardware-
driven, also aids in shipping data streams between L2 caches.
In particular, prefetching helps when it is most needed —
when the producer is getting ahead of the consumer.

Given PowerEN as an existing platform, we consider a
possible evolution that would enable it to address a broader
set of network-edge functions, and in particular to support
SDR in wireless basestations.  The basic platform architec-
ture would remain as described above, with nodes consisting
of a small number (perhaps two or four) of simple, efficient
cores with a shared L2 cache.  Key extensions will include:

• use of vector-based acceleration, with a vector unit
attached to each processor core as an AXU;

• potential modification of the processor cores to max-
imize the efficiency with which the vector AXUs are
used (thus the cores are referred to be below as A2+);

• incorporation of appropriate antenna interfaces (e.g.
CPRI)  attached to the Pbus with cache-inject support
(so that antenna data can be moved directly between
the interface and L2 caches);

• possible inclusion of hardware accelerators for cer-
tain functions specific to basestation applications
(but ideally all functions would be implemented in
software).

It is anticipated that an enhanced PowerEN incorporat-
ing these extensions would be implemented in 22nm and
would run at 2.3GHz.

3.  VECTOR-BASED ACCELERATION

VBA is an AXU attached to an A2+ core.  It takes and exe-
cutes instructions fetched and passed to it by the A2+ core.
VBA is derived from VMX, the Power SIMD architecture
[4], but incorporates several significant extensions and inno-
vations.  To begin with, the SIMD with is increased to 32
bytes, with corresponding subword parallelism (e.g. 16-wide
for 16-bit halfwords, 8-wide for 32-bit fullwords).  Second,
native complex-arithmetic is included, together with a set of
special instructions useful for despreading and related func-
tions;  these are described below in Section 3.1.  Most signif-
icantly, the vector unit includes an extremely large register
file, the vector string register file (VSRF), consisting of 2K
32-byte registers, together with an indirection mechanism for
dynamically addressing data contained in the register file;
these features are discussed in Section 3.2.  The benefits pro-
vided by use of the large register file and associated indirec-
tion are discussed in the context of an “in-line” programming
model for use of VBA in Section 3.4 and are also highlighted
by the algorithm examples in Section 4.

3.1.  Computational Facilities

VBA begins with VMX.  The VBA doubles the vector size,
from 16B-wide to 32B-wide, and the subword parallelism as
noted above.  Support for fixed-point and single-precision
floating-point arithmetic are as in VMX, including fused
multiply-add instructions for floating point and a suite of
fused multiply-add and “multiply-sum” instructions for
fixed-point.  The standard VMX permute facilities, permit-
ting shuffling of data from two source registers, is also avail-
able.  However, VBA introduces a much more general and
powerful mechanism for reorganization of data in its register
file, as described below in Section 3.2.

The vector unit introduces native support for complex
fixed-point arithmetic.  Real and imaginary parts are assumed
to be interleaved for data in memory and also for data in the
VSRF.  Among the instructions provided is a set that imple-
ments fused complex fixed-point multiply-add operations.
The vector unit also introduces instructions that implement
correlations with sequences of , e.g. for spreading and de-
spreading in WCDMA.  Use of these instructions assumes
that the sequence is stored as a bit-vector (say 0 for +1, 1 for

) in the VSRF and leverages the ability to dynamically ad-
dress data in the VSRF to “walk through” the bit-vector some
number of bits at a time as appropriate.  An example of the
use of these instructions for WCDMA despreading is pre-
sented in [3].

1±

1–
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3.2.  The VSRF with Indirect Access

The use of a large register file with software-managed indi-
rect access was introduced previously in the context of a
SIMD DSP architecture [5],[6].  Derby et al. described a dif-
ferent form of indirection that enabled a 5-bit register-oper-
and field in a standard VMX instruction to specify one out of
1K or more architected registers [7].  These two concepts are
combined in the indirection architecture employed with
VBA.

The VSRF consists of 2K 256-bit registers, providing an
aggregate 64KB of storage.  It is physically arranged as a set
of eight subarrays, each containing 256 registers, and each
with four independent read ports and one write port.  While
the VSRF contains more storage than the L1 data cache in
most processors, it is in fact a register file.  It can supply the
contents of up to four registers per cycle as input operands to
instructions, and access latency is completely hidden by pipe-
lining and bypassing.

Access to data in the VSRF is via an indirection mecha-
nism, which uses a special set of 32 map registers (MRs) that
contain addresses that are offsets from the VSRF origin.
MRs are 128 bits wide and support subword parallelism.  A
map register may contain eight 16-bit byte pointers or four
19-bit bit-pointers;  the pointers contain byte or bit offsets
from the origin of the register file.  The contents of the map
registers are managed by software in SIMD fashion using a
set of new “map management” instructions;  these include
arithmetic operations on the entries in an MR, and moves be-
tween an MR and the upper 16B in a register in the VSRF.

The indirection mechanism has two basic forms, referred
to as “operand-associated indirection” and “generalized indi-
rection”.  Operand-associated indirection enables the specifi-
cation of one out of 2K registers in a 5-bit register operand
field.  A 5-bit operand selects one 16-bit pointer in an MR,
and the pointer indicates the VSRF register accessed.  Since
there are eight 16-bit pointers in one MR, a 5-bit operand in-
dexes four MRs.  Four MRs are therefore logically grouped
into an operand map.  There are four operand maps, one for
each of the four operand positions in a VBA instruction
(three vector sources and one destination).  Defining separate
maps for inputs and outputs allows register specifiers to be
reused in different contexts, easing register specifier selec-
tion.  The four operand maps use the first 16 MRs, with the
remaining 16 MRs available for generalized indirection, tem-
poraries and immediate values.  

An example of the use of operand-associated indirection
is shown in Fig. 2.  The four maps, each with 32 entries, are
indicated in the figure.  MR0 through MR3 contain the ‘VT
map’ for the target register operand, MR4 through MR7 con-
tain the ‘VA map’ for the A source register operand, MR8
through MR11 contain the ‘VB map’ for the B source register
operand, and MR12 through MR15 contain the ‘VC map’ for

the C source register operand.  The map register entries for
operand-associated indirection all point to registers in the
VSRF and so as byte counts from the origin of the VSRF
must be equal to 0 mod 32.  The example shown is simplified,
in that the map entries are shown as being VSRF register in-
dices, and also in that the VSRF is shown as having 1K reg-
isters.  The instruction at the top of the figure is a VMX (and
so also VBA) floating-point add instruction, with ‘1’ encoded
in the target register operand field, ‘2’ encoded in the A
source register operand field, and ‘3’ encoded in the B source
register operand field;  for this instruction, there is no C
source operand.  As shown in the figure, the ‘1’ from the tar-
get operand field is used as an index into the corresponding
map (‘VT map’);  the referenced map entry contains a pointer
to VSRF register 6.  Similarly, the ‘A’ source register is iden-
tified as VSRF register 17 using the ‘VA map’, and the
‘B’source register is identified as VSRF register 95 using the
‘VB map’.  Thus the instruction computes the 8-wide float-
ing-point addition of the contents of VSRF registers 17 and
95 and places the result in VSRF register 6.

Generalized indirection is an extremely powerful mech-
anism for reorganizing data in the VSRF, permitting access to
up to eight data elements at arbitrary locations in the VSRF
with a single instruction.  The gather instructions will place
the addressed data elements in a specified order in a target
register in the VSRF.  For example, a gather words instruc-
tion,  ‘vgetw VT,MA,MB’, will take eight pointer values
from map register MA and interpret the eight values in map
register MB as lengths (in bits), extract eight data elements
with the specified lengths from the specified locations in the
VSRF, and place them in 32-bit slots in target register VT in
the VSRF in the order in which the pointer values appeared in
map register MA.  It is also important to note that for certain
gather instructions, the map-register operands are interpreted
as having four entries in 32-bit slots, with the entries in the
MA operand being bit counts rather than byte counts from the
origin of the VSRF.  For these instructions, the fields to be
gathered need not be aligned on byte boundaries in the VSRF.
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This can be particularly useful for implementing bit inter-
leavers, e.g. as part of a turbo encoder.

3.3.  VBA Microarchitecture

Performance analysis is based on the A2+ core and attached
VBA, as shown in Fig. 3, a two-wide out-of-order processor.
Because VSRF accesses depend on MR values, VBA execu-
tion proceeds in two stages.  First the MR registers are ac-
cessed to determine which VSRF registers will be read or
written.  Vector execution then proceeds in the second stage.

The fetch engine can enqueue two instructions per cycle
into the MR issue queue inside the VBA.  After issuing and
reading their input MRs, map management instructions are
executed immediately.  Other VBA instructions proceed
through the select pointers stage, which determines the actual
VSRF registers read/written, based on the pointers in the MR
values read from the register file.  Dependency analysis then
determines which prior instructions, if any, each vector in-
struction depends on.  Instructions are then enqueued a sec-
ond time to wait for vector register dependencies and an ap-
propriate execution pipeline.  Once instructions issue, they
read their input values and execute.

Map management instructions may issue out-of-order to
the MR execution pipe.  These instructions have single-cycle
latency, and one may issue each cycle.  Due to out-of-order
execution, map management instructions issue early, and are
rarely a source of stalls.  Other VBA instructions must issue
in-order because the accessed vector registers are not yet
known.

Since integer and VBA instruction can be freely inter-
mixed, the integer execution engine can, in general, flush and
restart the instruction stream at any point.  The VBA must be
able to roll-back register values until instructions are com-
mitted.  Normal register renaming provides this capability for
MR instructions.  The A2+ core renames the 32 architected
MRs to 64 physical MRs prior to handing the instructions to
the VBA.

Register renaming is impractical for VSRF registers be-

cause the 2K architected registers would require a highly-
ported rename table with 2K entries.  Instead, VBA employs
a future file.  The future file holds vector register values until
the producer commits.  Register state may be rolled back by
invalidating future file entries after the flush point.  After
commit, future file entries are spilled to the VSRF, which
holds only committed architected state.

During dependency analysis, instructions are assigned a
slot in the future file for their output value.  Instructions that
produce no VSRF value (e.g. stores) need no future file entry.
Instructions that produce multiple output values (e.g. 64B
cache line loads, which produce two 32B registers) receive
multiple future file entries.

Instructions determine the future file entry of prior in-
flight instructions that produce needed input values.  After is-
sue, instructions read their inputs from the future file, the by-
pass network or the VSRF as needed.

Out-of-order vector execution is a real possibility, since
most of the mechanisms to support out-of-order vector issue
exist.  However, the SDR algorithms that VBA targets can be
well-scheduled.  Since out-of-order execution provides little
advantage, projections are based on in-order vector issue.

The performance projections reported below are based
on a VBA capable of issuing 2 vector instructions per cycle.
The four VSRF ports limit issue to four total register inputs
between the two instructions. This limit is rarely exceeded.
Generalized indirection operations that read more than four
registers use two issue slots. Reasonable structural limita-
tions are also assumed. In particular, the single permute unit
limits the number of gather operations per cycle to one.

3.4.  Programming Model

Although the VBA can be programmed using a completely
traditional programming model, with memory-resident data
loaded and stored as needed, this underutilizes the VSRF.
Substantial performance gains can be obtained by loading
relatively large blocks of data into the VSRF a cache-line at a
time, operating on the entire block of data, keeping interme-
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diate results in the VSRF, and storing the final results to
memory a cache-line at a time.  For example, a 2K-point FFT
can be implemented with the data array and the twiddle fac-
tors loaded to the VSRF at the outset, the data array main-
tained in the VSRF as it is updated through the FFT stages,
and the output data array stored to memory at the very end.
The pointer values that implement the varying access pat-
terns to the data and twiddle arrays are maintained in map
registers and updated using map management instructions.
This example is discussed in more detail below in Section
4.1.

The VBA provides further advantage when the produced
result is used as the input to another function, for instance,
passing the FFT output into subcarrier demapping in an LTE
uplink receiver.  In this case there is no need to store the out-
put of the FFT;  the next function is merely given a pointer to
its input within the VSRF using an MR.

This in-line acceleration model is the ideal that VBA en-
ables.  A sequence of functions, which traditional implemen-
tations would offload to hardware, with frequent coordina-
tion and data movement between processor cores and
accelerators, are instead implemented in software in a single
A2+ core with VBA.  Data remains local, ideally in the
VSRF and if necessary in the local L2 cache, and coordina-
tion is handled  through normal program flow.

Three additional points with respect to the programming
model are worth noting.  First, it remains a load/store model,
with load and store instructions used to move data into and
out of a vector unit’s VSRF, and, given the platform’s hard-
ware-managed coherency, with no need for software to have
knowledge of the precise location of a block of data to be ac-
cessed.  Second, capabilities needed to program VBA using
high-level language, including allocating blocks of registers
to be used by arrays and indexing arrays in the VSRF in the
usual way, would be available in compilers targeting the
VBA [8],[9].  Finally, use of VBA enables solutions that are
highly scalable, since each VBA can provide acceleration for
any of the desired functions, depending on the code it exe-
cutes.

4.  ALGORITHM EXAMPLES

In this section we discuss the VBA implementations of sev-
eral algorithms whose performance will have a significant
impact on the performance of an LTE digital baseband.  We
focus in particular on FFT algorithms, which are pervasive in
LTE, and on matrix inversion, which is employed for channel
estimation and MIMO processing.  We also refer to some re-
sults presented in [3] on the implementation of the LTE turbo
decoder using VBA.

4.1.  FFT Algorithms

Power-of-2 size FFT algorithms are used extensively in LTE.
In addition, the SC-FDMA format used in the LTE uplink re-
quires the use of non-power-of-2 size FFT algorithms.  All
these algorithms are commonly implemented using fixed-
point arithmetic, with 16 bits each for the real and imaginary
parts of the data array, and 16 bits each for the real and imag-
inary parts of the twiddle array.  The fixed-point FFT algo-
rithms implemented using VBA take advantage of its native
support for fixed-point complex arithmetic noted above in
Section 3.1.  

With interleaved real and imaginary parts at 16 bits each,
the FFT algorithms see the VBA as providing an 8-wide
SIMD.  There is a natural affinity between the radix-8 FFT
and an 8-wide SIMD, in that eight radix-8 butterflies can be
executed in parallel in place throughout the FFT, with just
one step of shuffling the data array with base-8-digit-reversed
indexing.  Moreover, a very simple and clean implementation
of the shuffling is possible given the capabilities of the VBA.

Consider a 512-point FFT, with three radix-8 stages.
Each stage has eight 8-wide radix-8 butterflies.  The data ar-
ray occupies 64 vectors. A decimation-in-time implementa-
tion on VBA proceeds as follows: 

1. The data array is accessed in sequential fashion for the
first stage, which requires no twiddle factors.  The
first stage requires about 120 cycles.

2. Groups of eight vectors are transposed in the VSRF,
using a sequence of gather instructions.  Each 8x8
transpose requires 8 cycles.

3. The shuffled intermediate data array from step 2 is the
input to the second stage.  The access pattern for the
array completes the base-8-digit-reversed indexing.
This access pattern is implemented by construction
and updating of appropriate sets of pointers in map
registers.  The second stage, including multiplication
by twiddle factors and the necessary map manage-
ment, completes in about 160 cycles.  The data array
at the output of this stage is in the VSRF in natural or-
der.

4. The third stage completes the FFT.  Including multi-
plication by twiddle factors and the appropriate map
management, it completes in about 160 cycles

The complete 512-point FFT executes in about 550 cy-
cles.  This assumes that the data and twiddle arrays are al-
ready in the VSRF at the outset and that the transformed data
array remains in the VSRF at the end.  The overhead to load
the data and twiddles and to store the result may increase the
cycle count by perhaps 15%.  However, in the LTE layer 1
FFTs represent one step, or a set of steps, in a sequence of
functions applied to the baseband signals.  With the in-line
programming model outlined in Section 3.4, it is realistic to
consider the FFT requiring neither loads from memory nor
stores to memory.
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Extension of the approach described above to a 1K-point
or 2K-point FFT is straightforward, with the addition of a ra-
dix-2 stage or radix-4 stage, respectively, following the third
stage.  The only qualitative difference in the application of
steps 1 through 4 is the pattern used at the input to the second
stage to access the transposed data in the VSRF.  Cycle
counts follow approximately the usual N log N scaling.  The
1K-point and 2K-point FFTs are projected to execute in about
1150 cycles and 2500 cycles, respectively.

Extension of the approach described above to non-
power-of-2 FFTs is less straightforward.  However, it can be
shown that if the FFT size is a multiple of eight, then the first
two steps from the pure radix-8 algorithm above can be main-
tained, with construction of the access pattern used at the in-
put to the second stage to access the transposed data  based on
the set of radices employed in the second and succeeding
stages.  In this case, there is exactly one data-shuffling step
between the first and second stages of the FFT algorithm.  If
the FFT size is not a multiple of eight, then a second data-
shuffling step becomes necessary, between the second and
third stages.  In all cases, however, the data shuffling operates
efficiently within the VSRF, using the permute and gather
mechanisms that the VBA makes available for reorganization
of data within the VSRF, and with pointer values used by
these mechanisms maintained in map registers and managed
in SIMD fashion.

4.2.  Matrix Inversion

MIMO configurations require matrix inversion for channel
estimation and MIMO detection.  For 4x4 MIMO, the matri-
ces to be inverted are 4x4 matrices.  We consider using float-
ing-point rather than fixed-point arithmetic for matrix inver-
sion.

VBA carries forward the single-precision floating-point
capabilities of VMX [4], extended to be 8-wide.  These in-
clude instructions that implement the following:

• fused multiply-add
• conversion between floating-point and fixed-point
• reciprocal estimate
• reciprocal square root estimate

These instructions are all useful in implementing matrix-in-
version algorithms.  Note that native support for complex
arithmetic is not included in VBA for floating-point opera-
tions, based on an assessment of performance vs. area trade-
offs.  

Because in the LTE uplink receiver there is nominally
one matrix to be inverted for each data subcarrier in each SC-
FDMA symbol, the matrix inversion can be implemented ef-
ficiently with eight matrices being inverted in parallel, one in
each of the eight lanes of the SIMD.  If the matrices are not
generated in this format, i.e. with the (1,1) elements of eight
matrices in one vector, the (1,2) elements of eight matrices in
a second vector, etc., then the permute and gather facilities

can be used to reorganize them into this form.
The projected performance for inversion of 4x4 matrices

is equivalent to about 120k matrix inversions per second.
This estimate includes loading the matrices from the L2 to
the VSRF, as well as the potential need to reorganize the ma-
trix elements as noted above.

4.3.  Turbo Decoder

The turbo decoder is one element that rarely has a true soft-
ware implementation in SDR platforms that address 4G wire-
less, because of the throughput that must be sustained.  The
VBA incorporates hardware that leverages parallelism that is
made available by the physical structure of the VSRF,
thereby enabling an implementation of the LTE turbo de-
coder with very high throughput.

The VSRF is partitioned into eight banks, each with its
own set of read and write ports.  Logic that implements the
standard algorithm based on the Max-Log-Map approxima-
tion [10] for BCJR [11] is associated with each bank of the
VSRF.  In addition, the received data block to be decoded is
partitioned into partially overlapped sub-blocks, with one
sub-block in each bank of the VSRF.  In this way, eight de-
coders can be running in parallel, one associated with each
bank of the VSRF and working on one received sub-block.
Together they form the equivalent of a single constituent de-
coder working on the complete received data block

The interleaver and de-inerleaver for the turbo decoder
are implemented using the VBA gather capability.

Each iteration of the turbo decoder involves two calls to
the constituent-decoder function and two calls to the shuf-
fling function that implements the interleaver and de-inter-
leaver.  Current projections indicate that, assuming six itera-
tions of the turbo decoder, a throughput of about 230Mbits/s
is achieved for a single A2+ core with VBA.  Finally, it is im-
portant to note here that all of the necessary arrays, including
pointer arrays for the interleavers, are maintained in the
VSRF throughout the operation of the turbo decoder.  More-
over, the LLRs that are input to the decoder can already be in
the VSRF, as the output of a demodulator or similar process,
when the decoder is invoked.

Details of the VBA implementation of the turbo decoder
are available in [3].

5.  LTE DIGITAL BASEBAND

The results presented in Section 4 will now be used to assess
the processing load of an LTE digital baseband implementa-
tion on an evolved PowerEN platform, and also to consider
alternatives for organizing the work given the opportunity to
employ an in-line programming model.  The configuration to
be considered represents a single sector supporting 4x4
MIMO in a 20MHz channel.  We focus on the uplink receive
chain, since that is where the bulk of the cycles are con-
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sumed.
Fig. 4 shows a simplified block diagram of the LTE up-

link receive chain for a 4x4 MIMO configuration, through
the MIMO decode step.  The IDFT for SC-FDMA, demodu-
lation block, and turbo decoder are not shown.  The block la-
beled “remove CP” may also include compensation for car-
rier frequency offset.

We consider that in the LTE uplink for a 20MHz chan-
nel, seven SC-FDMA symbols, each consisting of 2K+ com-
plex samples with 16 bits for the real part and 16 bits for the
imaginary part of each sample (2k+ because of the cyclic pre-
fix), are received from each antenna in every 500µsec slot.
These samples would be moved from the antenna interface
directly into the L2 cache of the node where they will be pro-
cessed using the cache-inject mechanism.

For the blocks shown in Fig. 4, we will focus first on
those for which performance projections were provided in
Section 4, namely the FFT and the MIMO frequency-domain
equalizer (MIMO decode).

For the 4x4 MIMO configuration, 28 symbols are re-
ceived altogether in every 500µsec slot, and each of these is
processed by a 2K-point FFT.  The projection of 2500 cycles
for a 2K-point FFT is uplifted by 20% to account for data
movement and scaling.  At 2.3GHz, the aggregate time for
executing the 28 2K-point FFTs on a single A2+ with VBA is
under 40µsec, or less than 10% of the slot time.

For the 4x4 MIMO configuration, using the common
MMSE approach for the MIMO decode block, the number of
4x4 matrix inversions per slot is equal to the number of data
subcarriers per slot;  this is , or 7200.  In addition,
there may be 1200 inversions per slot for channel estimation.
Using the projection from Section 4.2, this will take about
140µsec on a single A2+ with VBA, or about 28% of the slot
time.

The focus here has been on two specific algorithms out
of many that are employed in the LTE digital baseband:  the
FFT because it is used so heavily, and matrix inversion be-
cause, except for turbo decoder, it is perhaps the most signif-
icant consumer of processor cycles.  In addition, there are
FFT instances not counted in the above analysis (e.g. to com-

plete the SC-FDMA processing) in the uplink receive chain,
as well as a 2K-point FFT per symbol in the downlink trans-
mit chain.  We have carried out a preliminary assessment of
the processing load for a complete LTE digital baseband., in-
cluding the turbo decoder.  The results indicate that process-
ing for one sector with one 20MHz channel and 4x4 MIMO
can be supported by three A2+ cores, each with VBA.

How the aggregate processing load is optimally parti-
tioned across the cores will depend on several factors, includ-
ing the programming model and the relative timing between
uplink and downlink.  Discussion of the latter is beyond the
scope of this paper.  With respect to the programming model,
key objectives include minimization of data movement, e.g.
between the L2 and a VBA’s register file within a node.  Use
of the in-line programming model discussed in Section 3.4
can provide significant benefits here.

Consider following a symbol through the blocks shown
in Fig. 4.  It has already been observed that the FFT is imple-
mented with the data array maintained in the VBA’s register
file throughout.  In fact, once the symbol is loaded at the out-
set, the first three blocks, namely CP removal, FFT, and sub-
carrier demapping, can be implemented with the received
samples remaining in the VSRF as they are processed, and
with amplitudes of the 1200 used subcarriers stored after the
demapping step.  The in-line programming model is also eas-
ily applied to the FFTs that complete the SC-FDMA process-
ing (following the MIMO decode block) through the demod-
ulation step to the turbo decoder input.  How to maintain
blocks of data in the VSRF through the channel estimation
and MIMO decode blocks will have a strong interaction with
how the aggregate processing load is partitioned across mul-
tiple cores, since these blocks look at the signals from all four
receive antennas.

In fact, there are a number of viable alternatives for par-
titioning the work, taking into account the different process-
ing requirements in the uplink and downlink.  For any of
these, there will almost certainly be at least one point, and
perhaps two, in the uplink receive chain where processing
moves from one core to another.  It can be assumed that the
three cores supporting the aggregate processing load will be

Figure 4.   Simplified partial block diagram of an LTE uplink receive chain
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in the same node sharing the same L2, so the necessary inter-
thread synchronization can be efficient and relatively
straightforward, as described above in Section 2.

Finally, we note that extension to support multiple sec-
tors and more than one 20MHz channel per sector can be
straightforward, given the multicore parallelism available on
the enhanced PowerEN platform under consideration.  For
example, channels from different sectors can be assigned to
different nodes.  Since the antenna interface can communi-
cate directly with the L2 for the appropriate node and the as-
sociated data can remain local to the node, the work being
done for a channel in one sector sees no interference form
work being done for a channel is a different sector.

6.  CONCLUSION

We have presented in this paper a potential enhanced version
of the IBM PowerEN chip, with extensions to support com-
plete layer 1 processing in basestations for 3G and 4G stan-
dards.  The key new element would be the augmentation of
each Power processor core with an AXU providing vector-
based acceleration.  As examples of the use of VBA, imple-
mentations of FFT algorithms and matrix inversion were pre-
sented, as well as a key aspect of the implementation of an
LTE turbo decoder.  Based on the results for those algorithms
and additional analysis, a preliminary assessment indicates
that the complete digital baseband including the turbo de-
coder for one sector with one 20MHz channel supporting
LTE with 4x4 MIMO can be implemented with 3 A2+ cores,
each with VBA  Details of the turbo decoder implementation,
as well as implementation using VBA of a generic despread-
ing algorithm for WCDMA, are presented in [3].  Studies are
currently underway to estimate the number of A2+ cores with
VBA that might be required to support complete basestation
function for 3G including HSPA+ and 4G through LTE-Ad-
vanced.  Our aggregate results point to the feasibility of an

essentially general-purpose computing platform supporting
SDR in a fully programmable and scalable fashion at the
highest levels of performance required for basestations
through LTE-Advanced and including high-throughput 3G
configurations.
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