
© 2011 IBM Corporation

Vector-Based Acceleration in the IBM PowerEN™ Processor
to Enable Software Defined Radio
Jeff H. Derby

IBM Research, RTP, NC
jhderby@us.ibm.com

Co-authors: Timothy Heil, Michele Franceschini, Anil Krishna, Bob Montoye,
Dheeraj Sreedhar, Augusto Vega, Hangu Yeo, Charlie Johnson

2 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

Overview

We propose a platform as follows:
derived from PowerEN, enhanced with vector-based acceleration (VBA)
capable of supporting software-defined radio in maximally configured,
macrocell wireless basestations
with “in-line” acceleration

– DMAs to / from hardware accelerators avoided
– minimal data movement

using an essentially traditional (general-purpose) programming model
and an essentially general-purpose processor platform
with a bus / memory subsystem employing hardware-managed coherency

3 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

Outline

PowerEN overview
Vector-based acceleration

– in the context of an enhanced PowerEN
– architecture
– programming model

Algorithm examples
A possible LTE-advanced application

4 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

IBM PowerEN™ Processor System on a Chip
Four At Chiplets
– Four A2 cores per chiplet, 4 threads per

core, 64 threads per chip
– 2 MB shared eDRAM L2 per chiplet (8MB

L2 / chip)
– 64B cacheline
– 2.3GHz operation

Two Memory Controllers
– Direct attach (UDIMM, RDIMM)
– Each MC has two 72b DDR3 direct attach

channels

Acceleration Engines
– PBIC attach with DMA engine
– Compression / Decompression
– Cryptographic co-processor
– XML engine (XML transformation)
– Regular Expression / Pattern-matching

PowerBus
– On chip coherent system bus
– 1.75 GHz operation
– One command bus
– Four 16B data busses
– “All peers” architecture

45nm, 410mm2

Po
w

er
B

us

Memory Controller

Packet
processing

engine

4 x
10GbE

MAC

PCIe

External
PowerBus

Crypto Engine

4 A2 cores
L2 Cache

4 A2 cores
L2 Cache

4 A2 cores
L2 Cache

4 A2 cores
L2 Cache

Memory Controller

RegEx Engine

Compress Engine

XML Engine

Targeted at network-edge applications
– intrusion detection / deep packet inspection
– security / crypto acceleration
– XML parsing / schema validation / ...
– “smarter planet” solutions

5 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

IBM PowerEN™ Processor System on a Chip
Four At Chiplets
– Four A2 cores per chiplet, 4 threads per

core, 64 threads per chip
– 2 MB shared eDRAM L2 per chiplet (8MB

L2 / chip)
– 64B cacheline
– 2.3GHz operation

Two Memory Controllers
– Direct attach (UDIMM, RDIMM)
– Each MC has two 72b DDR3 direct attach

channels

Acceleration Engines
– PBIC attach with DMA engine
– Compression / Decompression
– Cryptographic co-processor
– XML engine (XML transformation)
– Regular Expression / Pattern-matching

PowerBus
– On chip coherent system bus
– 1.75 GHz operation
– One command bus
– Four 16B data busses
– “All peers” architecture

45nm, 410mm2

Po
w

er
B

us

Memory Controller

Packet
processing

engine

4 x
10GbE

MAC

PCIe

External
PowerBus

Crypto Engine

4 A2 cores
L2 Cache

4 A2 cores
L2 Cache

4 A2 cores
L2 Cache

4 A2 cores
L2 Cache

Memory Controller

RegEx Engine

Compress Engine

XML Engine

Targeted at network-edge applications
– intrusion detection / deep packet inspection
– security / crypto acceleration
– XML parsing / schema validation / ...
– “smarter planet” solutions

4
VBA

4
VBA

4
VBA

Wireless
Interface

4
VBA

6 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

Vector-Based Acceleration (VBA)
A SIMD auxiliary execution unit (AXU)

– can be attached to A2 cores (one per core) in an enhanced PowerEN
– fed by the A2 core’s instruction stream

Based on VMX (aka AltiVecTM) extended to 32-byte width
– 8-wide for 32-bit fullwords, 16-wide for 16-bit halfwords, 32-wide for bytes
– fixed-point and single-precision floating-point

Includes:
– native support for fixed-point complex arithmetic
– special instructions for correlation with complex bit-vectors (e.g. for despreading)

Key feature: a very large, fully architected register file (VSRF)
– 2048 256-bit registers (so 64KB total storage)
– cache-line moves between the VSRF and the L2 cache
– all accesses to the VSRF are via indirection using “map registers”
– map registers contain pointers to data in the VSRF (registers / bytes / bits)
– map register entries managed by software in SIMD fashion

Capable of incorporating encapsulated special functions
– example: turbo decoder

7 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

Programming Model Overview

VBA uses an essentially “general-purpose” programming model
load / store

– no DMAs
– but cache-line loads & stores can be used

full system memory accessible via load / store
– system-wide hardware-managed coherency

but data can often be kept local to a VBA
intermediate results kept in the VSRF
function results may be kept in the VSRF

– e.g. as inputs to the next function in a sequence

function inputs may already be in the VSRF

Net impact includes:
(far) fewer memory accesses
(significantly) reduced sensitivity to memory-subsystem inefficiencies

8 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

VBA Indirection Architecture

Capabilities provided by indirect access to the VSRF:
Specify one of 2048 archtected registers in a 5-bit register operand field
– compatibility with existing PowerPC instruction formats

Dynamic addressability of data elements in the VSRF
– vectors, words, bytes, bits
– data elements in the VSRF can be accessed (and indexed) as if in memory
– addressed data elements can be variable-length

The indirection mechanism supports:
“Operand-associated” indirection
– first 16 map registers used as four 32-entry maps, one per register-operand
– enables naming one of 2048 (or more) registers in a 5-bit field

“Generalized” indirection
– gather up to eight data elements from arbitrary locations in the VSRF to a single

register
– move / copy a data element between arbitrary locations in the VSRF

9 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

Generalized Indirection Example: Gather Words

uses up to 8 map-register entries per operation (four leftmost entries in this example)
addr0 through addr3 are byte offsets in the reg file of desired word elements
each address decodes to:

– a register index in the reg file (e.g. VRa from addr0)
– a byte offset of the desired word in the register (e.g. Wa from addr0)

selected words are ordered in the target register in the reg file per ordering of pointers
in the map register

– rightmost 4 entries in the target register filled based on rightmost 4 entries in the map register

data-element lengths (words, in this example) implicit in instruction opcode

addr0

VRd.WdVRc.WcVRb.WbVRa.Wa

WaVRa

ACCESS SOURCE VECTOR REGISTERS

EXTRACT & REARRANGE SELECTED WORDS FROM SOURCE REGISTERS

output VR

map register

WbVRb

addr1

WcVRc

addr2

WdVRd

addr3

10 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

Algorithm Example – 512-point FFT
Fixed-point

– data and twiddles are 16-bits real, 16-bits imag

Algorithm structure is radix-8 DIT
– radix-8 is a “perfect match” for 8-wide SIMD
– VBA is 8-wide SIMD for (16,16)
– 8 “radix-8 butterflies” in parallel in the 8-wide SIMD
– net 3 stages plus one data-shuffling step

Memory accesses:
– data and twiddles loaded at the outset
– result stored at the end
– all intermediate results kept in the VSRF

Managing accesses to intermediate results
– done entirely through management of map-register entries

as if the intermediate results were in memory

And:
– what if the input data were already in the VSRF?
– what if the output data can be used directly from the VSRF?

Larger FFTs:
– if the size is divisible by 8, start with radix-8 and only one

data-shuffling stage is needed

STAGE 1
(no multiplies)

120 cycles

DATA SHUFFLING
(8x8 block transposes)
8 cycles per transpose

STAGE 2
160 cycles

STAGE 3
160 cycles

11 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

Algorithm Example – Turbo Decoder

De/interleave using
gather capability
within the VSRF

Decoders working in parallel on data-block partitions,
one per subarray of the VSRF

12 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

Algorithm Performance Projections

6 iterations
using local computation
elements embedded in the VSRF

230 Mbits / secTURBO DECODER

implemented in floating-point
conversion to/from float included
in perf. projection

115E6 / secMATRIX INVERSION, 4x4

radix-8 followed by radix-4
data movement not included

920k / secFFT, 2K-point

radix-8 followed by radix-2
data movement not included

2.0E6 / secFFT, 1K-point

radix-8
data movement not included

4.4E6 / secFFT, 512-point

COMMENTSEXECUTIONS / SEC
or THROUGHPUTALGORITHM

All projections are for a single A2-like core with one VBA unit operating at 2.3GHz

13 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

An LTE-Advanced Configuration: start with uplink the “front-end”

REMOVE
CP

REMOVE
CP

FFT

FFT

SUBCARR
DEMAPPING

ANTENNA 1

ANTENNA 4
SUBCARR

DEMAPPING

CHANNEL
ESTIMATION

MIMO
DECODE

CHANNEL
ESTIMATION

per 20MHz channel, per sector:
per 500µsec slot for 4x4 MIMO:

28 2K-point FFTs < 40µsec
8400 4x4 inverts about 140µsec

Note also: For each symbol, the received
antenna data can remain in the VSRF as it
is processed through demapping; and all
data for the 4x4 MIMO can remain local in a
node’s L2

Overall projections for complete LTE digital baseband including turbo decoder:
4x4 MIMO, one 20MHz channel, one sector: less than 3 A2+VBA cores (about 2.5)
4x4 MIMO, three sectors, two 20MHz channels per sector: about 16 A2+VBA cores

14 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

Summary

We have proposed a platform as follows:
derived from PowerEN, enhanced with vector-based acceleration
capable of supporting software-defined radio in maximally configured,
macrocell wireless basestations
with “in-line” acceleration

– DMAs to / from hardware accelerators avoided
– minimal data movement

using an essentially traditional (general-purpose) programming model
and an essentially general-purpose processor platform
with a bus / memory subsystem employing hardware-managed coherency

15 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

Acknowledgments

In addition to the listed co-authors, there were many who contributed to the
work reported, including:

– Brian Rogers
– Steve VanderWiel
– Jason Cantin
– Russ Hoover
– Chuck Cox
– Matt Tubbs
– Scott Higdon
– Nadav Levison
– Erez Barak
– Ayal Zaks
– Mircea Namolaru
– Revital Eres
– Sagi Manole
– Alejandro Rico

16 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

Thank You

17 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

Backup

18 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

VBA Microarchitecture

VBA as an AXU attached to an “A2-like” core
can sustain two instructions per cycle through the VBA unit
native core provides:

– scalar integer functions
– load / store
– branch

overall microarchitecture is “traditional superscalar”

D
ec

od
e

 R
eg

is
te

r R
en

am
e

M
R

R
eg

. F
ile

M
R

E
xe

c.

V
SR

F
Fu

tu
re

Fi
le

P
oi

nt
er

S
el

ec
tio

n

native A2 core functions

19 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

Operand-Associated Indirection – An Example

1350
7741
172

1223
494

4705
2256
957
88

10159
3610
5511

867

375
70427
25328
64829
6130

39331

92
93
94
95
96
97
98
99

128
129
130
131
132

250
251
252
253
254
255

0
1
2
3
4
5
6
7
8
9
10
11
12

27
28
29
30
31

3
6
9
12
43
43
43
43
43
43
43
43
43

43
43
43
43
43
43

map
indices VA-map VB-map VC-mapVT-map

VSRF

26

vaddfp v1,v2,v3 0
1
2
3
4
5
6
7
8
9

10
11
12

93
94
95
96

VSRF
indices

1022
1023

97

1021

19

16
17
18

13
14
15

26

12

Note: In this example, map entries are shown as register indices
(in fact, map entries are byte offsets from the origin of the VSRF)

VT map:
map regs 0 - 3

VA map:
map regs 4 – 7

VB map:
map regs 8 – 11

VC map:
map regs 12 - 15

20 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

Map Registers for Operand-Associated Indirection

32 map registers altogether
– M0-M15 used for map-based indirection
– formatted as shown (8 map entries per map register, one entry per halfword)
– map entries use 16 bits each (VSRF architected limit 64KB)

Map registers “look like” VMX registers: 8 halfwords per 128-bit register
SIMD orientation of map management

– operations on map registers, not on individual map entries

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

M0 M1 M2 M3

M4 M5 M6 M7

M8 M9 M10 M11

M12 M13 M14 M15

VT-map

VA-map

VB-map

VC-map

map
indices

21 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

“Vector String Register File” (VSRF)

Organization:
8 banks of 256 256-bit regsters
each bank has four read ports, one
write port

Physical structure:
10T cells
2R,1W per cell, double-pumped read

– so 4R,1W per cell

area about 50% of the net VBA area

Use of “local computation elements”:
logic embedded in the register file

– viable if the logic is relatively simple

leverages full available parallelism
– 4 read ports & 1 write port per bank

used for “shrink-wrapped” turbo
decoder capability

22 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

Modeling and Assessment

Algorithms are compiled from C or hand-coded in assembler
– vectorization is by hand
– extensions to gcc being developed to target VBA

Code runs on functional simulator
– runs on a simulated “real machine running an OS”
– functional correctness of the code can be verified

Instruction traces generated by the functional simulator
– traces show all memory addresses accessed by instructions
– traces show all relevant details of the VBA indirection mechanism

Traces are run on a performance model
– model includes all microarchitecture details of “A2 + VBA” given current design

status

23 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

23 SDR’11 - WInnComm

Turbo Decoder – Decoding Stage

Turbo Decoding parallelization:
The codeword is split into 8 chunks (the number of VSRF banks).
Each bank locally decodes its assigned chunk, by making use of its attached LCE.
Each LCE is shared by two banks: it is fed by its even bank on even cycles and by its odd bank on
odd cycles.
Each LCE incorporates the logic required for forward/backward recursion computation.
All LCEs can be concurrently driven by special Turbo Decoding instructions added to the VBA ISA.

24 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerENTM with Vector-Based Acceleration for SDR

24 SDR’11 - WInnComm

Turbo Decoder – De/Interleaving Stage

Data shuffling based on the VBA gather capabilities:
Extrinsic probabilities PEXT generated during decoding are shuffled based on mapping
information stored in the VSRF.

The mapping information is loaded into the map registers before executing the gather
instructions.

Four groups of eight PEXT values each are first gathered into four temporal registers in the
current bank.
These four groups are then gathered into a single register, forming a set of 32 PEXT values.
This process is repeated until all the PEXT values are moved to their final positions in the
VSRF.

