Vector-Based Acceleration in the IBM PowerEN™ Processor
to Enable Software Defined Radio

N
T
@

Jeff H. Derby
IBM Research, RTP, NC

Co-authors: Timothy Heil, Michele Franceschini, Anil Krishna, Bob Montoye,
Dheeraj Sreedhar, Augusto Vega, Hangu Yeo, Charlie Johnson

© 2011 IBM Corporation

IBM PowerEN™ with Vector-Based Acceleration for SDR

Overview

We propose a platform as follows:

derived from PowerEN, enhanced with vector-based acceleration (VBA)

capable of supporting software-defined radio in maximally configured,
macrocell wireless basestations

with “in-line” acceleration
— DMAs to / from hardware accelerators avoided

— minimal data movement
using an essentially traditional (general-purpose) programming model
and an essentially general-purpose processor platform
with a bus / memory subsystem employing hardware-managed coherency

SDR’11 - WInnComm © 2011 IBM Corporation

|||
i

IBM PowerEN™ with Vector-Based Acceleration for SDR

;

Outline

= PowerEN overview

= Vector-based acceleration
— in the context of an enhanced PowerEN

— architecture
— programming model

= Algorithm examples
= A possible LTE-advanced application

3 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerEN™ with Vector-Based Acceleration for SDR

IBM PowerEN™ Processor System on a Chip

= Four At Chiplets 4 A2 cores
— Four A2 cores per chiplet, 4 threads per L2 Cache Packet 4 x
core, 64 threads per chip Py processing 10GbE
— 2 MB shared eDRAM L2 per chiplet (8MB cores engine MAC
L2 / chip) L2 Cache
— 62543E(>3<I:_|achellnet. 4 A2 cores
T_ ' M z operaclon I L2 Cache Memory Controller
= Two Memory Controllers
_ Direct attach (UDIMM, RDIMM) 4 A2 cores e e,
— Each MC has two 72b DDR3 direct attach L2 Cache
channels PCle
= Acceleration Engines Crypto Engine
— PBIC attach with DMA engine .
. . RegEx Engine
— Compression / Decompression
— Cryptographic co-processor Compress Engine
— XML engine (XML transformation) :
— Regular Expression / Pattern-matching XML Engine
= PowerBus
— On chip coherent system bus
— 1.75 GHz operation = Targeted at network-edge applications
— One command bus — intrusion detection / deep packet inspection
— Four 16B data busses — security / crypto acceleration
— “All peers” architecture — XML parsing / schema validation / ...
= 45nm. 410mm?2 — “smarter planet” solutions

4 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerEN™ with Vector-Based Acceleration for SDR

IBM PowerEN™ Processor System on a Chip

= Four At Chiplets 4 A2 cores
— Four A2 cores per chiplet, 4 threads per L2 Cache Packet 4 x
core, 64 threads per chip Py processing 10GbE
— 2 MB shared eDRAM L2 per chiplet (8MB cores engine MAC
L2 / chip) L2 Cache
— 62543E(>3<I:_|achellnet. 4 A2 cores
T_ ' M z operaclon I L2 Cache Memory Controller
= Two Memory Controllers
_ Direct attach (UDIMM, RDIMM) 4 A2 cores e e,
— Each MC has two 72b DDR3 direct attach L2 Cache
channels PCle -
= Acceleration Engines Crypto Engine
— PBIC attach with DMA engine .
. . RegEx Engine
— Compression / Decompression
— Cryptographic co-processor Compress Engine
— XML engine (XML transformation) :
— Regular Expression / Pattern-matching XML Engine
= PowerBus
— On chip coherent system bus
— 1.75 GHz operation = Targeted at network-edge applications
— One command bus — intrusion detection / deep packet inspection
— Four 16B data busses — security / crypto acceleration
— “All peers” architecture — XML parsing / schema validation / ...
= 45nm. 410mm?2 — “smarter planet” solutions

5 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerEN™ with Vector-Based Acceleration for SDR

Vector-Based Acceleration (VBA)

= A SIMD auxiliary execution unit (AXU)
— can be attached to A2 cores (one per core) in an enhanced PowerEN

— fed by the A2 core’s instruction stream

Based on VMX (aka AltiVec™) extended to 32-byte width

8-wide for 32-bit fullwords, 16-wide for 16-bit halfwords, 32-wide for bytes
fixed-point and single-precision floating-point

Includes:

native support for fixed-point complex arithmetic
special instructions for correlation with complex bit-vectors (e.g. for despreading)

Key feature: a very large, fully architected register file (VSRF)

— 2048 256-bit registers (so 64KB total storage)

cache-line moves between the VSRF and the L2 cache

all accesses to the VSRF are via indirection using “map registers”

map registers contain pointers to data in the VSRF (registers / bytes / bits)
map register entries managed by software in SIMD fashion

Capable of incorporating encapsulated special functions

example: turbo decoder

SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerEN™ with Vector-Based Acceleration for SDR

Programming Model Overview

VBA uses an essentially “general-purpose” programming model

= |oad / store
— no DMAs

— but cache-line loads & stores can be used

= full system memory accessible via load / store
— system-wide hardware-managed coherency

but data can often be kept local to a VBA
= intermediate results kept in the VSRF

= function results may be kept in the VSRF
— e.g. as inputs to the next function in a sequence

= function inputs may already be in the VSRF

Net impact includes:
= (far) fewer memory accesses
= (significantly) reduced sensitivity to memory-subsystem inefficiencies

7 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerEN™ with Vector-Based Acceleration for SDR

VBA Indirection Architecture

Capabilities provided by indirect access to the VSRF:

= Specify one of 2048 archtected registers in a 5-bit register operand field
— compatibility with existing PowerPC instruction formats

= Dynamic addressability of data elements in the VSRF
— vectors, words, bytes, bits

— data elements in the VSRF can be accessed (and indexed) as if in memory
— addressed data elements can be variable-length

The indirection mechanism supports:

= “Operand-associated” indirection
— first 16 map registers used as four 32-entry maps, one per register-operand

— enables naming one of 2048 (or more) registers in a 5-bit field

= “Generalized” indirection
— gather up to eight data elements from arbitrary locations in the VSRF to a single
register
— move / copy a data element between arbitrary locations in the VSRF

8 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerEN™ with Vector-Based Acceleration for SDR

Generalized Indirection Example: Gather Words

map register

addr0 addr1 addr2 addr3
L I ILT_II I 1L I 11 I L I Il I 11 I
VRa Wa VRb Wb VRc Wc VRd Wd
l ‘ | —! ' :
I v I A
ACCESS SOURCE VECTOR REGISTERS
EXTRACT & REARRANGE SELECTED WORDS FROM SOURCE REGISTERS
output VR
VVVVVVVVVVVVVVV "VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV"VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV"VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV"VVVVVVVVVVVVVVV
VRa.Wa VRb.Wb VRc.Wc VRd.Wd

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

— aregister index in the reg file (e.g. VRa from addrO0)
— a byte offset of the desired word in the register (e.g. Wa from addr0)

in the map register
— rightmost 4 entries in the target register filled based on rightmost 4 entries in the map register

SDR’11 - WInnComm

uses up to 8 map-register entries per operation (four leftmost entries in this example)
addrO through addr3 are byte offsets in the reg file of desired word elements
each address decodes to:

selected words are ordered in the target register in the reg file per ordering of pointers

data-element lengths (words, in this example) implicit in instruction opcode

© 2011 IBM Corporation

Algorithm Example — 512-point FFT

IBM PowerEN™ with Vector-Based Acceleration for SDR

Fixed-point

— data and twiddles are 16-bits real, 16-bits imag

Algorithm structure is radix-8 DIT
— radix-8 is a “perfect match” for 8-wide SIMD

— VBA is 8-wide SIMD for (16,16)
— 8 “radix-8 butterflies” in parallel in the 8-wide SIMD
— net 3 stages plus one data-shuffling step

Memory accesses:

— data and twiddles loaded at the outset

— result stored at the end

— all intermediate results kept in the VSRF

Managing accesses to intermediate results
— done entirely through management of map-register entries

» as if the intermediate results were in memory

And:
— what if the input data were already in the VSRF?

— what if the output data can be used directly from the VSRF?

Larger FFTs:

— if the size is divisible by 8, start with radix-8 and only one
data-shuffling stage is needed

SDR’11 - WInnComm

STAGE 1
(no multiplies)
120 cycles

l

DATA SHUFFLING
(8x8 block transposes)
8 cycles per transpose

l

STAGE 2
160 cycles

l

STAGE 3
160 cycles

© 2011 IBM Corporation

IBM PowerEN™ with Vector-Based Acceleration for SDR

Algorithm Example — Turbo Decoder

_________ K First Stage Second Stage
I S (R N s AP] W ¥
|| 256 x256b 256x256b || 7 e Bl vraradder [P _’L

/ P _i_ Max

| LCE LCE Vit EmfiE Vi Sgt. 183 —I_.
| s Ot 12. adder :3: %
|| 256 x 2560 2s6x256b ||\, . -2 S8 | s P8 x o
| | \\ : —E— 8 I fm
| | \\ =] :u%: Max 4|_> e
|| 256x256b 256x256b || Y T 3B 76 urh,, Sgt. - JE_ - E
| | \ Olk-1 l',B_. adder
| LCE LCE | '
| e 2s6x 2560 || Decoders working in parallel on data-block partitions,
| | one per subarray of the VSRF

Very-large Register File

Del/interleave using ‘
gather capability 256 bis
within the VSRF

11 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerEN™ with Vector-Based Acceleration for SDR

Algorithm Performance Projections

EXECUTIONS / SEC
ALGORITHM or THROUGHPUT COMMENTS
_ radix-8
FFT, 512-point 4 4E6 / sec _
data movement not included
_ radix-8 followed by radix-2
FFT, 1K-point 2.0E6 / sec _
data movement not included
_ radix-8 followed by radix-4
FFT, 2K-point 920k / sec

data movement not included

implemented in floating-point
MATRIX INVERSION, 4x4 115E6 / sec conversion to/from float included
in perf. projection

6 iterations
TURBO DECODER 230 Mbits / sec using local Computation
elements embedded in the VSRF

> All projections are for a single A2-like core with one VBA unit operating at 2.3GHz

12 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerEN™ with Vector-Based Acceleration for SDR

An LTE-Advanced Configuration: start with uplink the “front-end”

ANTENNA 1
| RHOVE Lyl e [f SR L Sme b
. : > MIMO .
. o .| DECODE .
ANTENNA 4
I I I
per 20MHz channel, per sector: Note also: For each symbol, the received
per 500usec slot for 4x4 MIMO: antenna data can remain in the VSRF as it
28 2K-point FFTs = < 40usec is processed through demapping; and all
8400 4x4 inverts - about 140usec data for the 4x4 MIMO can remain local in a
node’s L2

Overall projections for complete LTE digital baseband including turbo decoder:
4x4 MIMO, one 20MHz channel, one sector: less than 3 A2+VBA cores (about 2.5)
4x4 MIMO, three sectors, two 20MHz channels per sector: about 16 A2+VBA cores

13 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerEN™ with Vector-Based Acceleration for SDR

Summary

We have proposed a platform as follows:

derived from PowerEN, enhanced with vector-based acceleration

capable of supporting software-defined radio in maximally configured,
macrocell wireless basestations

with “in-line” acceleration
— DMAs to / from hardware accelerators avoided

— minimal data movement
using an essentially traditional (general-purpose) programming model
and an essentially general-purpose processor platform
with a bus / memory subsystem employing hardware-managed coherency

SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerEN™ with Vector-Based Acceleration for SDR

Acknowledgments

= In addition to the listed co-authors, there were many who contributed to the

work reported, including:
— Brian Rogers

— Steve VanderWiel
— Jason Cantin

— Russ Hoover

— Chuck Cox

— Matt Tubbs

— Scott Higdon

— Nadav Levison
— Erez Barak

— Ayal Zaks

— Mircea Namolaru
— Revital Eres

— Sagi Manole

— Alejandro Rico

15 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerEN™ with Vector-Based Acceleration for SDR

Thank You

16 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerEN™ with Vector-Based Acceleration for SDR

Backup

17 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerEN™ with Vector-Based Acceleration for SDR

VBA Microarchitecture

VBA 2ol]
MR 59 VSRF S| Vector]
—> .g 3 Dependency Execution
2 Iss. Q. a g Analysis |6:|. [Pipelines]
= >
/) el | | VSRF
. = g . Iss. Q.
L] x3
: =3
ol § > j
Fetch 8|l x
Engine o3[
Ol e
(@)
2 Integer . .
o) Ly e <+—— native A2 core functions

= VBA as an AXU attached to an “A2-like” core
= can sustain two instructions per cycle through the VBA unit

= native core provides:
— scalar integer functions

— load / store
— branch

= overall microarchitecture is “traditional superscalar’

18 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerEN™ with Vector-Based Acceleration for SDR

Operand-Associated Indirection — An Example

vaddfp v1,v2,v3 VSRF 0 VSRF
| indices 1
2
3
4
ma 5
_map VT-map VA-map VB-map VC-map — 6 <«
indices 7
0 3 135 92 0 8
1 6 | — 774 93 1 9
VT map: 2 9 17 | — 24 2 10
3 12 122 |95 | — 3 "
map regs 0 - 3 4 23 29 96 2 12
. 5 43 470 97 5 13
VA map. 6 43 225 98 6 14
map regs 4 -7 7 43 95 99 7 15
] 8 43 8 128 8 16
VB map: 9 3 1015 129 9 > 17
10 43 36 130 10 18
map regs 811 1 43 55 131 11 19
VC map: 12 43 867 132 12 o R
map regs 12 - 15 * * * * * * *
[] [] e [] [] [] []
[[} [] [] [] 93
26 43 375 250 26 94
27 43 704 251 27 > 95
28 43 253 252 28 96
29 43 648 253 29 97
30 43 61 254 30 . R
31 43 393 255 31 . .
[] []
1021
1022
1023

» Note: In this example, map entries are shown as register indices
(in fact, map entries are byte offsets from the origin of the VSRF)

19 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerEN™ with Vector-Based Acceleration for SDR

Map Registers for Operand-Associated Indirection

inrgiire)s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

= 32 map registers altogether
— MO0-M15 used for map-based indirection

— formatted as shown (8 map entries per map register, one entry per halfword)
— map entries use 16 bits each (VSRF architected limit > 64KB)

= Map registers “look like” VMX registers: 8 halfwords per 128-bit register

= SIMD orientation of map management
— operations on map registers, not on individual map entries

20 SDR’11 - WInnComm © 2011 IBM Corporation

“Vector String Register File” (VSRF)

21

IBM PowerEN™ with Vector-Based Acceleration for SDR

Organization:
= 8 banks of 256 256-bit regsters

= each bank has four read ports, one
write port

Physical structure:
= 10T cells

= 2R,1W per cell, double-pumped read
— s0 4R,1W per cell

= area about 50% of the net VBA area

Use of “local computation elements”:

= |ogic embedded in the register file
— viable if the logic is relatively simple

= leverages full available parallelism
— 4 read ports & 1 write port per bank

= used for “shrink-wrapped” turbo
decoder capability

SDR’11 - WInnComm

BANK 0 BANK 2
256 x 256b 256 x 256b
LCE LCE
BANK 1 BANK 3
256 x 256b 256 x 256b
BANK 4 BANK 6
256 x 256b 256 x 256b
LCE LCE
BANK 5 BANK 7
256 x 256b 256 x 256b

© 2011 IBM Corporation

IBM PowerEN™ with Vector-Based Acceleration for SDR

Modeling and Assessment

= Algorithms are compiled from C or hand-coded in assembler
— vectorization is by hand

— extensions to gcc being developed to target VBA

= Code runs on functional simulator
— runs on a simulated “real machine running an OS”

— functional correctness of the code can be verified

= Instruction traces generated by the functional simulator
— traces show all memory addresses accessed by instructions

— traces show all relevant details of the VBA indirection mechanism

= Traces are run on a performance model
— model includes all microarchitecture details of “A2 + VBA” given current design
status

22 SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerEN™ with Vector-Based Acceleration for SDR

Turbo Decoder — Decoding Stage

. First Stage Second Stage
_________ , 5
r I //Yk-1 lfB—h 1B Mux Stt - 1B 8
| 256 x 256b 256 x256b || // Otk-1 2l 1B Mux || adder *_ _ﬂ
| d 1 = Max |
LCE LCE Yk-1 ‘;S’_‘L.m Sat |1 _f_alz_
I ! UIRELN adder 131 B
3 | & |8 | Sat
|| 256x 2560 256x 2560 |\, . 3] 1|8 subt. [8% O
| | \ . |] - 3 ’1 B
\ . Eom
| | \ [2| Max
\ 1 Pl o] [| Max
|| 256 x256b 256x256b || Y, Yk "E' Sal g J
| | \\(Ik-1 1B, adder
| LCE LCE |
| 256 x 256b 256x256b ||

Very-large Register File

Turbo Decoding parallelization:

23

The codeword is split into 8 chunks (the number of VSRF banks).
Each bank locally decodes its assigned chunk, by making use of its attached LCE.

Each LCE is shared by two banks: it is fed by its even bank on even cycles and by its odd bank on
odd cycles.

Each LCE incorporates the logic required for forward/backward recursion computation.
All LCEs can be concurrently driven by special Turbo Decoding instructions added to the VBA ISA.

SDR’11 - WInnComm © 2011 IBM Corporation

IBM PowerEN™ with Vector-Based Acceleration for SDR

Turbo Decoder — De/Interleaving Stage

Data shuffling based on the VBA gather capabilities:

= Extrinsic probabilities Py, generated during decoding are shuffled based on mapping
information stored in the VSRF.

= The mapping information is loaded into the map registers before executing the gather
instructions.

= Four groups of eight Pg,; values each are first gathered into four temporal registers in the
current bank.

= These four groups are then gathered into a single register, forming a set of 32 P, values.

= This process is repeated until all the P, values are moved to their final positions in the
VSREF.

24 SDR’11 - WInnComm © 2011 IBM Corporation

