
SISO and MIMO OFDM Physical Layer Algorithms
on a Heterogeneous Multiprocessor Platform -

Implementations and Mapping Exploration
Venkatesh Ramakrishnan∗, Marc Adrat†, Gerd Ascheid∗ and Markus Antweiler†

∗Institute for Integrated Signal Processing Systems, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
†Fraunhofer Institute for Communication, Information Processing & Ergonomics (FKIE), Wachtberg, Germany

Abstract—This paper presents the implementation and map-
ping exploration of the physical layer algorithms in a single input
single output (SISO) and multiple input multiple output (MIMO)
orthogonal frequency division multiplexing (OFDM) systems on
a commercial heterogeneous multiprocessor hardware platform.
We focus our investigations on the algorithms for implementing
two computation-intensive components of a MIMO receiver,
FFT and MIMO demapping. Several implementation variants
for FFT and MIMO-preprocessing (sorted QR Decomposition)
are evaluated in terms of performance properties like bit error
rate (BER), latency, etc. The cascading effects due to the finite
word length of the fixed point implementations on the receiver
performance, in terms of BER, are studied. The generic SISO-
OFDM system is implemented on a commercial heterogeneous
MPSoC platform. Finally, the maximum achievable throughput
as well as the latency issues for different spatial mapping
configurations are presented.

I. INTRODUCTION

Computation-intensive techniques like multiple input mul-
tiple output (MIMO), iterative processing, etc. are getting
popular in order to meet the high throughput and low latency
requirements of the emerging applications in the wireless
communications. In parallel, the flexibility requirements to
support new standards like LTE, WiMax, etc. in addition to
the legacy standards like GSM, UMTS, etc. on a single mobile
device are also growing strongly.

Efficiency in mobile systems is sought in several forms, e.g.,
energy, area, spectrum, etc. Algorithmic flexibility is a key
factor to maximize spectrum and energy efficiency in wireless
systems. For instance, energy efficiency can be improved
if an option to choose sophisticated, complex algorithms in
a bad channel and simple algorithms in a good channel
exists. The contradictory nature of flexibility and efficiency
requirements, when coupled with low-cost and reduced time-
to-market constraints, make the development of a mobile
device highly complicated. Software defined radios (SDRs)
are getting prominence as potential candidates to meet these
requirements of the mobile devices.

On the one hand, high computation and low energy needs
cannot be achieved by using entirely general purpose proces-
sors (GPPs) as processing elements (PEs) for implementing
future SDRs. On the other hand, pure application specific
integrated circuit (ASIC)-based solutions, which are highly
energy efficient, do not offer flexibility needed by SDRs.

This makes heterogeneous multi-processor system-on-chips
(MPSoCs), with PEs like digital signal processors (DSPs),
application-specific instruction-set processors (ASIPs) and
field programmable gate arrays (FPGAs), etc., in addition to
GPPs and ASICs, as good candidates for implementing SDRs.

However, designing such a system is a challenging task.
In order to decrease the system development-time, tools and
methods for quick design space exploration and verification at
an early stage are needed. This can be achieved by creating an
executable specification and tools for performing constraint-
aware mapping and evaluation. In essence, a standardized
method for developing SDRs which can enhance reusability,
among wireless standards and vendors, is needed to decrease
the design costs.

Fig. 1. Mapping in the Nucleus Methodology. NN, F and WF denote non-
Nuclei, Flavor and waveform respectively.

Considering the above aspects, a novel library-based
methodology for developing SDRs, known as the Nucleus
methodology, that targets both flexibility and efficiency has
been proposed [1]. The basis of the concept (Figure 1) is a
library that is independent of waveforms1 consisting of Nuclei2

kernels. As one of the goals of the Nucleus approach is to

1In this context, the term waveform is used to refer a complete wireless
standard like UMTS, GSM, etc.

2A Nucleus is a critical, computation-intensive, algorithmic kernel.

Proceedings of the SDR 11 Technical Conference and Product Exposition, Copyright © 2011 Wireless Innovation Forum   All
Rights Reserved

23



standardize the Nucleus library, i.e. the components and the
interface of the components will be available to all the vendors.
This can enable the vendors to provide Flavors3 as a board
support package (BSP) for a hardware (HW) platform.

As shown in Figure 1, a main feature of the Nucleus
methodology is the abstraction of the HW platform to the
Nucleus level. This is made possible due to the tight coupling
of a Flavor to a PE. Therefore, mapping is reduced to
identifying the best efficient implementation (i.e. a Flavor) for
a Nucleus such that the waveform implementation not only
meets the specification of the waveform but also maximizes
developer requirements of a system like energy efficiency,
etc. Note that in traditional approaches, mapping is from a
waveform description to a PE. Tools are used for the complete
development flow. However, in order to perform mapping
and evaluation with tool-assistance, detailed information on
the waveform and HW platform, among others, have to be
provided to the tool. More details on the Nucleus methodology
is given in [1].

The contributions of the paper are summarized as follows.
• A generic SISO-OFDM system and a MIMO-OFDM

system are analyzed as case studies for the Nucleus
methodology. In the case of the SISO-OFDM system, the
focus of our investigations is given on the Flavors that are
available as a BSP for performing fast Fourier transform
(FFT). In the case of the MIMO-OFDM system, the
emphasis of our analysis is given on the FFT and the
MIMO processing. The implementations on the sorted
QR decomposition (SQRD) in [2] are extended to cover
the complete MIMO processing.

• Mapping exploration is done by using the Flavors avail-
able on the PEs (self implemented in case of MIMO
processing) of a commercial heterogeneous HW platform,
the small form factor (SFF) SDR development platform
(DP) [3] from Lyrtech. Note that the term mapping is used
in a special context in this paper (explained in Section V).

• The influence of the cascading effects due to the finite
word length (FWL) on the bit error rate (BER) perfor-
mance is studied.

• Real-time throughput is measured by implementing a se-
lective combination of the SISO-OFDM implementation
on the SFF SDR DP. Performance bottlenecks in the HW
platform are identified.

Note that the goal of the case studies is not to showcase the
highest throughput or the lowest latency that can be achieved
with our implementation, but to identify the issues and bot-
tlenecks while implementing a waveform on a heterogeneous
HW platform, in the context of the Nucleus methodology.

The rest of the paper is structured as follows. Related work
is presented in Section II. The system models of the SISO-
and MIMO-OFDM system, used in our analysis, are explained
in Section III. The algorithms that are used for implementing
FFT and SQRD are detailed in Section IV-A followed by the
implementation variants in Section IV-B. In Section V, the

3A Flavor is an optimized and efficient implementation of a Nucleus.

term mapping is defined, HW platform that is used for map-
ping is presented and the mapping exploration is explained.
Performance of the algorithms in terms of BER and processing
time is presented in Section VI. Finally, conclusions are drawn.

II. RELATED WORK

In [1], we have presented the Nucleus methodology. Re-
cently, we have implemented two matrix decomposition al-
gorithms for performing the SQRD on a DSP [2]. However,
the focus in [2] has been entirely on the implementation
of the SQRD. In this paper, we build on the prior work
in [2] by covering the implementation of the complete MIMO
processing/demapping.

Implementations of different waveforms on the SFF SDR
DP already exist [4–8]. An experimental cognitive radio has
been implemented in [4] and a throughput of 19.2 kilo bits
per second (kbps) and 16 kbps for data and voice services
respectively has been demonstrated. Though BER simulation
results using the SFF SDR DP have been presented in [6],
throughput analysis is missing. The authors in [8] report a
latency of 43 millisec for looping back data from the receiver
antenna to the transmitter antenna on the SFF SDR DP.
However, throughput measurements nor mapping exploration
have been performed in [8]. In [5], the physical layer of
the terrestrial trunked radio (TETRA) waveform has been
generated (from Simulink blocks) using automatic-tools, and
implemented on the SFF SDR DP. In [5], a throughput of 72
kbps has been reported. As stated in [5], the overhead due to
the automatic generation of the source code is unclear. Later,
in [7], the same authors have presented the processing time
measurements for the components of a SISO-OFDM system,
with a focus on DSP. However, throughput measurements and
mapping exploration are missing in [7], as well.

Several publications also exist on the implementations of
some or all components in the physical layer of SISO- and
MIMO-OFDM systems. For example, the authors in [9] have
implemented the SISO-OFDM and MIMO-OFDM acoustic
modems on a floating-point and a fixed point DSP and
have performed timing measurements in real-time. Several
matrix decomposition techniques like LU decomposition and
QRD along with different MIMO detection schemes like zero
forcing (ZF) and minimum mean squared error (MMSE) have
been implemented on a real-time test bed consisting of DSPs
and FPGAs in [10]. Algorithms, implementation complexities
and inherent challenges for LTE terminal implementation are
presented in [11] by dividing the receiver into inner and outer
parts.

Due to the consideration of the Nucleus methodology [1],
the requirements of our work is unique and different when
compared to and therefore does not match exactly to the anal-
ysis done in the above mentioned works. Even though [4], [5]
and [8] can be used for comparing throughput and latency, a
fair comparison to our achieved results is still elusive due to
the unavailability of the exact configuration details of the SFF
SDR DP (including the communication link).

24



III. SYSTEM MODEL

Figure 2 illustrates the block diagram of the SISO-OFDM
system that is used in our analysis. The system is kept
generic and consists of components present in a typical SISO-
OFDM system. The transmitter is made up of the encoder,
bit-wise interleaver, mapper and inverse FFT (IFFT). Though
the insertion and the removal of the cyclic prefix (CP) is shown
in Figure 2, the channel delay spread is assumed smaller than
the guard interval. Perfect channel state information (CSI) is
assumed at the receiver. The receiver is composed of FFT,
demapper, de-interleaver and viterbi decoder.

Channel 

Decoder

Encoder

CHANNEL

-1

Bits

S/P,

Remove

CP

Sync.

P/S,

Add CP
IFFTMapper

FFT
Bits

Demapper

Fig. 2. Block diagram of a generic SISO-OFDM system simulation
model. S/P and P/S represent serial-to-parallel and parallel-to-serial conversion
respectively.

Fig. 3. Block diagram of a generic MIMO-OFDM system simulation
model. S/P and P/S represent serial-to-parallel and parallel-to-serial conversion
respectively.

Similarly, a generic MIMO-OFDM system with nT trans-
mitting and nR receiving antennas is used for our analysis.
Figure 3 illustrates the block diagram of the system. The
received nR×1 dimensional signal vector y can be expressed
as

y = Hx+ n (1)

where H is the nR × nT channel matrix, x is the nT × 1
transmitted signal vector and n is the nR × 1 noise vector
with zero mean and variance σ2

n respectively. With the QRD
of H,

H = QR (2)

and (1), the estimated value of y becomes

ỹ = QHy = Rx+ ñ (3)

Q and R are unitary and upper triangular matrices respec-
tively. QH represents the Hermitian transpose of Q. The noise
in the system is also taken into account for estimating the
transmitted signal vector at the receiver side. This system,
known as the MMSE solution, offers BER performance when
compared to ZF solution, which does not consider the noise
n [12]. Therefore, an augmented channel matrix H̄, is obtained
by

H̄ =

[
H√

nT

Es
σnInT

]
(4)

where Es is the transmitted signal power and InT
denotes a

nT × nT -dimensional identity matrix.
The task of the MIMO processing block is to retrieve

the spatially independent parallel streams from the received
super-imposed stream at the MIMO receiver. The functionality
of MIMO processing can be divided into two parts: MIMO
preprocessing and MIMO processing. As SQRD provides
better BER performance and reduces the complexity of MIMO
processing, when compared to QRD without sorting, it is used
in this work. Therefore, the SQRD of H̄ now becomes

H̄ = Q̄RP
T
=

[
Qa

Qb

]
RPT (5)

including PT , the transpose of the permutation matrix P.
Qa and Qb are the sub-matrices of Q. Successive interference
cancelation (SIC) detection is performed in nT iterations. In
each iteration, the first detected symbol is used for subsequent
detection. Perfect channel state information is assumed.

IV. ANALYSIS

In this section, the algorithms and implementations of FFT
and SQRD on the PEs, C64x+ DSP [13] and Virtex-4
FPGA [14] are presented. Note that the PEs, C64x+ and
Virtex-4, are present in the SFF SDR DP, the HW platform
used for our case study.

A. Algorithms

1) FFT: Two algorithms are used for implementing the
FFT: radix-4 and mixed-radix. In general, mixed-radix offers
a combination of radix-2 and radix-4 for implementing the
FFT in the sub-stages. The main operation for implementing
the FFT is the so-called butterfly operation. As multiplication
and addition are the main operations for performing FFT, it is
well suitable for implementation on a DSP.

2) SQRD: Two algorithms are used for implementing the
MMSE-SQRD (referred as SQRD): modified Gram Schmidt
(MGS) and Givens rotation (GR). The basic operations that are
required for performing SQRD using MGS are: square root,
inverse and multiply. Therefore, it is suitable to implement the
MGS algorithm on a DSP.

Vectoring and rotation are two main operations of im-
plementing the SQRD operation using GR. In a vectoring
operation, a complex-valued matrix element is rotated in such
a way that the y-component becomes zero. In the rotation
operation, a complex-valued matrix element is rotated by a

25



Case PE Name Impl. Input Twiddle Internal Processing time (cycles)
Algo. width (bits) width (bits) scaling nFFT = 64 nFFT = 1024

1

C64x+

DSP fft16x16 Mixed 16 16 No 1989 15489
2 DSP fft16x16 imre Mixed 16 16 No 2606 17682
3 DSP fft16x16r Mixed 16 16 Yes 1564 16695
4 DSP fft16x32 Mixed 16 32 No 6399 60859
5 DSP fft32x32 Mixed 32 32 No 5521 67663
6 DSP fft32x32s Mixed 32 32 Yes 5371 67561
7 Virtex 4 Stream Radix-4 24 8 Yes 414 4324

TABLE I
LIST OF THE INVESTIGATED FFT FLAVORS ALONG WITH THEIR KEY PARAMETERS.nFFT REPRESENTS THE SIZE OF THE FFT.

specific angle. Note that MMSE-SQRD is performed in a
series of steps (both in the cases of MGS and GR). Detailed
explanation on obtaining the SQRD using the MGS and GR
algorithms can be found in [2].

B. Implementations

1) FFT: Table I lists the Flavors that are considered in our
analysis. They are a part of the library consisting of efficient
implementations from TI [15] and IP cores from Xilinx [16].
All the Flavors for C64x+ use mixed-radix, a combination of
radix-4 and radix-2 (depending on the FFT size, nFFT ), for
implementation. Scaling is done by 2 at each radix-4 stage
(referred as internal scaling) for two Flavors of C64x+ in
Table I, DSP fft16x16r and DSP fft32x32s. For other FFT
Flavors in C64x+ DSP, there is no internal scaling. The input
data has to be scaled depending on the internal scaling in order
to prevent overflow. As the rest of the FFT-Flavors listed in
Table I, except the above two mentioned FFT Flavors, do not
support internal scaling, input has to be scaled by 10 bits when
nFFT = 1024. This results in very bad BER performance for
similar FFT Flavors, as can be seen in the Section VI. All
the FFT-Flavors of C64x+ use rounding. The FFT IP core
that is considered for our investigations has internal scaling
and is used with a twiddle width of 8 bits. Note that the
FFT implementation is also used for implementing the IFFT
(conjugation of the input data and scaling of the output data
is done, in addition).

2) SQRD: In contrast to the Flavors for FFT which is
readily available as a library, Flavors for performing SQRD
had to be implemented. The hand-optimized assembly code
for SQRD in [2] is taken and extended to implement the
complete MIMO processing block. In other words, two more
components seen in Figure 3 other than MIMO processing,
namely, SIC detection and QHy are implemented for this
paper. Table II provides an overview on the different Flavors
that have been implemented for performing MIMO processing.
Note that 16-bits are sufficient for obtaining close-to floating-
point BER performance. Since 32-bit variants consume more
processing cycles, only the 16-bit variants are considered for
the implementation of the MIMO processing. Furthermore,
other components of the MIMO-OFDM system is imple-
mented by duplicating the reusable components from the
SISO-OFDM, e.g. FFT, IFFT, etc. Note that a 2 × 2 MIMO
system is considered.

For implementing the square root and inverse operations in
the MGS algorithm, optimized assembly code which is part
of the IQMath library [13] from TI is used. IQMath library
is a collection of highly-optimized and high-precision mathe-
matical functions for C64x+ DSP. As listed in Table II, three
variants for performing SQRD using GR are implemented.
The first variant uses co-ordinate rotation digital computer
(CORDIC) kernel for both vectoring and rotation operations.
CORDIC algorithm, which performs a vector rotation in a
sequence of micro rotations with fixed step size, is used widely
for several applications in SDRs [17]. As the implementation
that uses CORDIC for rotation consumes more processing
time, a hybrid variant which uses multiplication for rotation
operation is implemented. The last variant, GR plain, uses
the functions: sine, cosine and arctangent, available in the
IQMath library for implementing the SQRD. Note that the
coefficients in Table II denote the look-up tables needed by
the implementations; in case of CORDIC, the step size for
microrotations of the angle is stored as a look-up table and
in case for MGS, the IQMath library uses look-up tables for
implementing the used functions [13].

V. MAPPING EXPLORATION

Mapping, in the context of the Nucleus methodology, is
the process of selecting a suitable Flavor for a Nucleus
that meets the requirements of a waveform. However, for
performing this selection, several factors like the limitations
of the HW platform have to be considered. For example, let
us take the scenario in Figure 1, where two Nuclei, N2 and
N7, are neighbors and exchange data with each other. If a
communication link does not exist between PE5 and PE3,
then the combination of the Flavors, F25 and F73, which are
coupled to PE5 and PE3 respectively, cannot be chosen. This
is indicated by dotted arrow in Figure 1. Therefore, F23 may
have to be selected instead of F25. This leads to define the term
mapping, in our context, representing the following tasks:

• algorithm mapping i.e. the choice of an algorithm for the
implementation of the functionality, e.g. the selection of
MGS or CORDIC algorithm for implementing the SQRD.

• implementation mapping i.e. the selection of a Flavor
(bound to a PE) depending on the method for implement-
ing an algorithm of a component, e.g. the selection of the
CORDIC only or the hybrid approach for implementing
SQRD using GR.

26



Case Alg. Implementation Variant Input Coeff. Processing time (cycles)
Name Vectoring Rotation width (bits) width (bits) SQRD MIMO Proc.

1

GR

GR co 32x32

CORDIC
CORDIC 32 32 3043 -

2 GR co 16x16 16 16 2627 4361
3 GR hy 32x32

Mult.

32 32 1833 -
4 GR hy 16x16 16 16 1563 3300
5 GR plain 16x32 Atan, Sine, Cosine 16 32 2365 4136
6 GR plain 32x32 32 32 2530 -
7 MGS MGS 16x32 - - 16 32 340 1941
8 MGS 32x32 - - 32 32 598 -

TABLE II
LIST OF THE IMPLEMENTATION VARIANTS USED FOR SQRD IMPLEMENTATION OF MIMO PREPROCESSING ON DSP ALONG WITH THEIR KEY

PARAMETERS; PROCESSING TIME INDICATES THE CYCLES FOR PERFORMING THE SQRD OF ONE OFDM SUB-CARRIER IN A 2× 2 MIMO SYSTEM;
ALG., COEFF., PROC. AND MULT. REPRESENT ALGORITHM, COEFFICIENTS, PROCESSING AND MULTIPLIER RESPECTIVELY.

• parameter mapping, i.e. the selection of the parameters
of a Flavor, e.g. the selection of 16- or 32-bit as input
data-width.

• temporal mapping, i.e. the execution order or schedul-
ing, if more Flavors are run on a PE, e.g. static or
dynamic.

For performing the above tasks, several considerations have
to be made in the process of mapping. Some key considera-
tions are listed in the next section.

A. Considerations

Broadly, the properties that affect the performance of a
waveform implementation can be divided into three: process-
ing properties like latency, throughput and energy efficiency;
implementation properties like area and memory; and algo-
rithmic properties like BER. Care must be taken in order
to minimize the effects of the following items on the above
mentioned performance properties:

• FWL effects due to the use of fixed point implementations
and their associated influence on the BER performance.

• The cascading effects of a Flavor on the other components
of the waveform implementation. Though it is easy to
isolate and calculate the effects of Flavors on properties
like latency (which is additive), it is very difficult to
isolate the effects of Flavors on the algorithmic properties
like the BER.

• Constraints like the throughput and latency in a commu-
nication link between two PEs must be analyzed in order
to identify the bottlenecks in the system.

• Due to the optimized nature, Flavors exhibit interface
related constraints like specific data width and Q format. 4

When the interface of two neighbouring Flavors do not
match, additional logic in the form of glue-code is needed
to remove the incompatibility. However, the overhead on
latency due to the glue-code need to be considered while
mapping.

The presence of numerous critical loops with varying wave-
form constraints, several Flavors and performance properties

4Q notation is used to represent fixed point numbers. For example, Q0.15
or Q15 represents the format where a 16-bit data contains zero integer bit,
one sign bit and 15 fractional bits.

like BER make the ”mapping” process challenging.

B. HW Platform

The SFF SDR DP is used as the HW platform for our case
study. It consists of a TMS320DM6446 [18] system-on-chip
(SoC) with a ARM926 core [19] running at 297MHz and a
TMS320C64x+ DSP [15] core from Texas Instruments running
at 594MHz and a Virtex-4 SX35 FPGA [14] from Xilinx.
Figure 4 illustrates the baseband processing part of the SFF
SDR development platform. The ARM9 GPP core hosts the
Green hills INTEGRITY real time operating system [20]. The
GPP loads the application on the DSP and the FPGA and
manages the host-to-DSP communication. As shown in the
Figure 4, the DSP and the FPGA communicate using the video
processing sub-system (VPSS) port, consisting of the video
processing back end (VPBE) and the video processing front
end (VPFE) from TI. The DSP subsystem has the following
memory hierarchy:

• 32KB L1 program (L1P)/cache (up to 32KB)
• 80KB L1 data (L1D)/cache (up to 32KB)
• 64KB unified mapped RAM/cache (L2)

In addition, TMS320DM6446 can access a DDR2 SDRAM
bank of 128 MB. This DDR2 SDRAM runs at 324 MHz and
is connected to the DDR2 bus of the DMP SoC [18].

As the focus of our analysis is only on the modem part
of the waveforms, the transmission and reception over-the-
air interface is avoided. The throughput (and the latency)
measurements are computed in real-time using the operational
clock frequency of the FPGA.

Fig. 4. Block diagram of the baseband processing part of the SFF SDR DP.

A main motivation of using the SFF SDR DP for our
analysis is the heterogeneous nature of the HW. Theoretically,
with the presence of a GPP, DSP and FPGA, the SFF SDR
DP offers a possibility to perform mapping exploration and
identify the bottlenecks like computation and communication.

27



However, due to the special software requirements of the GPP,
it is not used for running the physical layer implementation.
The host PC is used instead.

VI. RESULTS

In this section, we present the performance of the imple-
mentations in terms of processing time, BER and throughput
that is achieved in real-time on the prototyping HW. The
cascading effects due to FWL are presented. Finally, the results
are discussed. For all the measurements in this section, the
TMS320C6000 C Compiler v6.08 with ”-o3” compiler option
has been used. Furthermore, the processing time has been
measured by mapping the program and data code onto the
SDRAM and with the cache memory enabled. Note that a
better performance can be achieved by mapping the program
and data directly onto the L1 cache memory. However, the size
of the program and data code, when considering the complete
modem of the SISO-OFDM or MIMO-OFDM system, does
not permit this scenario. In case of a MIMO system, we have
considered two transmit and two receive antennas.

A. Processing Time

Processing time in terms of the processing cycles for the
FFT Flavors are listed in Table I. A considerable difference
in the processing time is seen between the 16-bit to 32-bit
Flavors. It is important to note that the processing time in [15]
represents the CPU cycles only, without considering memory
overhead. Table II illustrates the processing time, including
the memory overhead, for the MIMO processing using the
different SQRD implementations. Note that the two operations
of MIMO processing other than SQRD, namely, the SIC
detection and QHy consume 770 and 570 cycles respectively.
However, the implementation of these two operations is in
fixed-point C. As mentioned in Section IV-B2, only the 16-
bit implementations are used for implementing the MIMO
processing due to the same BER performance when compared
to the 32-bit implementations.

The overhead due to the glue-code is calculated using the
Flavors listed in Table I as an example. Note that in practical
systems a direct connection between IFFT and FFT does not
exist. However, interface constraints are prevalent in existing
systems. For example, it is typical in efficient implementations
on DSP to expect the real and imaginary parts of the input
data in a consecutive order (referred as IR). Also, it is typical
for IP cores on FPGAs to have independent streams for real
and imaginary components (referred as I-R). This conversion
is shown in case 1 in Table III. The reordering of data from
real followed by imaginary (RI) to imaginary followed by real
parts (IR), as required for FFT Flavor in Table I is represented
in case 2 in Table III. Similarly the requirements of input
scaling, bit-width conversion and Q-format conversion can be
seen in all the FFT Flavors listed in Table I. Thanks to the in-
house development of the implementation variants for MIMO
processing, the glue-code is avoided.

Table III gives an overview on the overhead in terms of
processing cycles for implementing the glue-code. Note that

the measurements use the stand-alone version of the imple-
mentation, where the data is read from the memory and written
back after the glue-code operations. While looking at only the
CPU cycles, the overhead due to memory read/write operations
seems high. In general, this overhead can be reduced by
combining the glue-code with the other computation logic
thereby reducing the memory operations. This reduction effect
can be well seen while combining several glue logic operations
into one (case 5 in Table III). The reduction, in percentage,
when compared to the sum of the processing cycles due to the
individual overheads, is as well listed.

Case
Glue Processing time (cycles)
logic only CPU CPU and Memory

64 1024 64 1024
1 IR to I-R 141 2061 2247 21880
2 IR to RI 44 524 1344 15834
3 I/P scaling 49 529 727 7981
4 Q-Format 75 1035 1378 1660

5 1+3+4 111 1551 2477 26086
(41%) (43%) (57%) (83%)

TABLE III
PROCESSING TIME IN TERMS OF CYCLES FOR THE GLUE-LOGIC; ONE

OFDM SYMBOL WITH nFFT = 64 AND 1024. P.T. AND I/P REPRESENT
PROCESSING TIME AND INPUT RESPECTIVELY.

B. BER

Additive white Gaussian noise (AWGN) with Rayleigh
fading is used for the simulations of the systems. A non-
systematic {171, 133}8 convolutional code with code rate
r = 1/2 is used. QPSK with Gray mapping is chosen. Every
subcarrier is used for data symbol. The same Flavor is used in
both FFT and IFFT for simulating a case in Table I. A 2× 2
MIMO with a MMSE based MIMO processing and SIC as the
MIMO detection scheme is implemented.

Figure 5 illustrates the BER performance of the Flavors for
FFT with the different cases listed in Table I and the floating
point implementation of the GR. It is important to note that,
with a floating point FFT implementation, the floating-point
SQRD implementations using MGS and GR yield the same
BER performance.

To analyze the performance of the Flavors without the
influence of coding, we illustrate both the coded and uncoded
BER performance in Figure 5(b). The floating point imple-
mentations of FFT and SQRD are used as the base-line for
comparison in both coded and uncoded BER curves.

Figure 6 illustrates the BER performance using a selected
list of the FFT Flavors in Table I and using the Flavor,
GR co 16x16 in Table II, with different CORDIC rotations.
As the rest of the components in the MIMO-OFDM simulation
model yield close to floating-point BER performance, their
influence of BER can be ruled out. Both coded and uncoded
versions are illustrated in Figure 6. The floating point imple-
mentations of FFT and SQRD are used as the base-line for
comparison in both coded and uncoded BER curves. Note that
with 6 CORDIC iterations, close to floating-point performance
is achieved.

28



0 5 10 15 20 25 30 35 40

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

SNR (dB)

B
E
R

FFT-3

FFT-7

FFT-float

(a) Coded; r = 1/2, Non-systematic conv. code {171, 133}8.

0 5 10 15 20 25 30 35 40

100

10−1

10−2

10−3

10−4

10−5

SNR (dB)

B
E
R

FFT-3

FFT-7

FFT-float

(b) Uncoded.

Fig. 5. BER vs. Eb/No for a few FFT Flavors listed in Table I and the floating point implementation of the GR; QPSK, Gray mapping, nFFT = 1024.

1) Cascading Effects: The error propagation due to the
FWL effect from the FFT Flavor to the MIMO processing
can be clearly seen between Figure 5 and Figure 6. In both
the figures, the BER error floor is predominantly determined
by the FFT Flavors and by the number of CORDIC iterations.
However, the influence of FFT Flavors is remarkable. Note
that in Figure 6, more CORDIC iterations do not improve the
BER performance.

C. Hardware Prototype

Table IV lists the throughput that is achieved while map-
ping the implementation of the SISO-OFDM system on the
SFF SDR DP. The implementation on the DSP of the other
components in the system, except FFT and IFFT, is in C. For
FFT and IFFT, the Flavors listed in Table I are used. For the
implementation on the FPGA, the IP cores from Xilinx are
used. Note that the channel synchronization (marked grey in
Figure 2) is not implemented.

The first experiment is to perform a loop back, where
data is transferred from the host to the FPGA via the DSP.
The same data is routed back to the host from the FPGA
through the DSP. Note that the communication between the
host and the DSP is facilitated by ARM9 GPP core. However,
GPP is treated as a black box and abstracted as a part of
communication between the host and the DSP. The SFF SDR
DP is controlled by the host using a state machine that runs
on both the host and the DSP. The FPGA is controlled by the
DSP via registers.

Since the throughput for the host-DSP-FPGA is found very
low (see Table IV), the throughput between the DSP and the
FPGA is calculated to identify the bottleneck. From the anal-
ysis, the bottleneck is found to be the communication between
the host and the DSP. Therefore, host is not considered further
in our mapping exploration. When both the transmitter and
receiver of the SISO-OFDM system is implemented on the

FPGA, the throughput is reduced slightly when compared to
the unloaded scenario. As seen in Table IV, the DSP becomes
the bottleneck when it is loaded with the functionalities. The
throughput worsens, when compared to the unloaded DSP,
by approximately 2.5 times when the transmitter is running
on the DSP and by 56 times when both the transmitter and
the receiver are running on the DSP. When the computation
intensive kernels, FFT and IFFT are mapped onto the FPGA,
instead of DSP, a throughput of approximately 70 kbps is
gained. Similarly, a throughput of 90 kbps can be gained if
the Viterbi decoder is mapped onto FPGA.

S.No. Host DSP FPGA Throughput (Mbps)
1 S/R - - 0.93
2 - S/R - 5.71
3 - S/R Tx+Rx 5.05
5 - S/R+Tx (rest) IFFT + Rx 2.10
4 - S/R+Tx+FFT Rx(rest) 2.03
6 - S/R+Tx+Rx(rest) Rx(Viterbi) 0.99
7 - S/R+Tx+Rx - 0.09

TABLE IV
REAL-TIME THROUGHPUT MEASUREMENTS OF THE SISO-OFDM

SYSTEM. S/R, TX AND RX DENOTE SENDING/RECEIVING PAYLOAD,
TRANSMITTER AND RECEIVER RESPECTIVELY. nFFT = 64.

Note that our implementation of the SISO-OFDM system
offers full flexibility and allows the mapping each of the
components shown in Figure 2 individually onto the host,
the DSP or the FPGA. However, as the main goal of the
analysis is to identify the bottlenecks between computation
and communication, exhaustive mapping exploration is not
done. The real-time measurement numbers for a simple SISO-
OFDM system are not satisfactory enough to perform a similar
exploration for MIMO-OFDM.

29



0 5 10 15 20 25 30 35 40

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

SNR (dB)

B
E
R

FFT-3, It=2

FFT-3, It=4

FFT-3, It=6

FFT-3, It=8

FFT-7, It=2

FFT-7, It=4

FFT-7, It=6

FFT-7, It=8

(a) Coded; r = 1/2, Non-systematic conv. code {171, 133}8.

0 5 10 15 20 25 30 35 40

100

10−1

10−2

10−3

10−4

10−5

SNR (dB)

B
E
R

FFT-3, It=2

FFT-3, It=4

FFT-3, It=6

FFT-3, It=8

FFT-7, It=2

FFT-7, It=4

FFT-7, It=6

FFT-7, It=8

(b) Uncoded.

Fig. 6. BER vs. Eb/No for a few FFT Flavors listed in Table I and for the Flavor GR co 16x16 in Table II with different CORDIC rotations; QPSK, Gray
mapping, nFFT = 1024.

D. Discussion

From our results on the cascading effects (Figure 5 and
Figure 6), it is interesting to see that the losses due to the
FWL effects of the implementations add (approximately) when
measured in the dB scale. As seen in our BER results, if we
select a FFT Flavor that performs bad in terms of BER, the
error due to the FWL is propagated to the entire system. Due
to this, in spite of more CORDIC iterations, a better BER is
not reached. However, the FWL effects due to the CORDIC
iterations are additive to the effects of the FFT Flavor. This
allows to segregate the effects from the individual components
in the mapping process, at least in non-iterative systems.

The implementation of the waveform on a HW platform
for real-time demonstration has brought several critical is-
sues into the lime light. In general, such issues cannot be
easily seen or even impossible to see while using simulation
models. One key issue is the ambiguity in the user manual
of the prototyping platform leading to misinterpretation. For
example, there is a huge mismatch between the latency and
throughput numbers that are presented in [21] and our results
shown in Table IV. Even though the black-box approaches for
the interface between the host and the DSP and the DSP and
the FPGA, makes the communication simpler, it also makes
the identification and isolation of the bottleneck complicated.
For example, it is normal to enable the cache memory in the
DSP to improve the performance. However, the DSP to the
FPGA communication in SFF SDR DP did not work, initially,
when the cache memory is enabled in the DSP while using the
default functions from the BSP for the communication. After
some efforts, the special way with which the DSP and FPGA
communication can be made to work with enabled cache has
been found. Also, the throughput is drastically reduced while
performing the loop-back between the host, the DSP and the
FPGA. Due to the non-availability of the source code and the

usage of the black-box approach, the cause of this reduction
cannot be isolated and solved. Therefore, more transparent and
clear approaches are needed, as highlighted in [1].

Accurate or even high-abstraction models with test cases
can be very useful to avoid the misinterpretation of the user
manuals. Such models should clearly distinguish the PEs,
communication and memories to separate and identify the
bottlenecks in a HW platform.

Though the real-time throughput measurements are far
better when compared to the numbers reported in Section II,
a one-to-one comparison is very difficult due to the lack of
exact configuration details of the HW platform.

The extent of the performance loss, in terms of the process-
ing time, that can be expected while targeting full reusability
in implementations, can be seen in Table II. For example,
the implementation of SQRD using CORDIC offers full
flexibility, in terms of CORDIC iterations. Furthermore, due
to the application of CORDIC algorithm for implementing
several functionalities [17], the implementation offers high
reusability. However, when compared to a dedicated SQRD
implementation using MGS, the CORDIC implementations
is slow by a factor of 2. Depending on the requirements
of a waveform, e.g. latency, fully reusable implementations
or hybrid variants can be attractive as well. Therefore, the
trade-offs between reusability and performance need to be
considered while developing waveform implementations and
mapping.

In the context of Nucleus methodology, implementation
details of a Flavor, like the FWL effects, are hidden from the
system developer. Only the key parameters for configuring a
kernel like the length of FFT, number of micro-iterations in
CORDIC, implementation algorithm, etc. are made visible. For
a given scenario of desired BER, throughput, etc., the mapping
tool should consider aspects like FWL effects while identifying

30



suitable Flavors for implementing a waveform. In order to do
this automatically, the critical issues that can be present in a
BSP, like shown above using SFF SDR DP as a case study,
should be addressed. Furthermore, the different categories in
the mapping exploration should seen as the division of the
mapping problem into manageable sub-problems. It simplifies
the mapping process and also aids in the efficient development
of tools that are modular.

VII. CONCLUSIONS

The physical layers of a generic SISO- and MIMO-OFDM
system have been implemented on a heterogeneous hard-
ware platform, SFF SDR DP, as a case study for the Nu-
cleus methodology. Emphasis has been given on the two
computation-intensive kernels in a MIMO-OFDM system:
FFT and MIMO-processing. Different implementations that
vary in algorithms and methods have been studied in terms of
performance like the processing time and the BER (using the
FWL effects). The cascading nature of the error propagation
due to the FWL effects has been analyzed. The overhead in
terms of processing time due to the glue-code, which is needed
for meeting the interface-related constraints of the efficient
implementations, is calculated. Finally, the modem part of the
physical layer is mapped onto the SFF SDR DP in several
ways and the maximum achievable throughput in real-time is
obtained. Bottlenecks of the implementation on the SFF SDR
DP have been identified. The issues hampering the overall
waveform development have been discussed and suggestions
have been provided for improvement.

VIII. ACKNOWLEDGEMENT

This research project was performed in the Ultra High-
Speed Mobile Information and Communication (UMIC) re-
search centre under the support of the Technical Center for
Information Technology and Electronics (WTD-81), Germany.

REFERENCES

[1] V. Ramakrishnan, E. M. Witte, T. Kempf, D. Kammler, G. Ascheid,
R. Leupers, H. Meyr, M. Adrat, and M. Antweiler, “Efficient and
portable SDR waveform development: The nucleus concept,” in IEEE
Military Communications Conference (MILCOM 2009), 2009.

[2] V. Ramakrishnan, T. Veerkamp, G. Ascheid, M. Adrat, and
M. Antweiler, “Matrix Decomposition Algorithms for MIMO receivers:
Flexibility vs. Efficiency Tradeoffs in a Library-based Tool-Assisted
SDR Development,” in 2011 Wireless Innovation Forum European
Conference on Communications Technologies and Software Defined
Radio, June 2011.

[3] Lyrtech, “Small form factor SDR development platforms,” November
2009. http://www.lyrtech.com/

[4] P. Amini, E. Azarnasab, S. Akoum, and B. Farhang-Boroujeny, “An
experimental cognitive radio for first responders,” in 3rd IEEE Sympo-
sium on New Frontiers in Dynamic Spectrum Access Networks, 2008.
DySPAN 2008., oct. 2008, pp. 1 –6.

[5] S. Nagel, D. Epple, and F. K. Jondral, “Implementing the tetra physical
layer on lyrtechs sff sdr development platform,” in 2008 Software
Defined Radio Technical Conference and Product Exposition, October
2008.

[6] M. Kadhim and W. Ismail, “Implementation of WIMAX IEEE802.16d
baseband transceiver on multi-core software-defined radio platform,”
WTOC, vol. 9, pp. 301–311, May 2010.

[7] S. Nagel, M. Schwall, and F. K. Jondral, “Performance overhead with
high level waveform development,” in 2010 European Reconfigurable
Radio Technologies Workshop, June 2010.

[8] Z. Chen, N. Guo, Z. Hu, and R. Qiu, “Channel state prediction in
cognitive radio, part I: Response delays in practical hardware platforms,”
in 2011 Proceedings of IEEE Southeastcon, march 2011, pp. 45 –49.

[9] H. Yan, S. Zhou, Z. Shi, J.-H. Cui, L. Wan, J. Huang, and H. Zhou,
“DSP implementation of SISO and MIMO OFDM acoustic modems,”
in OCEANS 2010 IEEE - Sydney, may 2010, pp. 1 –6.

[10] T. Haustein, A. Forck, H. Gäbler, V. Jungnickel, and S. Schiffermüller,
“Real-time signal processing for multiantenna systems: Algorithms, op-
timization, and implementation on an experimental test-bed,” EURASIP
Journal on Applied Signal Processing, vol. 2006, 2006.

[11] J. Berkmann, C. Carbonelli, F. Dietrich, C. Drewes, and W. Xu, “On
3G LTE Terminal Implementation - Standard, Algorithms, Complexities
and Challenges,” in International Wireless Communications and Mobile
Computing Conference, 2008. IWCMC ’08., aug. 2008, pp. 970 –975.

[12] D. Wubben, R. Bohnke, V. Kuhn, and K.-D. Kammeyer, “Near-
maximum-likelihood detection of MIMO systems using MMSE-based
lattice reduction,” in 2004 IEEE International Conference on Commu-
nications, vol. 2, june 2004, pp. 798 – 802 Vol.2.

[13] TMS320C64x+ IQmath Library User’s Guide, Texas Instuments, De-
cember 2008.

[14] Xilinx, “Virtex-4 family overview,” August 2010.
http://www.xilinx.com/support/documentation/data sheets/ds112.pdf

[15] Texas Instruments, “TMS320C64x+ DSP little-endian
DSP library programmer’s reference,” March 2008.
http://focus.ti.com/lit/ug/sprueb8b/sprueb8b.pdf

[16] Xilinx, “Fast Fourier transform v6.0,” September
2008. http://www.xilinx.com/support/documentation/ip documentation
/xfft ds260.pdf

[17] J. Valls, T. Sansaloni, A. Perez-Pascual, V. Torres, and V. Almenar, “The
use of CORDIC in software defined radios: A tutorial,” Communications
Magazine, IEEE, vol. 44, no. 9, pp. 46 –50, 2006.

[18] Texas Instruments, “TMS320DM6446 digital me-
dia system-on-chip: Data sheet,” September 2010.
http://focus.ti.com/docs/prod/folders/print/tms320dm6446.html

[19] ARM926EJ-S: Technical Reference Manual, E ed., ARM Limited, June
2008.

[20] Green Hills Software, “INTEGRITY RTOS, The MULTI Integrated
Development Environment,” http://www.ghs.com/, April 2011.

[21] Lyrtech, “Small form factor SDR evaluation module/ development
platform - User’s guide,” October 2007.

31


