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ABSTRACT 

 

 A common method of down converting a signal from 

an intermediate frequency (IF) to baseband is using a 

quadrature down-converter. One problem with the 

quadrature down-converter is it requires two low pass 

filters; one for the real branch and one for the imaginary 

branch. A more efficient way is to transform the real signal 

to a complex signal and then complex heterodyne the 

resultant signal to baseband. The transformation of a real 

signal to a complex signal can be done using a Hilbert 

transform. Building a Hilbert transform directly from its 

sampled data sequence produces suboptimal results due to 

time series truncation; another method is building a Hilbert 

transformer by synthesizing the filter coefficients from half 

band filter coefficients. Designing the Hilbert transform 

filter using a half band filter allows for a much more 

structured design process as well as greatly improved 

results. 

 

1. INTRODUCTION 

 

 The digital portion of a receiver is typically designed to 

receive a signal at IF and down-convert it to baseband for 

additional processing. A common method of down-

converting a signal is through the use of a quadrature down-

converter, which both performs spectral translation as well 

as the conversion of a real signal to a complex signal. The 

down-conversion is operation multiplies one branch by a 

cosine carrier and another branch by a negative sine carrier 

which shifts the positive frequency segment of the signal’s 

spectrum to baseband. The signal is then low pass filtered to 

remove the sum frequency terms. This processing chain is 

referred to as a quadrature demodulator [1] or quadrature 

down-converter. The quadrature down-converter method 

has the drawback that two low pass filters must be used after 

the down-conversion; one on the real and one on the 

imaginary branch. 

 

 

 

 

Figure 1: A quadrature down-converter  

 

 Another way of viewing the problem is that the 

quadrature down-converter not only extracts the desired 

segment of the spectrum it rejects the undesired spectral 

image, the spectral replica present in the Hermetian 

symmetric spectra of a real signal. Removing this image 

would result in a single sided spectrum which being non-

Hermetian symmetric is the transform of a complex signal. 

The resulting single-sided spectrum can be complex 

heterodyned to baseband. This sequence of operations is the 

reverse order of operations for the quadrature down-

converter. Instead of low-pass filtering the I and Q channels, 

the signal is first converted from a real signal to a complex 

signal using the Hilbert transform. The negative frequency 

image is removed by the Hilbert transform which allows the 

signal to be complex heterodyned to baseband [1]. 

 

 Figure 2: A reverse order implementation of the quadrature 

down-converter 
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 It should be noted that the applications of the Hilbert 

transform within a digital receiver are not limited to this 

case of down-conversion; this example is simply providing 

the stimulus for designing the Hilbert transform filter. 

 

 

2. HILBERT TRANSFORM BACKGROUND 

 

 A Hilbert transform is a convolutional operator which is 

commonly referred to as a wide band 90
o
 phase shifter. The 

filter embedded in the Hilbert transform performs a +90
o
 

and -90
o
 phase shift for negative and positive frequencies in 

a signal, respectively [2]. A continuous Hilbert transform is 

shown in equation 1, while the discrete representation of the 

Hilbert transform is shown in equation 2 [3]. The frequency 

response of the continuous filter embedded in the Hilbert 

transform is shown in equation 3. Here we see that spectral 

components on the positive frequency axis are phase shifted 

-90
o
 while the spectral components on the negative 

frequency axis are phase shifted +90
o
. Note that the phase 

shift preserves amplitude. This spectral response is 

illustrated in figure 3. As expected, the odd symmetric time 

signal h(t) has an odd symmetric spectrum. 
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Figure 3: Frequency Response of the Hilbert transform 

Filter 

 

The Hilbert transform is used to form the analytic 

signal, the complex time signal corresponding to the spectral 

content of the positive frequency axis. The analytic sampled 

data signal is described in equation 4. 

 

The block diagram demonstrating how to obtain the 

analytic signal with the Hilbert transform filter is shown in 

figure 4. Due to causality, when implemented, the output of 

the real branch will have to be delayed such that it is time 

aligned with the delayed output of the imaginary branch. 

One method of implementing this time delay is shown in 

figure 5. 

 

Figure 4: Block diagram for applying a Hilbert transform [3] 

 

 

Figure 5: Time aligning the output of the real and imaginary 

outputs 

 

 The analytic signal formed by use of the Hilbert 

transform operation in figure 4 destructively cancels all of 

the negative frequency components in the signal. When we 

apply a complex heterodyne to the output of the analytic 

signal generator we translate to baseband the spectrum 

centered on the positive frequency axis and thus performs 

the same function as the quadrature down-converter. 

Comparing the two structures, figures 1 and 4, we see that 

the reverse order quadrature down-converter only requires a 

single filter versus the quadrature down-converter which 

requires two. Therefore, the reverse order quadrature down-

converter should be used instead of the quadrature down-

converter as long as the single Hilbert transform filter uses 

less than the number of taps in the two filters in the 

quadrature down-converter. 

 

3. DESIGNING A HILBERT TRANSFORM FILTER 

USING A DISCRETE SEQUENCE 

 

 The discrete time series for the Hilbert transform was 

presented in equation 2. To determine a performance 

baseline for the filter let us use the filter coefficients directly 

from the discrete sequence. At this point we have not yet 

determined the number of taps required in this filter to meet 
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a given design specification, so for convenience of the 

discussion we choose a filter of length 31 taps. This is an 

odd number of weights chosen to assure a zero weight at the 

symmetry point of the filter. 

 Figures 6a and 6b show the impulse response and the 

frequency response of the Hilbert transform filter formed by 

truncating the impulse response to 31 weights. Notice the 

significant ripple in the amplitude of the spectrum about the 

nominal values of  1. This ripple is Gibbs phenomena [3], 

the failure of the series to converge in the neighborhood of 

the discontinuity at normalized frequencies 0 and 0.5.  This 

deviation from unity gain will prevent the destructive 

cancellation of the spectral components in the two paths that 

are supposed to be exhibit equal amplitude with opposing 

phases. This imperfect cancelation due to the ripple leaves a 

residual image which would limit the utility of the process. 

The amplitude of the ripple is not reduced by increasing the 

filter length but rather is shifted towards the discontinuities.  

In the jargon of digital signal processing, the pass band 

ripple is attributed to the truncation of the infinitely long 

sequence described by equation 2. The amplitude of the 

ripple can be controlled by the severity of the truncation 

process. Applying a window other than the abrupt default 

rectangle window will result in a more gradual transition to 

the zero amplitude coefficient values which will 

significantly reduce the levels of pass band and stop band 

ripple levels. 

 

Figure 6a: Hilbert transform filter coefficients 

 

 

Figure 6b: Spectrum: Hilbert Transform Filter, ripple on 

order of 182 parts per thousand  

 The windowed filter coefficients in figure 7a are seen to 

more gently transition to zero than the rectangle windowed 

filter and correspondingly the spectrum in figure 7b shows a 

much smaller level of ripple relative to the nominal  1 

response. The pass band ripple is now on the order of 6 parts 

per 1000 as opposed to the original 182 parts 1000 as shown 

in figure 7c. 

 

 

Figure 7a: Windowed filter coefficients  

 

 

Figure 7b: Spectrum: windowed filter coefficients  
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Figure 7c: The Pass Band Ripple: Windowed Coefficients 

on order of 6 Parts in 1000 

 

 Knowing that we can control the ripple level with 

smooth windows and that we can set that level to any 

desired value, we now address the matter of filter length and 

the particular windowing function. We ask, ‘what order 

filter should be chosen’ and ‘what is the optimum window 

to apply’? We choose to answer these questions by 

introducing a slight change in perspective of the filter design 

process that will guide us to obvious answers to these two 

questions. 

 

4. SYNTHESIZING A HILBERT TRANSFORM 

FILTER WITH HALF BAND FILTERS 

 

 We now examine the structure of the Hilbert transform 

filter through its frequency domain characteristics. The 

Fourier transform of the Hilbert transform filter sequence 

was presented in equation 3 for the continuous filter and is 

presented in equation 5 for the sampled data filter [3]. 

 

 

 
Figure 8: Fourier transform of the sampled Data Hilbert 

Filter 

 

 We approach the design of filter matching H(),the 

response in figure 8, by separating the positive and negative 

portions of the response. The positive portion of the 

response is -G(-) while the negative portion of the response 

is G() as shown in figure 9. A filter will be built for each 

response and then later combined to form the total response. 

 

 
Figure 8: Fourier transform of the sampled Data Hilbert 

Filter 

 Looking at the piecewise spectrum in figure 9, each 

response can be described as a down-converted and an up-

converted half band filter [4] scaled by +1 and -1 

respectively. The equations describing the filters in figure 9 

are given in equations 6 and 7. The positive frequency half 

band is up-converted to the quarter sample rate by the 

complex exponential e
jπn/2

, while the negative frequency half 

band is correspondingly shifted by e
-jπn/2

. 

 

Where hHB(n) is the baseband half band filter 

 

 To form the full response, H(), partial responses -G(-

) and G() must be summed and multiplied by j as shown 

in equation 8. The time domain equivalent is given in 

equation 9, which relates the half band filter coefficients to 

the Hilbert transform filter coefficients. 

 

 The question of how to choose the filter order and the 

best windowing function has been converted to that of 

designing a FIR half-band filter, a task with which we are 

quite familiar. After designing the half band filter        
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the Hilbert transform filter coefficients can be synthesized 

by multiplying the coefficients by a sine wave. 

 

5. HALF BAND FILTER DESIGN 

 

 The analytic signal formed by the combination of the 

output of the Hilbert transform filter and its delayed input 

the delayed can be thought of as the result of a filtering 

operation designed to reject the negative frequency image in 

the double sided spectrum of the signal as seen in figure 

10a. The baseband version of the same problem is shown in 

Figure 10b. 

 

Figure 10a: Example of double sided spectrum  

 

 

Figure 10b: Down converted double sided spectrum  

 

 By viewing the problem as that of rejecting the negative 

frequency image (figure 10a) or that of rejecting an image at 

the half sampling rate (figure 10b), the design of the Hilbert 

transform filter is exactly the same as a design of a standard 

FIR filter. That design requires definition of pass band 

boundaries, of stop band boundaries, hence transition band 

boundaries, and pass band and stop band ripple levels from 

which the prototype filter length can be estimated. Note that 

the spectrum of a half band filter is even symmetric about 

the origin and odd symmetric about the quarter sample rate 

(/2) so that the stop band and pass band width are equal as 

are the pass band and stop band ripple levels. 

 To reject the image at half the sampling rate in figure 

10b, we must design a low pass half-band filter. The filter 

pass band width must equal the pass band width of the 

baseband signal which in this example is 0.1π 

radians/sample. Since the image at baseband also resides at 

the half sampling rate, the width of the stop band is the same 

as width of the pass band, which is also 0.1π radians/sample. 

Subtracting the bandwidth of the reflected image (0.1π) 

from the half sampling bandwidth (0.5π) provides us with 

the stop band boundary, which is 0.4π radians/sample. The 

transition bands is the difference of the stop band and pass 

band boundary edges which is 0.3π radians. An example is 

shown in figure 11. 

 This discussion calculating the pass band and stop band 

reflects the defining property of the half band filter: the 

transition band is always centered on the quarter sample rate 

and the width of the pass band is equal to the width of the 

stop band. A generalized example of this constraint is 

illustrated in figure 11. 

 

 
Figure 11: General frequency response of a true half band 

filter 

 

The two remaining parameters to define for the half band 

filter are the stop band attenuation and the filter order. 

Specifying the desired level of stop band attenuation as the 

parameter, A, in dB, the filter order can then be 

approximated using equation 10 [4]. 

 

Where fS is the sample rate, A(dB) is attenuation in dB, and 

Δf is the transition bandwidth. For our example, fS =2, 

f=0.3, and A(dB)=80, therefore N  25 

 

 Now that all of the parameters have been defined, the 

half band filter can be designed. The coefficients can then 

be calculated with the standard MATLAB call to the Remez 

or firpm algorithm (with frequency vector normalized to 

fs/2) as shown below. 

 
f = [0 0.1 0.4 0.5]/0.5; 

a = [1 1 0 0]; 

h_HB = firpm(N-1,f,a); 

Where N-1 is the filter order, 1-less than the number of filter 

coefficients, as estimated by equation 10 
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 To ensure a zero a symmetry point of the filter, the 

order is decreased from 25 to 24 while still meeting the 

original specifications. The filter coefficients are then 

computed with the MATLAB code provided above. The 

response of the filter is overlaid with the down-converted 

spectrum in Figure 12. The passband of the signal is within 

the 3dB cutoff of the filter, and the image residing at the 

half sample rate is rejected by the sidelobes which are 80 dB 

down by the time the passband of the image is reached. It 

should also be noted that this filter is also the same filter 

that would be used in the quadrature down-converter; 

therefore the quadrature down-converter uses a total of 

twice the number of taps as compared to the Hilbert 

transform filter. 

 

Figure 12: The frequency response of the half band filter 

coefficients is overlaid against the down-converted 

baseband signal  

 

 The half band filter coefficients are then synthesized 

into Hilbert transform filter coefficients using equation 9. 

The Hilbert transform filter coefficients are shown in figure 

13 and the resulting frequency response in figure 14. 

 

 

Figure 13a: Hilbert transform filter coefficients, synthesized 

from half band filter coefficients 

 

 

Figure 13b: The frequency response of the Hilbert transform 

filter coefficients 

 

Figure 13c: The passband ripple is now less than 2 parts per 

10,000 

 

 The filter coefficients pass the initial sanity check as the 

impulse response in figure 13a shows a very similar 

response to previous responses as in figures 6a and 7a. The 

frequency response in figure 13b is also very similar to 

previous responses in figures 6b and 7b. Figure 13c shows a 

substantial improvement in passband ripple, as it is now 2 

parts per 10,000. 

 The half-band based filter design method makes 

designing the Hilbert transform filter much simpler as it is 

reduced to the design of a FIR filter. By reducing it to a FIR 

filter design problem, the design parameters can be fine 

tuned more easily which allows better results. 

 The attraction of this conversion is that the half band 

filter has zero-valued weights for all of the even-indexed 

offsets from its point of symmetry.  This means that the 

Hilbert transform filter will similarly exhibit zero valued 

coefficients at the even indexed offsets from its point of 

symmetry. Interestingly, since the time series and spectrum 

are odd symmetric, the index at the point of symmetry must 

also be zero so that all the even indexed coefficients about 

its point of symmetry are equal to zero. 

 The design of a half band filter is covered in detail in 

[4] and will not be further discussed here. Once the half 

band filter coefficients have been calculated they are then 

turned into Hilbert transform filter coefficients using 
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equation 9. We note that due to finite arithmetic, the even 

indexed coefficients will not be precisely zero. We should 

of course set these not quite zero valued coefficients to zero. 

P.P. Vaidyanathan has shown a clever variation of the half-

band filter design using the Remez algorithm that only 

computes the non zero valued coefficients and we then 

insert the missing zero valued samples [5]. 

 

6. HILBERT TRANSFORM COMPUTATIONAL 

COMPLEXITY 

 

 Comparing figures 1 and 2 we recognize that the 

quadrature down-converter requires two filters while the 

Hilbert Transform based reverse order quadrature down 

converter requires only a single filter. It certainly makes 

sense to consider use of the reduced complexity option. A 

second consideration is that since the Hilbert transform 

based image reject filter reduces the bandwidth by 2-to-1 we 

are permitted to also reduce the sample rate by the same 2-

to-1 ratio. Reducing the sample rate of the analytic signal 

aliases its input quarter sample rate to its output half sample 

rate. The spectrum can be down-converted to baseband by 

the complex exponential e
-jπn

 = (-1)
n
, which simply 

alternates the signs of successive output samples.   Since the 

half band filters used by the Hilbert transform filter and the 

I-Q quadrature down-converter are essentially the same 

filters, the number of multiples needed to implement the 

quadrature down-converter is twice that of the reverse order 

quadrature down converter due to the required second mixer 

in the quadrature down-converter. 

 We have already observed the even indexed 

coefficients of the Hilbert transform filter are zero, which 

reduces the number of multiplies to half of the filter order, 

or in this case 24/2 = 12. We can further reduce the number 

of multiplies by folding the Hilbert transform filter about its 

symmetry point and add the two samples that use the same 

coefficient either side of the symmetry point, bringing the 

number of multiplies to N/4, or 24/4 = 6. 

 

7. CONCLUSION 

 

 The Hilbert transform filter allows a real signal to be 

transformed into its complex representation. Using this 

method to convert the signal to its analytic complex 

representation and then performing a complex heterodyne to 

baseband requires approximately one-quarter of the 

resources as a quadrature down-converter. A Hilbert 

transformer can be quickly designed by generating the 

coefficients using the discrete sequence equation, although 

this produces poor results due to sequence truncation. These 

results can be improved by windowing the coefficients, but 

choosing the optimal windowing function requires 

additional information. Another method that will produce 

the same results synthesizes a Hilbert transformer filter from 

a prototype half band filter. This design method is well 

structured, and easy to analyze. 
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