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What The Customer Wants



What The Customer Expects to Pay

MO R E
MO R E

MO R E
MO R E

MO R E MO R E MO R E MO RE MO R E

MO RE

MO R E

MORE MORE MORE MORE

MORE

MORE MORE MORE

MORE MORE

MORE MORE MORE MORE

MORE MORE MORE MORE

MORE MORE

MORE

MORE

MORE

MORE

MORE

MORE

MORE

MORE

MORE

MORE

M M
O

O

R

R
E

E

M
O
R
E

MORE

MORE

S LESSS LESS
S EVEN

LESS



When The Customer Wants it
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What Size Customer Wants



Why Digital Communications?

But Let Your Communications Be 

Yea, Yea: Nay, Nay:

Sermon on the Mount, 

Matthew, Ch. 5, verse. 37

For What So Ever is More Than 

These Cometh of Evil.



To Paraphrase 

the Great Bard

The World is an Analog Stage

In Which Digital

Plays A Bit Part



The Basic Communication System
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The Radio Channel Frequency Band
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The Electromagnetic Spectrum
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Spectral Utilization

Band Frequency Wavelength Some Uses

VLF 3 - 30 kHz 100 km - 10 km
Long range navigation and marine 

radio

LF 30 - 300 kHz 10 km - 1 km Aeronautical and marine navigation

MF 300 kHz - 3 MHz 1 km - 100 m
AM radio and radio 

telecommunication

HF 3 - 30 MHz 100 m - 10 m Amateur radio bands, NRC time signal

VHF 30 - 300 MHz 10 m - 1 m
TV, FM, cordless phones, air traffic 

control

UHF 300 MHz - 3 GHz 1 m - 10 cm UHF TV, satellite, air traffic radar, etc

SHF 3 - 30 GHz 10 cm - 1 cm Mostly satellite TV and other satellites

EHF 30 - 300 GHz 1 cm - 1 mm Remote sensing and other satellites



Radio Spectrum



Radio Spectrum Wavelength 



Parts of the Electromagnetic Spectrum

The ISM bands in the United States.
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ES/N0 Required for Specified BER



QPSK, 16-QAM, & 64-QAM Constellations 

for 10-5 BER



Spectral Levels of Signal and Noise for QPSK, 

16-QAM, & 64-QAM for 10-5 BER



Channel Coding: 

Add Structured Redundancy
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Bit Error Performance Waterfall



Other Channel Impairments
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Modern Physical Layer Modem Recipe: 

Add these Ingredients, Stir, Bake for 20 Minutes at 300o. 

Let Cool! Enjoy your Modem!

 First Tier Processing: Modulation and Demodulation
 Shaping Filters 

 Spectral Translation 

 Signal Conversion

 Second Tier Processing: Parameter Estimation
 Carrier Frequency and Phase Synchronization

 Timing Frequency and Phase Synchronization

 Automatic Gain Control

 SNR Estimate

 Third Tier Processing: Channel and Hardware (Dirty RF)
 Equalization

 I-Q Balance

 DC-Cancel

 Peak-to-Average Ratio Control

 Predistortion

 Interference Suppression

 Intrusion Suppression

 Diversity

http://schools-demo.clipart.com/search/close-up?oid=3786885&q=witches&s=1&a=a&cid=&fic=0
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Claude Shannon

Information is measurable.

Noise Does not Limit Fidelity. 

'The world has only 10 

kinds of people. 

Those who get binary, 

and those who don't.'
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Shannon’s Model
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Shannon’s Legacy

Communication System Resources

Bandwidth

Signal to Noise Ratio

Memory and Computations

A Communication System needs a 

Computer in Modulator and Demodulator!

We have a Computer on Board!

We can use it to do some other Heavy Lifting!



Four Pillars of Modern Communications
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The Modulator Digital to Analog 

Interface Moves Towards the RF
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The Demodulator Analog to Digital 

Interface Moves Towards the RF
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SECOND GENERATION 

DSP CENTRIC MODEL
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THIRD GENERATION 

DSP CENTRIC MODEL
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Modem: Bits In - RF Out, RF In - Bits Out
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Early Radios Were Mechanical: 

(Many Moving Parts)

Spark Transmitter and Early Receiver



Spark Transmitter: Damped Oscillations



Arc Transmitter: Continuous Oscillation

Replace Sparks with an Arc
Negative Resistance Injects Energy
As Opposed to Dissipates Energy

Valdemar Poulsen, 1869-1942



Poulsen 100 KW Arc Transmitter



The path to the Triode Thermonic Valve,

Thomas Edison, John Fleming, Lee de Forest



Lee De Forest, 1877-1961 Patent No. 879532 



Regenerative Receiver: 

A Little Feedback Goes a Long Way



Tuned RF (TRF) Radio



Edwin Armstrong’s 

Super Heterodyne Receiver



Vacuum Tube Replacement

Solid State Amplifier

John Walter             William

Bardeen Brattain          Shockley

1908-1991 1902-1987   1910-1989

1947

Noble Prize 1956



Integrated Circuits

Robert Noyce, 

Intel

Jack Kilby

TI

1958

1923-2005 1928-1990

Noble Prize 2000 Noyce Founded Intel

Ted Hoff worked for Noyce
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More, More, Moore
Critics have predicted the imminent
demise of Moore’s law ever since
Gordon Moore stated it in 1965.
Electrical Engineers continue to
defy physical challenges, 
squeezing ever more
circuitry into less space
and making information
fly ever more
swiftly.



We all own 

a billion Transistors

We have an amazing wealth of

resources at our disposal! 

Just how big is a Billion? 

A stack of a billion bank notes would be

76.2 kilometers High. 

A billion seconds is 32.5 years!



For Comparison, the Eiffel Tower 

Contains 18,084 Parts. It is 

Fastened Together by 2.5 Million Rivets



The world manufactures more  

transistors than it grows grains of rice.

0.13-micron, Intel Pentium 4  

300-mm silicon wafer. 

Long Grain Jasmine Rice

Wow!



How big is a billion grains of rice?

 8mm x 2mm x 2mm (Long Grain)

 1-billion grains of rice

 8 Meters x 2 Meters x 2 Meters

 Or 32 Cubic Meters

 Or a cube 3.2 Meters on a side

 It weighs 24,000 kg (26.6 tons)

 It costs $26,000 (3-rd week April 2008)

 CLS-350 Mercedes Benz weighs 2,200 kg



A Billion Transistors costs $20.0

0.00000001

Gordon_Moore_ISSCC-02-10-03









Adam @ Home
Brian Basset



It’s all done with Computer Chips



Harry Nyquist, (1889-1960)

The Sampling Theorem

fS>BW



Analog-to-Digital 

Converter

A-to-D

ADC



Digital-to-Analog 

Converter

DAC

D-to-A



Communication over Band 

Limited, AWGN Channel 

Shaping
   Filter

Band Limited 
   Channel

Matched
   Filter

AWGN

d(n) s(t) r(t) d(n)^
H1(w)

H2(w)

H2( ) = H1
*( ) e j

Hd(w)

Hd( ) = H1( ) H1
*( ) e j = |H1( )|2 e j

|H1( )|2 e j = HNYQ( ) e j t

H1( ) = SQRT{HNYQ( )}  

(Maximize SNR)

(Zero ISI)



Band Limited Channel

Zero ISI and Causal Response
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Nyquist Pulse



It’s not what you don’t know 
that gets you in trouble!

It’s what you know for sure 
to be true that just ain’t so!

Samuel Clemens



Spectral Resolution 

Gaussian Window
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Spectral Resolution, Remez Minimum

BW  Window with -6-dB/Oct. Side Lobes
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Cosine Tapered Nyquist Spectrum 
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Square-Root 

Cosine Tapered Nyquist Filter 
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SQRT-RC Impulse Response

Finite Duration, Rectangle Window

0.08 dB

(0.009)

-35 dB

(0.0178)



Spectra of SR-hM and 

SR-RC Nyquist Filter
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ISI Levels: RC-RC and hM-hM



Transmitter and Receiver

Modulator and Demodulator
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First Tier, Primary Signal Processing Tasks 

in a Typical Transmitter and Receiver

   IF
STAGE

  RF
STAGE

    IF
STAGE

DDS

DDS

S-P

P-S

Clock

Clock

CARRIER
    PLL

TIMING
   PLL

DAC

ADC

  DIGITAL
LOW-PASS

  DIGITAL
LOW-PASS

  DIGITAL
LOW-PASS

  DIGITAL
LOW-PASS

  DIGITAL
LOW-PASS

  DIGITAL
LOW-PASS

  DIGITAL
LOW-PASS

  DIGITAL
LOW-PASS

 Shape &
Upsample

 Matched
     Filter

 Interpolate

 Decimate

     I-Q
   Table

Detect

cos( n)

cos( n)

sin( n)

sin( n)

Modulator

Demodulator

f

Analog Analog

Analog

Oscillator

PA

RF Carrier

  Gain
Control

Oscillator

   Carrier
Waveform

VGALNA

RF Carrier

IF

Channel Channel



BPSK Phase Error

x

y

A exp(j )

A cos( )

A sin( )

2

2

( )* ( ) cos( )*sin( )

sin(2 )
2

x n y n A

A
Consider x(n) y(n)



-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-

Inputs to Product Detector

cosine

sgn(cosine)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-

S-Curve Product Detector sign(x)*y

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-

S-Curve Product detector x*y

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-

Inputs to Product Detector

Phase Detectors for Modulated BPSK



Second Tier Signal Processing Task,

Carrier Recovery Phase Locked Loop
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Phase Detectors for Modulated QPSK

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-

S-Curve Product Phase Detector: sign(x)*y-sign(y)*x

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-

Inputs to Phase Detector



QPSK PLL

FIR
LPF
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Maximum Likelihood Timing Recovery
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Derivative with Help of Nearby Neighbors 

(Early and Late)
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Early-Late Gate Derivative
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Combining Early and Late Gates in a 

One Derivative Filter
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Slide Sampler to Input and Perform Timing 

Offset with Polyphase Digital Filter
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Approximating Tanh(x)
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Sub Optimal Approximations

 Replace 2Eb/N0, SNR Gain with a Constant.

 Replace tanh(x) with Large SNR Approximation:

tanh(x) ~ sign(x)

 Replace tanh(x) with Piecewise Approximation:

tanh(x) ~ x           for |x| < 1

tanh(x) ~ sign(x)  for |x| > 1



Sub Optimal Approximation
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Second Tier Signal Processing Task, 

Timing Recovery Phase Locked Loop

Matched
    Filter
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Band Edge Filter: BE( )=dH( )/d

Spectrum: Matched Filter 

Spectrum:
Frequency Derivative 
of Matched Filter

Spectrum: Output of 
Frequency Matched Filter

G     ( )

G      ( )

MF

FMF



Band Edge Filter Based

Frequency Locked Loop

Matched
    Filter
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Energy Difference in Band Edges 

Sufficient Statistic to Frequency Lock
           Spectrum:
 Frequency Matched Filter

           Spectrum:
 Frequency Matched Filter

         Spectrum: 
Centered Input Signal

         Spectrum: 
Shifted Input Signal

Spectrum:  Response to 
 Centered  Input Signal

   Spectrum:  Response to 
Non Centered  Input Signal



Mean and Variance of DC Term of 

Function of Frequency Offset 



Spectra of 

Shaping and Band Edge Filters



Spectra of Signals From Band Edges 

Combined to form Two New Signals
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Eye Diagrams of Matched Filter and 

Sum and Difference Band-Edge Filters 



Spectra of SQRT Nyquist Shaped Modulation 

Signals over Range of Excess BW 



Eye Diagrams Matched Filter Output



Cyclostationary Mean and Variance

Eye Diagrams Magnitude  Matched Filter



Spectral Lines from Excess BW: MF( )xMF( )*



Eye Diagrams Band Edge Filter Output



Cyclostationary Mean and Variance

Eye Diagrams Magnitude  Band Edge Filter



Spectra of BE( )xBE( )*



Amplitude of Spectral Timing Line

from Excess Bandwidth



What Happens if there is no excess BW? 

 As we reduce excess BW to obtain more efficient use of 
spectrum, we reduce the ability of the receiver to 
synchronize.

 When there is no excess BW we need to allocate a 
fraction of transmitted energy to pilot signals.  

 Example: OFDM Has No excess Energy in 
Modulation Waveform: Excess Energy Resides in 
added secondary signals: Preamble, Cyclic Prefix, 
Unmodulated Stationary and Moving Pilots.

 Interesting Question: Is this energy accounted for 
when people discuss error correcting codes
operating near Shannon Limit? (I’m sure it is not!)  



The Synchronizers’ Needle Point



Band Edge Filters and Approximations



Linear and Minimum Phase BE Filters



Frequency Offset Spectra and BE Filters in 

Frequency Lock Loop



Phase Profiles of Freq Lock Loop



Time Series from BE Filters During Frequency Acquisition



Frequency Offset Spectra and Minimum Phase

BE Filters in Frequency Lock Loop



Phase Profiles of Freq Lock Loop



Time Series from BE Filters During Frequency Acquisition



Frequency Offset Spectra and Linear Phase FIR 

Substitute for BE Filters in Frequency Lock Loop



Phase Profiles of Freq Lock Loop



Time Series from BE Filters During Frequency Acquisition



Asymmetric Processing

BITS

  INPUT
CLOCK

  CARRIER
REFERENCE

OUTPUT
CLOCK

BITS

TIMING

  TIMING
CONTROL

EQUALIZE
CONTROL

 CARRIER
CONTROL

    GAIN
CONTROL

TIMING

CARRIER

CARRIER

MAP

DETECT

NOISE

CHANNEL

 UNKNOWN
 TIME DELAY
      and
ATTENUATION

MAP

SHAPING
  FILTER

SHAPING
  FILTEREQUALIZER

AMPLITUDE
    and
  PHASE

TRANSMITTER

RECEIVER

AMPLITUDEQUANTIZED
AMPLITUDE

 BASEBAND
WAVEFORM

 BASEBAND
WAVEFORM

  CARRIER
WAVEFORM

  CARRIER
WAVEFORM

VGA



First Generation Receiver 

Analog Signal Conditioning
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Second Generation Receiver 

DSP Based Signal Processing
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Third Generation Receiver DSP Based 

Signal Conditioning
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Build Your Own Carrier

for Final Down Conversion
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First Generation Digital Receiver
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Second Generation Digital Receiver
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Third Generation Digital Receiver
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Signals and Underlying Structure of Analog 

Radio, DSP Radio, and Software Defined Radio

   Analog
Modulation

Software Control
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Software Defined Radio: A Tutorial

IEEE Instrumentation and Measurement

Magazine, February 2010

fred harris and Wade Lowdermilk



High Level Block Diagram of Software Defined Radio. Radio is 

segmented into RF Processing Front End Block, Baseband 

Waveform Digital Signal Processing Back End Block, and 

Interface to Data Processing Higher Level User Application and 

Interface Blocks. 
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First Tier, Primary Signal Processing Tasks 

in a Typical Transmitter and Receiver
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Second Tier Signal Processing Task,

Carrier Recovery Phase Locked Loop

Matched
   Filter
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Second Tier Signal Processing Task, 

Timing Recovery Phase Locked Loop

Matched
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Estimate Signal Mean and Variance

at High SNR and Low SNR 

Conditional
Densities

Conditional
Densities

Density of
Observable
MAG

Density of
Observable
MAG

AA

AA M1

-A-A

Estimate of Mean is too High

Estimate of variance is too Low



Estimates of Moments and SNR as Function of SNR



Skewness: A Measure of Estimated SNR Error

Skewness : the third central moment of X, 

divided by the cube of its standard deviation



BPSK Large SNR Approximation to ML
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BPSK Large SNR Approximation to ML
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BPSK ML Carrier Recovery Loop
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BPSK ML Carrier Recovery Loop
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BPSK Large SNR Approximation to ML
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BPSK Large SNR Approximation to ML
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BPSK ML Carrier Recovery Loop
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BPSK ML Carrier Recovery Loop
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Automatic Gain Control (1)
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Automatic Gain Control (2)
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Linear Loop AGC Responses



Linear Loop AGC Responses: with Filter Delays



Log Loop AGC Responses



Log Loop AGC Responses: with Filter Delays



Linear Loop AGC Output and Control Levels



Log Loop AGC Output and Control Levels



DC Canceller, 

DC Notch Filter
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Spectral Response



DC Canceller with Embedded 

Sigma-Delta Converter
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DC Canceller Time Series



Spectra 

Input and Output of Canceller



Tunable Notch, 

Spin the Delay Line
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Spectral Response



Tuning With LP-to-BP 

Transformation
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Implementing LP-to-BP 
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Spectral Response



Self Tuning:

Reference Canceling
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Filters have Same Transfer Function
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Block Diagram of Receiver with 

Ideal Signal Processing Blocks
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Block Diagram of Receiver with Non-

Ideal Signal Processing Blocks and 

Associated Compensating Blocks
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Gain and Phase Imbalance in Analog

I-Q Mixers Used for Up or Down Conversion



Complex Baseband & Real Band-Centered



Complex Down Conversion 



I-Q Gain and Phase Imbalance
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I-Q Imbalance: Image Spectral Terms
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Effect of I-Q Imbalance



Balanced Mixers



Gain Imbalance



Phase Imbalance



Gain and Phase Imbalance



Filter Imbalance
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Gain and Phase Contributions of I-Q 

Matched Low Pass Filters



Gain and Phase Contributions of I-Q 

Mismatched Low Pass Filters



I-Q Imbalance and Self Mixing
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Truncating Quantizers: DC Bias
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2’s Complement Arithmetic; DC Bias
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Errors Due to finite Arithmetic
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Finite Arithmetic in Radix-2 FFT Algorithm
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Radix-2 FFT Signal Flow Diagram
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Algorithm Noise Due to 

Finite Arithmetic and Coefficient Noise 



Algorithm Noise due to 

Finite Arithmetic  Scaling Noise



Signal Through Filter 

with Gain Distortion
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Model of Gain Distortion
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Pre-and-Post Echoes
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Nyquist Pulse Time and Frequency



Pulse: Time and Frequency



Pulse Response and ISI Component



Recursive Filter Time & Frequency



Pulse Response and ISI Component



Pulse Response and ISI Component



QPSK Modulator Eye-Diagram, 

Constellation, and Spectrum



QPSK Demodulator, Eye-Diagram

Constellation, and Spectrum



QPSK Demodulator with RCVR Filter



16-QAM Modulator Eye-Diagram, 

Constellation, and Spectrum



16-QAM Demodulator with RCVR Filter



Signal Flow Path in XMTR & RCVR
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Decision Directed, Gradient Descent (LMS) 

Tapped Delay Line Equalizer 
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Received Signal and Spectrum
No Channel Distortion



Constellation: 

Equalizer Input and Output



Received Signal and Spectrum
With Channel Distortion



Constellation: 

Equalizer Input and Output



I-Q Imbalance Requires DC Cancellers

I II ’

Q QQ’

(1+

I-Q Imbalance

   DC
Cancel

  Phase
Balance

  Gain
Balance

   DC
Cancel

g^ ^

~

~



Sequence of 16-Phase Constellations 

During Phase Balancing 



Sequence of 16-Phase Constellations 

During Gain and Phase Balancing 



Sequence of 16-QAM Constellations 

During Phase Balancing 



Sequence of 16-QAM Constellations 

During Phase and Gain Balancing 



Spectral Images 

Due to I-Q Mismatch



Constellations of 

Channel +k and -k



Crosstalk Between Channels k and –k

Due to gain and Phase Imbalance



Constellation after Gradient Descent 

Correction of Gain and Phase Imbalance



Crosstalk Between Channel k and Empty Channel –k



Constellation after Gradient Descent Correction of 

Gain and Phase Imbalance



DAC Sin(x)/(x) Baseband Distortion
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Baseband Filter DAC Predistortion



CIC [Sin(x)/(x)] P Compensator



DAC Sin(x)/(x) Digital IF Distortion
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Sin(x)/(x) Predistortion

..
..

..
..

..

..
..

..
..

..

..
..

..
..

..
..

..
..

..

..

..
..

..
..

..
..

..
..

..
..

..
..
..

..
..
..

..
..
..

..
..
..

..

..

..

 32
Pnt
IFFT

 32
Pnt

IFFT

 32
Pnt
IFFT

 32
Pnt
IFFT

16
Pnt
IFFT

 32
Path

Filter

 32
Path
Filter

 32
Path

Filter

 32
Path

Filter

 16
Path
Filter

Shape 
   &
Interp
Filters

Shape 
   &

Interp
Filters

Shape 
   &
Interp
Filters

Shape 
   &

Interp
Filters

Interp
 Filter

DDS

sin(x)

C
irc

u
la

r B
u

ffe
r

C
irc

u
la

r B
u

ffe
r

C
irc

u
la

r B
u

ffe
r

C
irc

u
la

r B
u

ffe
r

C
irc

u
la

r B
u

ffe
r

 16
Ports

 10
Ports

 16
Ports

 16
Ports

 16
Ports

(x)

-1
DAC

  1-to-8 Up-Sampler
in 16-Path Channelizer

  1-to-16 Up-Samplers
in 32-Path Channelizers

1-to-2192 
MHz

1.536 
  MHz

3.072 
  MHz

192 
MHz

192 
MHz

192 
MHz

 12 
MHz

 12 
MHz

 12 
MHz

 12 
MHz

 5.36.. 
  MHz

 5.36.. 
  MHz

 5.36.. 
  MHz

 5.36.. 
  MHz 1

2

3

10



DAC SIN(X)/X CORRECTION



DAC Sin(x)/(x) IF Predistortion
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Non Linear Amplifier and Pre-Compensating Gain



Transition Diagram Input and Output of Amplifier

and Input and Output of Precompensator



16-QAM Input and Output Envelopes. Saturation and 1-

dB Compression Circles
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Limiting Amplifier Effect on Received QAM Constellation
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16-QAM ( =0.2) Envelope Statistics
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Limiting Amplifier Effect on Signal Spectra
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Spectra: Input and Output of Amplifier and Output 

of Pre-Compensator and Pre-Compensated Amplifier



OFDM Input and Output Envelopes: 

Saturation and 1-dB Compression Circles
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Limiting Amplifier Effect on OFDM Constellation
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OFDM Envelope Statistics
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To Clip or Not to Clip: 

That is the Question!

s (t)1

s (t)=3 s (t)-s (t)2 1

+LCLIP
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Band Limited

Subtractive Clipping
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Band-Limited Clipping
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Input Signal, Clipping Component and 

Clipped Signal
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Spectra: Input Signal, Band Limited Clipping 

Component and Clipped Signal
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Spectra: Input, Clip Component, Band Limited Clip, 

and Band Limited Clip 



Spectra: Input and Output of Amplifier and Output of PAPR Controlled and  

Pre-Compensator and Pre-Compensated Amplifier



DSP Radio (DSP Everywhere!)

Polyphase
 Matched
    Filter
   32-to-1

Polyphase
 Derivative
 Matched
   Filter
  

Polyphase
Band-Edge
    Filter
  

 Timing
  Loop

Equalizer
  2-to-1
  Down
sample
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Algorithm

   Carrier
Loop Filter
   &  DDS

   Carrier
Loop Filter
   &  DDS

Detector

20 Msmpl/S
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-

*

Channel Filtering, Channel Estimate, Equalization, 

AGC, DC-Cancelling, I-Q Balance, Line Canceller,

Interference Canceller, Matched Filter, SNR 

Estimate, Band Edge Filter, Frequency Lock Loop, 

Carrier Lock Loop, Interpolator, Timing Lock Loop

Actually, A design Project 

For my Modem Design Class



Professor harris, may I be excused?

               My brain is full.





Yes: That is True!



SOFTWARE
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MAN

Is Open For Questions


