MODEMS

fred harris

and Product Exposition

30 November - 3 December 2010

College of Engineering

What The Customer Wants

What The Customer Expects to Pay

When The Customer Wants it

Why Digital Communications? But Let Your Communications Be Yea, Yea: Nay, Nay:

For What So Ever is More Than These Cometh of Evil.

Sermon on the Mount, Matthew, Ch. 5, verse. 37 To Paraphrase the Great Bard

The World is an Analog Stage

In Which Digital

Plays A Bit Part

The Basic Communication System

The Radio Channel Frequency Band

Spectral Utilization

Band	Frequency	Wavelength	Some Uses
VLF	3 - 30 kHz	100 km - 10 km	Long range navigation and marine radio
LF	30 - 300 kHz	10 km - 1 km	Aeronautical and marine navigation
MF	300 kHz - 3 MHz	1 km - 100 m	AM radio and radio telecommunication
HF	3 - 30 MHz	100 m - 10 m	Amateur radio bands, NRC time signal
VHF	30 - 300 MHz	10 m - 1 m	TV, FM, cordless phones, air traffic control
UHF	300 MHz - 3 GHz	1 m - 10 cm	UHFTV, satellite, air traffic radar, etc
SHF	3 - 30 GHz	10 cm - 1 cm	Mostly satellite TV and other satellites
EHF	30 - 300 GHz	1 cm - 1 mm	Remote sensing and other satellites

Radio Spectrum

© 1999 Encyclopædia Britannica, Inc.

Radio Spectrum Wavelength

The ISM bands in the United States.

E_S/N₀ Required for Specified BER

QPSK, 16-QAM, & 64-QAM Constellations for 10^{-5} BER

Spectral Levels of Signal and Noise for QPSK, 16-QAM, & 64-QAM for 10⁻⁵ BER

Modern Physical Layer Modern Recipe: Add these Ingredients, Stir, Bake for 20 Minutes at 300°. Let Cool! Enjoy your Modem!

- First Tier Processing: Modulation and Demodulation
 - Shaping Filters
 - Spectral Translation
 - Signal Conversion
- Second Tier Processing: Parameter Estimation
 - Carrier Frequency and Phase Synchronization
 - Timing Frequency and Phase Synchronization
 - Automatic Gain Control
 - SNR Estimate
- Third Tier Processing: Channel and Hardware (Dirty RF)
 - Equalization
 - I-Q Balance
 - DC-Cancel
 - Peak-to-Average Ratio Control
 - Predistortion
 - Interference Suppression
 - Intrusion Suppression
 - Diversity

Modulator and Demodulator

Claude Shannon

Information is measurable. Noise Does not Limit Fidelity.

'The world has only 10 kinds of people.

Those who get binary, and those who don't.'

Shannon's Communication System

Shannon's Legacy

Communication System Resources Bandwidth Signal to Noise Ratio Memory and Computations

A Communication System needs a Computer in Modulator and Demodulator!

We have a Computer on Board!

We can use it to do some other Heavy Lifting!

Four Pillars of Modern Communications

The Modulator Digital to Analog Interface Moves Towards the RF

The Demodulator Analog to Digital Interface Moves Towards the RF

SECOND GENERATION DSP CENTRIC MODEL

THIRD GENERATION DSP CENTRIC MODEL

Modem: Bits In - RF Out, RF In - Bits Out

Early Radios Were Mechanical: (Many Moving Parts) Spark Transmitter and Early Receiver

Spark Transmitter: Damped Oscillations

Arc Transmitter: Continuous Oscillation

Poulsen 100 KW Arc Transmitter

The path to the Triode Thermonic Valve, Thomas Edison, John Fleming, Lee de Forest

Lee De Forest, 1877-1961

Patent No. 879532

Put those sparks to rest!

Regenerative Receiver: A Little Feedback Goes a Long Way

Tuned RF (TRF) Radio

Edwin Armstrong's Super Heterodyne Receiver

Vacuum Tube Replacement

1947 Solid State Amplifier

Walter John Bardeen Brattain 1908-1991 1902-1987

William Shockley 1910-1989

Integrated Circuits

1958

Jack Kilby Tl

1923-2005

Noble Prize 2000

Robert Noyce, Intel

1928-1990

Noyce Founded Intel Ted Hoff worked for Noyce

We all own a billion Transistors

We have an amazing wealth of resources at our disposal!
Just how big is a Billion?
A stack of a billion bank notes would be 76.2 kilometers High.
A billion seconds is 32.5 years!

For Comparison, the Eiffel Tower Contains 18,084 Parts. It is Fastened Together by 2.5 Million Rivets

The world manufactures more transistors than it grows grains of rice.

Wow!

0.13-micron, Intel Pentium 4 300-mm silicon wafer. Long Grain Jasmine Rice

How big is a billion grains of rice?

- 8mm x 2mm x 2mm (Long Grain)
- 1-billion grains of rice
- 8 Meters x 2 Meters x 2 Meters
- Or 32 Cubic Meters
- Or a cube 3.2 Meters on a side
- It weighs 24,000 kg (26.6 tons)
- It costs \$26,000 (3-rd week April 2008)
- CLS-350 Mercedes Benz weighs 2,200 kg

Gordon_Moore_ISSCC-02-10-03 Average Transistor Price By Year

Source: Dataquest/Intel12/02

Adam @ Home Brian Basset

It's all done with Computer Chips

Harry Nyquist, (1889-1960)

Analog-to-Digital Converter

ADC

A-to-D

Digital-to-Analog Converter

DAC

D-to-A

Band Limited Channel Zero ISI and Causal Response

It's not what you don't know that gets you in trouble! It's what you know for sure to be true that just ain't so!

Samuel Clemens

Spectral Resolution Gaussian Window

Gaussian Window and Spectrum, Maximum Level Sidelobe -60 dB

Spectral Resolution Kaiser-Bessel Window

Kaiser Window and Spectrum, Maximum Level Sidelobe -60 dB

Spectral Resolution, Remez Minimum BW Window with -6-dB/Oct. Side Lobes

Square-Root Cosine Tapered Nyquist Filter

SQRT-RC Impulse Response Finite Duration, Rectangle Window

ISI Levels: RC-RC and hM-hM

$$\begin{array}{l} \mbox{Transmitter and Receiver}\\ \mbox{Modulator and Demodulator} \end{array}$$

First Tier, Primary Signal Processing Tasks in a Typical Transmitter and Receiver

Phase Detectors for Modulated BPSK

Second Tier Signal Processing Task, Carrier Recovery Phase Locked Loop

Phase Detectors for Modulated QPSK

Maximum Likelihood Timing Recovery

Derivative with Help of Nearby Neighbors (Early and Late)

Early-Late Gate Derivative

Slide Sampler to Input and Perform Timing Offset with Polyphase Digital Filter

Approximating Tanh(x)

Sub Optimal Approximations

- Replace $2Eb/N_0$, SNR Gain with a Constant.
- Replace tanh(x) with Large SNR Approximation: tanh(x) ~ sign(x)
- Replace tanh(x) with Piecewise Approximation: tanh(x) ~ x for |x| < 1 tanh(x) ~ sign(x) for |x| > 1

Sub Optimal Approximation

Mean and Variance of DC Term of Function of Frequency Offset

Spectra of Shaping and Band Edge Filters

Eye Diagrams of Matched Filter and Sum and Difference Band-Edge Filters

Spectra of SQRT Nyquist Shaped Modulation Signals over Range of Excess BW

Eye Diagrams Matched Filter Output

 $\alpha = 0.3$

Cyclostationary Mean and Variance Eye Diagrams Magnitude Matched Filter

Spectral Lines from Excess BW: $MF(\omega)xMF(\omega)^*$

Eye Diagrams Band Edge Filter Output

Cyclostationary Mean and Variance Eye Diagrams Magnitude Band Edge Filter

Spectra of BE(ω)xBE(ω)*

Amplitude of Spectral Timing Line from Excess Bandwidth

What Happens if there is no excess BW?

- As we reduce excess BW to obtain more efficient use of spectrum, we reduce the ability of the receiver to synchronize.
- When there is no excess BW we need to allocate a fraction of transmitted energy to pilot signals.
- Example: OFDM Has No excess Energy in Modulation Waveform: Excess Energy Resides in added secondary signals: Preamble, Cyclic Prefix, Unmodulated Stationary and Moving Pilots.
- Interesting Question: Is this energy accounted for when people discuss error correcting codes operating near Shannon Limit? (I'm sure it is not!)

The Synchronizers' Needle Point

Band Edge Filters and Approximations

Linear and Minimum Phase BE Filters

Phase Profiles of Freq Lock Loop

Time Series from BE Filters During Frequency Acquisition

Frequency Offset Spectra and Minimum Phase **BE Filters in Frequency Lock Loop** Input Spectrum and Band Edge Filter Spectrum 10 Ο -10 -20 -30 -40 -50 -60 -4 з. Shifted Spectrum and Down-Converter Spectrum 10 0 -10 -20 -30 -40 -50

Ο

-60

-3

-2

-1
Phase Profiles of Freq Lock Loop

Time Series from BE Filters During Frequency Acquisition

Frequency Offset Spectra and Linear Phase FIR Substitute for BE Filters in Frequency Lock Loop

Phase Profiles of Freq Lock Loop

Time Series from BE Filters During Frequency Acquisition

Asymmetric Processing

Third Generation Receiver DSP Based Signal Conditioning

Build Your Own Carrier for Final Down Conversion

First Generation Digital Receiver ANT RF₄ IF ٩D AMP AMP BASE BAND PROC AMP AMP AMP TUNE TIMING CARRIER

Second Generation Digital Receiver

Third Generation Digital Receiver

High Level Block Diagram of Software Defined Radio. Radio is segmented into RF Processing Front End Block, Baseband Waveform Digital Signal Processing Back End Block, and Interface to Data Processing Higher Level User Application and Interface Blocks.

First Tier, Primary Signal Processing Tasks in a Typical Transmitter and Receiver

Second Tier Signal Processing Task, Carrier Recovery Phase Locked Loop

Estimate Signal Mean and Variance at High SNR and Low SNR

Estimate of Mean is too High Estimate of variance is too Low

Estimates of Moments and SNR as Function of SNR

Skewness: A Measure of Estimated SNR Error

BPSK Large SNR Approximation to ML

BPSK Large SNR Approximation to ML

BPSK ML Carrier Recovery Loop

BPSK ML Carrier Recovery Loop

BPSK Large SNR Approximation to ML

BPSK Large SNR Approximation to ML

BPSK ML Carrier Recovery Loop

BPSK ML Carrier Recovery Loop

Automatic Gain Control (1)

y(n) = A(n) x(n) $A(n+1) = A(n) + \alpha [R - y(n)]$ $A(n+1) = A(n) + \alpha [R - A(n) x(n)]$ $A(n+1) = A(n)[1 - \alpha x(n)] + \alpha R$ Suppose x(n) = c u(n), c = constant then $A(n+1) = A(n)[1 - \alpha c] + \alpha R$

note that α c < 2.0.

Steady state of this system is 1/c so that the steady state gain $A(\infty)$ is R/c and the steady state output $y(\infty)$ is c R/c or R. The steady state output level equals the desired reference level R.

The time constant is $1/\alpha$ c samples. If c is small, long transient. If c is large, short transient

Automatic Gain Control (2)

y(n) = A(n) x(n) Log[A(n+1)] = Log[A(n)] + $\alpha \{ [Log[R] - Log[y(n)] \}$ Log[A(n+1)] = Log[A(n)] + $\alpha \{ Log[R] - Log[A(n)x(n)] \}$ $Log[A(n+1)] = Log[A(n)][1 - \alpha] - \alpha \ Log[x(n) / R]$ Suppose x(n) = c u(n), c = constant then $Log[A(n+1)] = Log[A(n)][1 - \alpha] - \alpha \ Log[c / R]$ note that $\alpha < 2.0$.

Steady state of this system is 1/c so that the steady state gain $A(\infty)$ is R/c and the steady state output $y(\infty)$ is c R/c or R. The steady state output level equals the desired reference level R. The time constant is $1/\alpha$ samples, and is independent of input amplitude.

Linear Loop AGC Responses

Linear Loop AGC Responses: with Filter Delays

Log Loop AGC Responses: with Filter Delays

Linear Loop AGC Output and Control Levels

Log Loop AGC Output and Control Levels

Spectral Response

magnitude response

DC Canceller with Embedded Sigma-Delta Converter

DC Canceller Time Series

Spectra Input and Output of Canceller

Tunable Notch, Spin the Delay Line

Spectral Response

Tuning With LP-to-BP Transformation

Implementing LP-to-BP Transformation

Self Tuning: Reference Canceling

Filters have Same Transfer Function

Block Diagram of Receiver with Ideal Signal Processing Blocks

Block Diagram of Receiver with Non-Ideal Signal Processing Blocks and Associated Compensating Blocks

Gain and Phase Imbalance in Analog I-Q Mixers Used for Up or Down Conversion

Complex Baseband & Real Band-Centered

I-Q Gain and Phase Imbalance

I-Q Imbalance: Image Spectral Terms

Gain Imbalance

Phase Imbalance

Gain and Phase Imbalance

Filter Imbalance

Gain and Phase Of Mismatched Analog Low-Pass Filter

Gain and Phase Contributions of I-Q Matched Low Pass Filters

Gain and Phase Contributions of I-Q Mismatched Low Pass Filters

2's Complement Arithmetic; DC Bias

Negative numbers: Measure displacement from reference. Reference = -Nmin

Positive numbers: Measure displacement from reference. Reference = 0

Finite Arithmetic in Radix-2 FFT Algorithm

Radix-2 FFT Signal Flow Diagram

Algorithm Noise Due to Finite Arithmetic and Coefficient Noise

Algorithm Noise due to Finite Arithmetic Scaling Noise

$$H(\omega) = 1 + \varepsilon \cos(\omega T_p)$$

Model of Gain Distortion

 $H(\omega) = 1 + \varepsilon \cos(\omega T_{p})$ $Y(\omega) = X(\omega) H(\omega) = X(\omega)[1 + \varepsilon \cos(\omega T_{p})]$ $= X(\omega) + \varepsilon X(\omega) \cos(\omega T_{p})$ $= X(\omega) + 0.5 \varepsilon X(\omega) \exp(j\omega T_{p}) + 0.5 \varepsilon X(\omega) \exp(-j\omega T_{p})$ $y(t) = x(t) + 0.5 \varepsilon x(t + T_{p}) + 0.5 \varepsilon x(t - T_{p})$ Paired Echos

Paired Echos: The Effect of Passband Ripple

Nyquist Pulse Time and Frequency

Pulse: Time and Frequency

Pulse Response and ISI Component

Recursive Filter Time & Frequency

Pulse Response and ISI Component

Pulse Response and ISI Component

QPSK Modulator Eye-Diagram, Constellation, and Spectrum

QPSK Demodulator, Eye-Diagram Constellation, and Spectrum

QPSK Demodulator with RCVR Filter

-1.5 --1.5

-0.5

-1

0

0.5

1

1.5

-80 -90

-3

-2

-1

Π

1

3

- 4

2

16-QAM Modulator Eye-Diagram, Constellation, and Spectrum

16-QAM Demodulator with RCVR Filter

Decision Directed, Gradient Descent (LMS) Tapped Delay Line Equalizer

Received Signal and Spectrum No Channel Distortion

Constellation: Equalizer Input and Output

Received Signal and Spectrum With Channel Distortion

Constellation: Equalizer Input and Output

-0.5

-1

0.5

0

1.5

1

-1

-1.5 --1.5

I-Q Imbalance Requires DC Cancellers

Sequence of 16-Phase Constellations During Phase Balancing

Sequence of 16-Phase Constellations **During Gain and Phase Balancing**

0.5

0

-0.5

-1

-1.5

1.5

1

-1.5

-1

-1

0.5

0

-0.5

-1

-1.5 L -1.5

-0.5

-1

n

0.5

0

0.5

1.5

-0.5

Sequence of 16-QAM Constellations During Phase Balancing

Sequence of 16-QAM Constellations During Phase and Gain Balancing

Constellations of Channel +k and -k

Crosstalk Between Channels k and -k Due to gain and Phase Imbalance

Constellation after Gradient Descent Correction of Gain and Phase Imbalance

Crosstalk Between Channel k and Empty Channel – k

Constellation after Gradient Descent Correction of Gain and Phase Imbalance

Baseband Filter DAC Predistortion

CIC [Sin(x)/(x)] ^P Compensator

DAC Sin(x)/(x) Digital IF Distortion

Sin(x)/(x) Predistortion

DAC SIN(X)/X CORRECTION

DAC Sin(x)/(x) IF Predistortion

Power Amplifier Linearization

PA Linearization Peak-to-Average Ratio Control

Non Linear Amplifier and Pre-Compensating Gain

Transition Diagram Input and Output of Amplifier and Input and Output of Precompensator

16-QAM Input and Output Envelopes. Saturation and 1dB Compression Circles

Saturation at 2-Times RMS Signal Level

2

Limiting Amplifier Effect on Received QAM Constellation

16-QAM (α =0.2) Envelope Statistics

Limiting Amplifier Effect on Signal Spectra

Spectra: Input and Output of Amplifier and Output of Pre-Compensator and Pre-Compensated Amplifier

OFDM Input and Output Envelopes: Saturation and 1-dB Compression Circles

Saturation at 2-Times RMS Signal Level

Limiting Amplifier Effect on OFDM Constellation

OFDM Envelope Statistics

To Clip or Not to Clip: That is the Question! s₁(†) $+L_{CLIP}$ s₃ s₂(†) S_2 -L_{CLIP} S₁ $\text{-}L_{\text{CLIP}}$ **S**₁ LCLIP L_{CLIP} -L_{CLIP} -L_{CLIP} $s_3(t) = s_2(t) - s_1(t)$

Band-Limited Clipping

Input Signal, Clipping Component and Clipped Signal

Spectra: Input Signal, Band Limited Clipping Component and Clipped Signal

Spectra: Input, Clip Component, Band Limited Clip, and Band Limited Clip

DSP Radio (DSP Everywhere!) Actually, A design Project For my Modem Design Class LMS Algorithm 10 Msmpl/S 20 Msmpl/S Polyphase 20 Msmpl/S 2-to-1 Matched Equalizer Detector Down Filter sample 32-to-1 * Carrier Carrier Timing Loop Filter Loop Filter Loop & DDS & DDS Polyphase Polyphase Derivative Band-Edge Matched Filter Filter Channel Filtering, Channel Estimate, Equalization, AGC, DC-Cancelling, I-Q Balance, Line Canceller, Interference Canceller, Matched Filter, SNR Estimate, Band Edge Filter, Frequency Lock Loop, Carrier Lock Loop, Interpolator, Timing Lock Loop

Professor harris, may I be excused? My brain is full. Dilbert, is it true that DSP makes the world go around but multirate signal processing supplies the music for the ride?

SOFTWARE DEFINED RADIO MAN

Is Open For Questions

