
Low-density Parity-check Decoding on the

Sandbridge Sandblaster® SDR Platform
Murugappan SENTHILVELAN † §, Meng YU †, Daniel IANCU †¶, Mihai SIMA *, Michael SCHULTE § ↓

†Optimum Semiconductor Technologies, Inc., Tarrytown, N.Y., U.S.A.
* University of Victoria, Department of Electrical and Computer Engineering, Victoria, B.C., Canada.

↓ Advanced Micro Devices, Research and Advanced Development Labs, Austin, Tex., U.S.A
§ University of Wisconsin-Madison, Department of Electrical and Computer Engineering, Madison, Wis., U.S.A.

¶ Tampere University of Technology, Korkeakoulunkatu 1, FIN-33720 Tampere, Finland.

e-mail: {msenthilvelan, myu, diancu}@optimumsemi.com, msima@ece.uvic.ca, schulte@engr.wisc.edu

Abstract — Wireless protocols strive to increase spectral
efficiency and achieve high data throughput. Low-density
parity-check (LDPC) codes are advanced forward error
correction (FEC) codes that use iterative decoding
techniques to achieve Shannon capacity. Due to their
superior performance, state-of-art wireless protocols such
as WiMAX and LTE Advanced are adopting LDPC codes.
LDPC codes come with the high cost of drastically
increased computational effort for decoding. Among the
proposed decoding algorithms, the belief propagation (BP)
algorithm leads to a good approximation of an optimal
ideal decoder; however, it uses compute-intensive
hyperbolic trigonometric functions. To reduce the
computational complexity, typical LDPC decoder
implementations use simplified algorithms such as the
min-sum algorithm at the expense of reduced signal
processing performance. Efficient and accurate ways of
computing hyperbolic trigonometric functions can
facilitate the use of the BP algorithm in real-time LDPC
decoder implementations. This paper investigates
hyperbolic COordinate Rotation DIgital Computer
(CORDIC) instruction set architecture (ISA) extensions
for software-defined radio (SDR) processors to efficiently
compute the hyperbolic trigonometric functions. The
CORDIC ISA extensions are evaluated on the low-power
multi-threaded Sandbridge Sandblaster® SB3000
platform. The computational performance, numerical
accuracy, hardware estimates, power consumption
estimates, and memory requirements with the CORDIC
ISA extensions are compared to a baseline implementation
on the SB3000.

Keywords – LDPC decoding, Belief propagation algorithm,
Hyperbolic tangents, CORDIC, SDR, ISA extensions

I. INTRODUCTION

The International Telecommunications Union (ITU)
recommendations for the next generation (4G – Fourth
Generation) wireless protocols (ITU-R M.1645) advocates
maximum data rates of 100 megabits per second (Mbps) for
high-mobility situations and 1 gigabit per second (Gbps) for

stationary and low-mobility situations [1]. Current and next-
generation wireless protocols propose sophisticated techniques
including low-density parity-check (LDPC) [2] [3] forward
error correction (FEC) codes to increase the wireless channel
capacity and spectral efficiency. The advent of these new
techniques rapidly increases the algorithmic complexity and
computational requirements of wireless systems.

The LDPC codes are FEC codes that exhibit excellent
error-correcting capabilities, close to the Shannon capacity.
Due to their superior performance, state-of-art wireless
protocols such as WiMAX and LTE Advanced are adopting
the LDPC codes. The improved error-correction capabilities of
LDPC codes come with the high cost of drastically increased
computational effort for decoding. The LDPC decoder is
implemented as an iterative message-passing algorithm
between data nodes and parity-check nodes with termination
criteria. Among the proposed LDPC decoding algorithms, the
belief propagation (BP) algorithm [2] exhibits the highest
error-correction capability and is a good approximation of an
optimal ideal decoder [4]. However, in the BP algorithm,
message computation at the parity-check nodes involves the
compute-intensive evaluation of hyperbolic trigonometric
functions. Simplified decoding algorithms such as the min-
sum algorithm trade error correction capability for reduced
computational complexity, and are used in typical LDPC
decoder implementations. Efficient and accurate ways of
computing hyperbolic trigonometric functions can facilitate
the use of the BP algorithm in real-time LDPC decoder
implementations.

Compute-intensive wireless techniques such as LDPC
decoders traditionally have been implemented using
application-specific integrated circuits (ASICs). ASICs
achieve high performance at the expense of flexibility.
Software-defined radio (SDR) [5] is an alternative
programmable platform that is being increasingly adopted by
the wireless industry due to dramatically reduced development
and hardware costs, accelerated time to market, increased
flexibility, and upgradeability.

In this paper, we address the computational challenges of
implementing the BP algorithm for LDPC decoding on SDR
platforms. When profiling the BP algorithm on the SB3000

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

SDR'10 Session 7D- 2

707

platform [6-7], a state-of-the-art SDR processor, we observed
that more than 32% of the computation time is spent
performing hyperbolic tangent computations.

Convenient ways to compute transcendental functions
including hyperbolic trigonometric functions using the
iterative COordinate Rotation DIgital Computer (CORDIC)
algorithms have been proposed previously [8-11]. However,
the sequential CORDIC algorithm is inefficient to implement
completely in software using conventional SDR processors.
Consequently, instruction set architecture (ISA) extensions
and hardware designs based on the CORDIC algorithms can
enable efficient implementation of the BP LDPC decoding
algorithm on SDR processors.

We propose, discuss, and evaluate different design
choices for CORDIC ISA extensions when implementing the
CORDIC algorithm on a SDR architecture. We evaluate the
proposed CORDIC ISA extensions on the SB3000 platform by
augmenting the Sandblaster tool chain with the proposed
CORDIC ISA extensions. Our investigations demonstrate a
speed-up of more than 1.2x on the BP LDPC algorithm when
using the CORDIC ISA extensions compared to a non-
CORDIC baseline software implementation on the SB3000,
which uses powerful single-instruction/multiple-data (SIMD)
DSP instructions. The CORDIC-based implementations also
have better numerical accuracy than the non-CORDIC
baseline software implementation when evaluating the
hyperbolic trigonometric functions. This paper makes the
following contributions:

 It addresses the high computational complexity of the BP
algorithm in LDPC decoding on SDR platforms. It
presents the speed-ups when using the CORDIC ISA
extensions.

 It investigates the class of architectures extended with
CORDIC functional units [15][16], and performs an
analysis to determine the set of CORDIC ISA extensions
to evaluate hyperbolic trigonometric functions.

In the rest of this paper, Section II provides background
information on LDPC codes, the BP decoding algorithm,
CORDIC, and the SB3000 SDR platform. Section III
discusses various design considerations for CORDIC ISA
extensions and describes our proposed ISA extensions. Section
IV describes the evaluation methodology and compares
computational performance, numerical accuracy, power
consumption estimates, and memory requirements of
implementations that use the CORDIC ISA extensions with
those from the non-CORDIC baseline software
implementation. It also provides hardware synthesis estimates
for functional units that implement the proposed CORDIC ISA
extensions. Section V summarizes our observations.

II. BACKGROUND

A. Low-density Parity-check (LDPC) Codes

The LDPC codes, first proposed by Robert Gallager [2],
are some of the most promising FEC codes. They are being
adopted by wireless protocols such as LTE and WiMAX. The

LDPC codes exhibit excellent error-correcting capability;
close to the Shannon theoretical limits [18]. They are a class of
linear block codes whose code words satisfy a set of linear
parity-check constraints. The LDPC codes can be expressed in
matrix form using parity-check matrices [2] or in graphical
representation using bipartite graphs [3].

Each LDPC code has a set of parity-check constraints that
is defined by an (m x n) parity-check matrix H, whose m rows
define the m parity-check constraints, and n columns represent
the length of the code word. An entry (i, j) in the parity-check
matrix is 1 if and only if the jth element of the code word is
connected to the ith parity-check constraint. Then, the LDPC
code is defined by a set of equations satisfying Equation 1.

0 TH c (1)

where c = (c1, c2, … , cn) is the set of n elements of the code
word. Wireless protocols typically specify the LDPC parity-
check matrices in the physical layer specifications.

For example, the parity-check matrix for a LDPC code is
shown in Equation 2.

0 1 2 3 4 5 6 7

0

1

2

3

0 1 0 1 1 0 0 1

1 1 1 0 0 1 0 0

0 0 1 0 0 1 1 1

1 0 0 1 1 0 1 0

c c c c c c c c

f

f

f

f

H
 (2)

Using this parity-check matrix H, the LDPC code is defined
by Equation 3.

0 1 3 4 7

1 0 1 2 5

2 2 5 6 7

3 0 3 4 6

0

0

0

0

f c c c c

f c c c c

f c c c c

f c c c c

 (3)

Two numbers, wr and wc, can be used to further
characterize the parity-check matrix H; wr is the number of 1s
in each row and wc is the number of 1s in each column. For a
matrix to be called low-density, the two conditions wc << n
and wr << m must be satisfied. The sparsity of the matrix is the
key property that provides the algorithmic efficiency of the
LDPC codes.

An LDPC code is called a regular LDPC code if wc is
constant for every column. In other words, all the parity-check
nodes should have the same number of incoming edges and all
the element nodes of the code word should have the same
number of incoming edges. The example LDPC structure
shown in Equation 2 is regular, with wc = 2 and wr = 4. If the
number of 1s in each row or column is not constant in the
parity-check matrix H, then the LDPC code is called an
irregular LDPC code.

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved
708

Tanner [3] introduced an effective graphical
representation of LDPC codes using bipartite graphs that
contain two distinctive sets of nodes and edges that only
connect two nodes of different types. The two distinctive types
of nodes in the Tanner bipartite graph are the variable nodes
and the parity-check nodes. Figure 1 is an example of a Tanner
bipartite graph with eight variable nodes and four parity-check
nodes corresponding to the parity-check matrix H shown in
Equation 2.

Figure 1. Tanner bipartite graph for a LDPC code.

 The construction of the Tanner graph shown in Figure 1
is straightforward. A parity-check node fi is connected to a
variable node cj if the element hij of the parity-check matrix H
shown in Equation 2 is equal to 1.

LDPC codes are decoded iteratively using message-
passing algorithms [2]. Message-passing algorithms involve
passing of likelihood or belief messages from variable nodes
to parity-check nodes and from parity-check nodes to variable
nodes with termination criteria. The input to the decoding
algorithm is a message vector giving the intrinsic likelihood of
each bit being a 0 or 1. An iteration of LDPC decoding
consists of a round of message passing from each variable
node to all parity-check nodes connected to it, followed by
another round of message passing from each parity-check
node to all variable nodes connected to it. Decoding
performance is achieved through repeated iterations of
message passing along edges in the graph, with a termination
criterion.

Messages from variable nodes to the parity-check nodes
are computed based on the observed value at the variable node
and messages that are passed on from other neighboring
parity-check nodes in the previous iteration. An important
aspect is that the message passed from a variable node c to a
parity-check node f must not take into account the message
sent from node f to node c in the previous iteration. The same
is true for messages passed from the parity-check node to the
variable nodes.

Among the proposed decoding algorithms, the original
algorithm proposed by Gallager for LDPC decoding -- the BP
algorithm -- leads to the best decoding performance [4].
However, the BP algorithm is computationally intensive
because it uses hyperbolic tangents and arctangents. The Min-

Sum algorithm is a simplified algorithm that trades
computational complexity for reduced decoding performance.

B. Belief Propagation Algorithm

In the BP algorithm, the message passed from the variable
node c to a parity-check node f is the likelihood L that c has a
certain value based on the observed value at node c and input
received in the previous iteration from other parity-check
nodes connected to c. On the other hand, the message passed
from parity-check node f to variable node c is the likelihood
that c has a certain value based on the inputs received in the
current iteration from other variable nodes connected to the
parity-check node f.

The iteration steps in the BP algorithm are as follows:

Step 1: Messages are passed from each variable node c to all
connected parity-check nodes f at the beginning of the
iteration. The messages are represented as mcf[i], where i is the
iteration number, and shown in Equation 4.

' ({ }) '

0

[]

[1] 1

c

cf

c f Fc f f c

m if i

m i

m m i if i

 (4)

where mc is the log-likelihood of the variable node c,
conditioned on the observed value x, and is independent of any
parity-check node f. ' ({ })cf F f is the list of all parity-

check nodes Fc connected to variable node c, except the
parity-check node f for which the message mcf[i] is intended,
and mf’c[i-1] is the message received from parity-check node f’
in the previous iteration. The value of mc is given by

 Pr[0]
ln () ln

Pr[1]c

x
m L x

x

 (5)

Pr[x = 0] is the probability that x = 0 and Pr[x = 1] is the
probability that x = 1. For iterations in which the iteration
counter i is greater than 0, the messages received from all
parity-check nodes f’ need to be considered. If yk is the log
likelihood message received from parity-check node fk ε f’,
then

' ({ }) ' 1 2 '

'

1

[1] ln , , ...,

ln

f Fc f f c f

f

k
k

m i L x y y y

L x y

 (6)

where Pr[0]
ln ln

Pr[1]
k

k
k

x y
L x y

x y

 and Pr[0]kx y is

the probability that x = 0 conditional on yk.

Step 2: Messages are passed from each parity-check node f to
all connected variable nodes. The messages are represented as
mfc[i], as shown in Equation 7.

f 0

c0 c 1 c 2 c3 c 4 c 5 c6 c7

f1 f 2 f3

8 variable nodes

4 parity-check nodes

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved
709

1 2 ' 1 2 '

' ({ }) '

' ({ }) '

1
' ({ }) '

[] ln ... , ,...,

1 tanh [] 2
ln

1 tanh [] 2

2 tanh tanh [] 2

fc c c

c Cf c c f

c Cf c c f

c Cf c c f

m i L x x x y y y

m i

m i

m i

 (7)

where i is the iteration number, ' ({ })fc C c is the list of all

variable nodes Cf connected to parity-check node f, except the
variable node c for which that the message mfc[i] is intended,
and mc’f [i] is the message received from variable node c’ in
the current iteration.

Steps 1 and 2 are repeated until convergence is obtained.

C. CORDIC

CORDIC is an iterative algorithm to perform vector
rotations in a two-dimensional plane using simple shift and
add/subtract operations. The CORDIC algorithm was
introduced by Volder [8] for the circular and linear coordinate
systems. It is used for rotation of vectors, determination of a
vector’s magnitude and phase, computation of trigonometric
and transcendental functions, multiplication, division, and
data-type conversion. Later, Walther generalized CORDIC to
the hyperbolic coordinate system to compute hyperbolic
trigonometric functions [9].

Equation 8 presents a generalized set of equations that
defines the CORDIC algorithm and is applicable to multiple
coordinate systems as:

1 2

1 2

1

ix i x i m i y i

iy i y i i x i

z i z i i i

 (8)

where x and y are the vector coordinates, z is the angle
accumulator, σ is the direction of rotation, m = 1 and
α[i] = tan-1(2-i) for the circular coordinate system, m = 0 and
α[i] = 2-i for the linear coordinate system, and m = -1 and α[i]
= tanh-1(2-i) for the hyperbolic coordinate system. There are
two modes of operation defined by the CORDIC algorithms.
The rotation mode is used to rotate a vector by a specified
rotation angle. The rotation decision made in each iteration
decreases the magnitude of the residual angle in the angle
accumulator, z. The vectoring mode is used to rotate the input
vector to align the result vector with the X axis. The result of
the vectoring operation is the angle and scaled magnitude of
the original vector. The rotation decision at each iteration is
made to decrease the magnitude of the y coordinate.

Considerable research has been done on hardware
implementations of the CORDIC algorithms for different
applications [10-11]. Unlike related work in this area, this is the
first time CORDIC ISA extensions have been used to perform
LDPC decoding on a programmable DSP for SDR.

D. The Sandbridge Sandblaster 3000

The SB3000 SDR platform [6-7] is designed to exploit
parallelism inherent in emerging communication applications
at different levels of granularity. It has four Sandblaster DSP
cores and an ARM core. Each Sandblaster DSP core supports
multi-threading and has eight hardware threads. The
Sandblaster DSP features compound instructions that can issue
three parallel operations in a single cycle. It has a powerful
ISA that supports saturating arithmetic, SIMD vector dot
products, and SIMD vector multiply-accumulate operations.

The Sandblaster DSP micro-architecture is partitioned
into three units: a program flow control unit, an integer and
load/store unit, and a SIMD vector processing unit (VPU). The
SIMD VPU consists of four vector processing elements
(VPEs), a shuffle unit, a reduction unit, and an accumulator
register file. The four VPEs perform arithmetic and logic
operations in SIMD fashion on 16-bit, 32-bit, and 40-bit fixed-
point data types. High-speed 64-bit data busses allow each
VPE to load or store 16 bits of data each cycle in SIMD
fashion. Vector instructions have four execute stages in the
pipeline. Since there is considerable data-level parallelism in
the algorithms under investigation, SIMD vector CORDIC
ISA extensions are proposed in this paper.

III. PROPOSED CORDIC ISA EXTENSIONS

This section discusses the various considerations that
affect the design of CORDIC ISA extensions and describes
our proposed ISA extensions. In the SB3000, our CORDIC
ISA extensions are implemented as SIMD vector operations,
but they can easily be modified to provide scalar CORDIC
operations.

A. Convergence

The CORDIC algorithm, summarized in Equation 8,
performs vector rotations by splitting the rotation angle θ into
a sequence of fixed micro-rotation angles, as shown in
Equation 9.

1

0

[0] [1] [1]
n

i

n i i

 (9)

where n is the total number of CORDIC iterations, α[i] is the
fixed micro-rotation angle, and σ[i] is the direction of rotation,
-1 or +1, at iteration i. To guarantee convergence, the chosen
set of fixed micro-rotation angles must satisfy the two
convergence criteria shown in Equation 10 and 11.

1

1

[] [1]
n

j i

i i n

 (10)

Equation 10 enforces the constraint that if, at any iteration
i, the remaining rotation angle z is zero, it will be changed to
±α[i+1] in the next iteration. Then, the sum of the remaining
fixed micro-rotation angles has to be large enough to bring the
remaining rotation angle to within α[n-1] after the last
iteration (n-1).

1

0

[1]
n

i

i n

 (11)

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved
710

Equation 11 ensures that the total rotation angle θ does not
exceed the sum of all fixed micro-rotation angles plus the final
micro-rotation angle.

The CORDIC algorithm produces one additional bit of
accuracy each iteration. Since wireless algorithms typically
operate on 16-bit data, 16 CORDIC iterations are performed.
For the hyperbolic coordinate system, it has been shown [9]
that certain iterations have to be repeated to satisfy the
convergence criterion shown in Equation 10. In the basic
CORDIC algorithm, the iteration sequence when executing 16
CORDIC iterations is chosen as i = 1, 2, 3, 4, 4, 5, … 13, 13,
14. For this iteration sequence, the sum of all fixed micro-
rotation angles is ±64˚. If the rotation angle θ for any
hyperbolic CORDIC operation is restricted to be within ±64˚,
then this iteration sequence is suitable.

However, it was observed that the hyperbolic
trigonometric functions in the BP algorithm require a
convergence range close to ±180˚ for good decoding
performance. Hence, the convergence range for the hyperbolic
CORDIC algorithm was increased by performing two
additional iterations with i = 0 and i = -1 (elementary rotation
angles computed tanh-1(1-2i-2)) to yield a new convergence
range of ±197˚.

B. Precision Requirements and Operand Representation

While designing the CORDIC ISA extensions, precision
and computational accuracy are critical because, if the error
introduced by the use of CORDIC ISA extensions exceeds the
allocated system error budget, it can adversely affect the
reliability of the wireless system.

The finite word length also results in accumulation of
rounding errors while computing the coordinates x and y. The
impact of these rounding errors can be reduced by using
additional fraction guard bits. If n is the number of CORDIC
iterations, W is the number of accurate fractional bits desired
in the output, and C is the number of additional fractional
guard bits used in intermediate computations, the rounding
error can be considered to have a minor effect on the output
accuracy if Equation 12 is satisfied.

2 2

W C Wn
 (12)

which yields)(2log nC . Hence, at least log2(n) additional

fractional bits should be provided to reduce the impact of
rounding errors to at most one unit in the last place (ulp) [13].
For this study, 20-bit internal precision is maintained within
the CORDIC functional unit to produce 16-bit outputs.

The coordinates x and y are represented as two’s
complement numbers. The angle accumulator z that tracks the
residual angle of rotation after each CORDIC iteration can be
represented in radian format as a two’s complement number.
The disadvantage of the radian format is that it does not
provide wrap-around capability for the angle accumulator. We
keep the angle representation in radian format because angles
are typically represented in the radian format in
communication protocols.

In fixed-point formats, the CORDIC iterations for the x
and y coordinate data paths return the same number of integer
and fractional bits (Q format) as the input. In the z data path,
pre-computed fixed micro-rotation angles have to match the Q
format of the input angle. It is beneficial to provide
configurability for the Q format in the z data path to
accommodate varying precision requirements from different
communication protocols. We implement this configurability
by keeping more bits for extra precision of the fixed micro-
rotation angles within the CORDIC unit and choosing the right
number of bits to match the input Q format using a
configurable CORDIC angle precision register.

C. CORDIC Iterations

The CORDIC iteration is a four-operand operation, with
coordinates x and y, angle accumulator z, and iteration counter
i, as shown in Equation 8. Each CORDIC iteration reads all
four operands and updates the value of all four operands. The
final values of two operands (coordinate y or angle z and the
iteration counter i) are not needed after the fixed number of
CORDIC iterations. Consequently, if all required CORDIC
iterations can be performed in a single DSP instruction, only
two operands need to be written back. However, it is unlikely
that all CORDIC iterations can be performed within one DSP
instruction given the limited number of execute stages in a
typical DSP pipeline. For example, in the SB3000 platform,
four CORDIC iterations fit in the four available execute
pipeline stages of a vector instruction. If not all required
CORDIC iterations can be performed by a single DSP
instruction, then all four operands, including the iteration
counter, must be written and reread between successive
CORDIC instructions.

DSP instructions typically have one to three input
operands and one output operand. If all four operands of the
CORDIC iteration need to be read from and written to
registers, it poses a challenge. In typical DSP architectures
with 32-bit registers, two 16-bit CORDIC operands (x, y, and z
are 16 bits and i is at most 4 bits) can be packed into one
register. They can be unpacked into 20-bit zero-padded
registers in the CORDIC unit before being used. Two 32-bit
input registers can thus be used to pass the four input
CORDIC operands. The write back of all four CORDIC
operands (two output registers) still remains a challenge. We
have explored a couple of design options to alleviate this
problem.

D. Full-CORDIC Approach

The full-CORDIC approach augments the CORDIC unit
with an auxiliary register that is read and written implicitly by
each CORDIC instruction. This auxiliary register holds two
CORDIC operands between CORDIC instructions. The other
two operands are packed into one 32-bit register that is used as
both a source and target register for the CORDIC instruction.
The auxiliary register is setup using a special instruction
before the CORDIC iterations. The two CORDIC operands
that are not needed as results; y or z and i, are assigned to these
auxiliary registers. This choice is logical because these two

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved
711

operands need not be written back after all iterations are
complete and i requires fewer bits than the other operands.

Four kinds of instructions are proposed for the full-
CORDIC approach:

1. Configure Set CORDIC (CFG_SET_CORDIC)

2. Configure Read CORDIC (CFG_READ_CORDIC)

3. CORDIC Rotate (ROT_CORDIC)

4. CORDIC Vector (VEC_CORDIC)

The CFG_SET_CORDIC instruction is used to initialize
the auxiliary register, and the CFG_READ_CORDIC
instruction is used to read the auxiliary register in the
CORDIC unit. The ROT_CORDIC and the VEC_CORDIC
instructions can be used in circular, linear, or hyperbolic
modes to perform four CORDIC iterations in rotation mode or
vectoring mode.

The full-CORDIC approach is straightforward to
implement in a typical DSP architecture. However, the
hardware overhead due to multiple copies of the auxiliary
register becomes substantial compared to the hardware cost of
the entire CORDIC functional unit when considering a multi-
threaded SIMD architecture. The other consideration is saving
and restoring this additional state of the CORDIC unit during
interrupt processing.

E. Semi-CORDIC Approach

The semi-CORDIC approach splits each CORDIC
operation into two semi-CORDIC operations, each executed
using separate semi-CORDIC instructions. The semi-CORDIC
instructions read x, y, z, and i packed in two 32-bit registers.
One semi-CORDIC instruction writes back x and y packed
into one 32-bit register while the other semi-CORDIC
instruction writes back z and i packed into a second 32-bit
register. XY CORDIC Rotation (XY_ROT_CORDIC), and ZI
CORDIC Rotation (ZI_ROT_CORDIC) are the two semi-
CORDIC rotation instructions:

 XY_ROT_CORDIC computes the new value of x and
y using i and the sign of z.

 ZI_ROT_CORDIC then updates the value of z and i.

Since the XY_ROT_CORDIC instruction depends on the
current values of z and i, it has to be executed before the
ZI_ROT_CORDIC instruction.

ZI CORDIC Vectoring (ZI_VEC_CORDIC) and XY
CORDIC Vectoring (XY_VEC_CORDIC) are the two semi-
CORDIC vectoring instructions:

 ZI_VEC_CORDIC computes the new value of z and
i, based on i and the sign of y.

 XY_VEC_CORDIC computes the new value of x and
y, using the previous value of i and the sign of y.

Since the ZI_VEC_CORDIC instruction depends on the
sign of the current y value, it has to be executed before
XY_VEC_CORDIC. Even though the dependency on i is
violated in this case, the previous value of the iteration counter

can be determined easily by subtracting the number of
iterations per instruction.

All four instructions can be used in circular, linear, or
hyperbolic modes. Depending on the type of CORDIC
operation, the respective sequential semantics between the
semi-CORDIC instructions have to be maintained. The semi-
CORDIC approach readily fits into a traditional RISC
architecture with two source operands and one destination
operand per instruction. This approach does not have the
drawbacks of the full-CORDIC approach, but it almost
doubles the number of CORDIC instructions needed to
implement a CORDIC operation.

IV. EVALUATION METHODOLOGY AND RESULTS

A. Baseline Implementation

The LDPC decoder specifications used for this evaluation
are from the Mobile WiMAX IEEE 802.16e standard. The
LDPC decoder data-block size considered is 2,304 bits with
half-rate coding (1,152 data bits and 1,152 parity bits). The BP
algorithm described in Section II is used for LDPC decoding.
Four iterations of the BP algorithm are used to obtain a
balance between decoding capability and computational
complexity. The hyperbolic tangents (tanh) and hyperbolic
arctangents (atanh) functions can be computed either using
polynomial approximations or table lookup operations.

The polynomial approximations have low memory
requirements, but are not very accurate. The table lookup
operations produce results with better accuracy, but have a
large memory footprint because of the pre-computed lookup
tables. Since the BP algorithm was very sensitive to the
accuracy of the hyperbolic functions, especially the atanh
function, the hyperbolic functions are computed using table
lookup operations. To meet the required numerical accuracy,
the lookup tables are 8 KB and 32 KB for tanh and atanh,
respectively. The large memory footprint for the table lookup
approach is a disadvantage when using this technique on DSPs
with small amounts of high-speed memory.

16%

14%

47%

18%
3%2%

decoder initialization

compute variable node message

compute hyperbolic tangent

compute check node message

compute hyperbolic arctangent

compute hard bits

Figure 2. Computation time breakdown for the BP LDPC decoding
algorithm on the Sandbridge Sandblaster SB3000.

The breakdown of the computation time utilized by
various operations in the BP algorithm is shown in Figure 2.
For a given LDPC code, the parity-check nodes and the

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved
712

variables nodes appear to be connected at random, which is
key to the superior error-correction performance of LDPC
codes. However, this randomness results in a large memory
overhead of reading and writing small chunks of data
throughout memory. Hence, the computation of the messages
in the parity-check nodes and variable nodes utilize nearly half
the computation time. The computation of the tanh and atanh
functions also contributes to a significant portion of the
computation time, 14% and 18% respectively.

B. Evaluation Methodology

To study the effects of the proposed CORDIC ISA
extensions on LDPC decoding, the ISA extensions were added
to the SB3000 tool chain. The CORDIC instructions were
simulated with four CORDIC iterations per instruction. Since
the compiler is not able to automatically generate the proposed
CORDIC instructions from the C application code, the BP
algorithm for LDPC decoding under investigation was re-
written using intrinsic functions that the compiler replaces
with CORDIC instructions and optimizes. The functional
correctness, numerical accuracy, computational performance,
and power consumption of the modified BP algorithm was
studied with the help of the modified SB3000 DSP cycle-
accurate simulator and compared against the baseline
implementation.

C. Performance Results

The performance is represented as a speed-up normalized
to the non-CORDIC baseline implementation. The
computational speed-up is computed as shown in Equation 13,
since each instruction takes one thread cycle.

tionimplementanewof

countninstructioDynamic

tionimplementabaselineCORDICnon

ofcountninstructioDynamic

upSpeed (13)

Figure 3 shows the speed-up of the full-CORDIC and
semi-CORDIC algorithm implementations normalized to the
non-CORDIC baseline software implementation.

0.00

1.00

2.00

3.00

4.00

Four Hyperbolic
Tangents

Four Hyperbolic
Arctangents

LDPC Decoding
using BP
Algorithm

S
p

ee
d

-u
p

Non-CORDIC Baseline
Implementation

Full-CORDIC Approach

Semi-CORDIC Approach

Figure 3. Speed-ups on tanh, atanh, and BP algorithm relative to the baseline
non-CORDIC implementation.

Both CORDIC implementations of the BP algorithm that
use CORDIC ISA extensions exhibit speed-up compared to
the non-CORDIC baseline software implementation. The
elementary hyperbolic tangent and arctangent operations
demonstrate significant speed-ups when using the CORDIC

ISA extensions. However, this speed-up is not translated to the
BP algorithm completely because the speed-ups apply to 32%
of the execution time of the BP algorithm, while the rest of the
execution time remains unchanged. The full-CORDIC and
semi-CORDIC implementations demonstrate speed-ups of
1.27x and 1.21x on the BP algorithm, respectively. As
expected, the semi-CORDIC approach is slower than the full-
CORDIC approach, because it almost doubles the number of
CORDIC instructions. The LDPC decoder parity-check matrix
used in the WiMAX standard has repetitive patterns that can
be exploited to improve the memory performance of the
algorithm. If these memory optimizations are utilized, then the
speed-ups observed on the BP algorithm will be improved
further.

D. Arithmetic Error

The arithmetic error is computed by comparing all fixed-
point implementations against a floating-point
implementation. The arithmetic error is represented as a
normalized root mean square percentage error and is computed
using Equation 14.

100x
Value

ValueValue
Error

2
float

2
float_to_fixedfloat

 (14)

Since the output of the LDPC decoder is decoded bits, the
arithmetic error is computed on the results of the tanh and
atanh functions. Both CORDIC-based implementations
demonstrated similar accuracy and are better than the standard
Sandblaster implementation. With the non-CORDIC baseline
software implementation, the arithmetic error for the
computed hyperbolic functions was 2.08%, while the
CORDIC implementations reduced the arithmetic error to
0.05%. The accuracy of the baseline non-CORDIC
implementation can be improved by increasing the resolution
of the lookup tables, but this would result in the increase in
memory requirements.

E. Hardware Synthesis Estimates

Hardware synthesis for CORDIC functional units was
performed using Synopsys® Design Compiler and TSMC’s
tcbn65gplus 65-nm CMOS standard cell library. All
environmental and process parameters were set to their
nominal or typical conditions. In this technology, a fan-out-of-
four (FO4) inverter’s delay is 31.3 ps.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

Area Latency Power

Full-CORDIC

Semi-CORDIC

SB3000 SIMD-Vector-
Multiply-Accumulate

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved
713

Figure 4. Hardware synthesis estimates for CORDIC functional units.

All CORDIC functional units are designed to fit in the
SB3000 SIMD vector pipeline with four SIMD elements and
four execute pipeline stages. Additional details regarding the
CORDIC functional units and the impact of the CORDIC ISA
extensions on power dissipation of wireless algorithms are
presented by Senthilvelan [17]. The designs are synthesized
with a clock constraint of 600 MHz to match the clock speed
of the SB3000. For comparison, the SB3000 SIMD-vector-
multiply-accumulate (VMAC) instruction data path is also
synthesized in the same environment. Figure 4 presents the
synthesis area, delay, and power estimates for CORDIC
functional units that implement full-CORDIC and semi-
CORDIC approaches normalized to the SB3000 VMAC
datapath.

The combinational areas of the CORDIC units are similar
to the combinational area of the SB3000 VMAC units. All
designs contain pipeline registers to support four execute
pipeline stages. The CORDIC units contain three 250-bit
pipeline registers. In addition to the pipeline registers, the full-
CORDIC approach also has auxiliary registers for storing the
two CORDIC operands in between instructions. The auxiliary
registers account for 47% of the non-combinational area in the
full-CORDIC approach, making its CORDIC functional units
much larger than with the other two approaches.

The delays of all approaches are similar because the
synthesis was performed to meet a clock frequency of 600
MHz. The critical paths for all three CORDIC approaches pass
through the z data path. The semi-CORDIC and the refined
semi-CORDIC approaches add a 3-bit constant adder and
multi-plexer that are used to re-generate the value of the
iteration counter to this critical path, which causes a small
increase in delay.

F. Power Consumption Estimates

An analytical methodology using instruction type
profiling and instruction power consumption measurements
from real hardware is employed to estimate the power
consumption of wireless algorithms [17]. Previous
experiments indicate that this power model is accurate to
within about 10% when modeling the power dissipation of
compute-intensive wireless communication algorithms. The
profiler in the Sandblaster simulator is used to perform the
instruction type profiling on wireless algorithms.

The Sandblaster DSP’s instruction set can be divided into
the following instruction classes:

 Wide-vector instruction class (40-bit or 32-bit SIMD
vector instructions)

 Vector instruction class (16-bit SIMD vector
instructions)

 Scalar instruction class

 Control instruction class

These instruction classes are further divided into
instruction sub-classes that have similar computational

complexity in hardware. The power consumption for each of
these instruction sub-classes is measured on hardware. The
fraction of computation time each of these instruction sub-
classes constitutes can be measured using simulator profiling.
The power estimate for the entire application can be computed
as a dot product of these two measurements.

To make a fair comparison when comparing power
numbers computed from two different implementations and
using this technique, both the implementations need to
estimate power over the same amount of time. For the shorter
implementation, after the necessary computations are
completed, there can be three power scenarios for the
remaining time:

1. Least-power scenario is one in which the processor is
shut down after the computations are completed,
yielding maximum power savings.

2. Nominal-power scenario is one in which the
processor is clock gated to reduce the dynamic
power.

3. Most-power scenario is one in which the processor is
executing NOP instructions.

In practice, the type of power scenario would be decided
based on the overhead of restoring normal functionality to the
Sandblaster DSP after turning it OFF or putting it in stand-by
mode.

0.00%

4.00%

8.00%

12.00%

16.00%

20.00%

Full-CORDIC Semi-CORDIC

Most-Power Mode

Nominal-Power Mode

Least-Power Mode

Figure 5. Percentage savings in power consumption on BP algorithm relative
to the baseline non-CORDIC implementation.

Figure 5 shows the percentage savings in power
consumption for the full-CORDIC and semi-CORDIC
approaches relative to the non-CORDIC baseline
implementation. Considerable power savings are obtained in
the nominal- and least-power modes.

V. SUMMARY

The CORDIC-augmented Sandblaster implementations
exhibit 1.2x speed-up over the non-CORDIC baseline
implementation and provide better arithmetic accuracy and
power savings with low memory overhead when performing
LDPC decoding using the BP algorithm. Memory access
optimizations based on the LDPC parity-check matrix patterns
can further improve the observed speed-ups. The CORDIC
algorithms can also be used to efficiently implement vector
rotations, transcendental functions, and division, which are

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved
714

commonly used in wireless protocols. The penalty is the
additional silicon area consumed by the CORDIC functional
units.

Of the ISA extensions presented, the semi-CORDIC
approach provides significant performance benefits with a
reasonable hardware overhead. Other variations of the
CORDIC algorithm proposed in the literature can potentially
yield further performance improvements. The general
techniques presented in this paper are applicable to other high-
performance DSP systems.

REFERENCES
[1] “International Telecommunications Union’s (ITU) recommendation for

the next generation (4G – Fourth Generation) wireless protocols,” ITU-R
M.1645, URL: http://www.ieee802.org/secmail/pdf00204.pdf

[2] R.G. Gallager, “Low Density Parity-Check Codes,” MIT Press,
Cambridge, Mass., 1963.

[3] M. Tanner, “A recursive approach to low complexity codes,” in IEEE
Transactions on Inform. Theory, vol. IT-27, pp. 533-547, 1981.

[4] F. Guilloud, E. Boutillon, and J. Danger, “λ-Min Decoding Algorithm of
Regular and Irregular LDPC Codes,” in Proc. 3rd International
Symposium on Turbo Codes & Related Topics, Brest, France, Sept.
2003, pp. 451-454.

[5] W.H.W. Tuttlebee, editor, “Software Defined Radio,” John Wiley &
Sons, Ltd., March 2004.

[6] J. Glossner, D. Iancu, M. Moudgill, G. Nacer, S. Jinturkar, S. Stanley,
and M. Schulte, “The Sandbridge SB3011 Platform,” in the EURASIP
Journal on Embedded Systems, Special Issue on Embedded Digital
Signal Processing Systems, vol. 2007, Article ID 56467, 2007.

[7] M.J. Schulte, J. Glossner, S. Jinturkar, M. Moudgill, S. Mamidi, S.
Vassiliadis, “A Low-Power Multithreaded Processor for Software
Defined Radio,” in the Journal of VLSI Signal Processing, vol. 43, no.
2-3, pp. 143–159, June 2006.

[8] J.E. Volder, “The CORDIC Trigonometric Computing Technique,” IRE
Transactions Electronic Computers, vol. 8, no. 3, pp. 330-334, Sept.
1959.

[9] J.S. Walther, “A Unified Algorithm for Elementary Functions,” AFIPS
Spring Joint Computer Conference, vol. 38, pp. 379-385, 1971.

[10] R.J. Andraka, “A Survey of CORDIC Algorithms for FPGAs,”
Proceedings of the 1998 ACM/SIGDA Sixth International Symposium on
Field Programmable Gate Arrays, pp. 191-200, Feb. 1998.

[11] Y.H. Hu, “CORDIC-based VLSI Architectures for Digital Signal
Processing," IEEE Signal Processing Magazine, pp. 16-35, July 1992.

[12] J.R. Cavallaro and A. Elster, “Complex Matrix Factorizations with
CORDIC Arithmetic,” Technical Report 89-1071, Department of
Computer Science, Cornell University, Ithaca, N.Y., Dec. 1989.

[13] Y.H. Hu, “The Quantization Effects of the CORDIC Algorithm,” IEEE
Transactions on Signal Processing, vol. 40, pp. 834-844, July 1992.

[14] D.H. Daggett, “Decimal-binary Conversions in CORDIC,” IRE
Transactions on Electronic Computers, vol. EC-8, no. 3, pp. 335-339,
Sept. 1959.

[15] M. Sima, M. Senthilvelan, D. Iancu, J. Glossner, M. Moudgill, M.J.
Schulte, "Software Solutions for Converting a MIMO-OFDM Channel
into Multiple SISO-OFDM Channels," Third IEEE International
Conference on Wireless and Mobile Computing, Networking and
Communications, WiMOB 2007, Oct. 2007.

[16] M. Senthilvelan, M. Sima, D. Iancu, J. Glossner, M. Moudgill, M.
Schulte “Instruction Set Extensions for Matrix Decompositions on
Software Defined Radio Architectures,” submitted to Journal of Signal
Processing Systems, Springer, Sept. 2009.

[17] M. Senthilvelan, “CORDIC Instructions for Software Defined Radio,”
PhD dissertation, University of Wisconsin-Madison, Aug. 2010.

[18] C.E. Shannon, “A mathematical theory of communication,” in Bell
System Technical Journal, vol. 27, pp. 379-423 / pp. 623-656, July 1948.
URL: http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved
715

