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Outline



 

Reduced complexity MIMO detection: The LORD algorithm 



 

The Block Processing Engine (BPE) architecture 



 

Mapping of the LORD algorithm over the BPE 



 

Performance and synthesis results
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MIMO detection



 

Exhaustive-search Maximum-Likelihood (ML)


 

Find the transmitted sequence minimizing the square norm of the error matrix:



 

For M2-QAM modulation it requires search of M2T symbols (brute-force approach)


 

Rapidly unfeasible for growing T transmitting antennas 
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

 

Soft-output near-ML MIMO detection: the LORD algorithm


 

High performance gain over state-of-the-art detectors (ZF, MMSE)


 

The hard-output version has performance comparable with that of Sphere Decoder


 

Optimal (ML) max-log soft-output for T=2, near optimal for T>2


 

Candidate list set has linear instead of exponential dependency on T



The LORD algorithm

A. Pre-processing


 

Channel estimation matrix H decomposition using H = QR factorization


 

Multiple QR decomposition (one for each T) to compute LLRs efficiently


 

Enabling spatial Decision Feedback Equalization (DFE)


 

For static channel, computed once per frame (latency with no impact on throughput)

B. Detection


 

For each T and each M2-QAM symbol, compute M2 Euclidean Distances (EDs) :

C. Soft-output LLR generation


 

For each bit bi of the constellation, compute the difference between the minimum EDs 
evaluated over the two sets S+(bi ) and S-(bi ) defined by bi =0 and bi =1 respectively
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For each transmitting antenna T and for each received symbol, compute 
M2 Euclidean Distances (EDs) to demodulate M2 -QAM symbols:

For 2 transmitting antennas, it consists of computing:


 

Partial ED (PED) metrics of the reference layer (PED1 )


 

Symbol estimate of the subsequent layer based on spatial DFE


 

PED metric of the subsequent layer (PED2 )


 

ED metric as sum of all the PEDs (ED= PED1 + PED2 )

The LORD algorithm – Detection
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The LORD algorithm – Soft-output generation

For each bit bi of the M2-QAM constellation:



 

Identify the two sets S+(bi ) and S-(bi ) corresponding to bi =0 and bi =1 respectively 



 

Subtract the two minimum EDs evaluated over the sets S+(bi ) and S-(bi )

b0 b1 b2

EDs associated 
to the 
reference layer 
with complex 
symbol bit bi = 0 

EDs associated 
to the 
reference layer 
with complex 
symbol bit bi = 0

EDs associated 
to the 
reference layer 
with complex 
symbol bit bi = 1 

EDs associated 
to the 
reference layer 
with complex 
symbol bit bi = 1
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Block Processing Engine template architecture
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Flow-control: b-instruction 
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Vector processing: d-instruction
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Block diagrams (macros)
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Pipeline of macros using memory alias

v0 macro #0 v2 macro #1 v3 macro #2 v1
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Mapping of the LORD algorithm: a 3-stage pipeline



 

Detection
1. Compute the PED of the reference layer (PED1 ), the DFE and (part of) the PED for the 

subsequent layer (PED2 ) 

2. Compute (rest of) PED2 and the ED from the PED1



 

Soft-output generation
3. Evaluate the LLRs



arith0.mulv0 comm0.ed
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

 

Compute the PED of the reference layer (PED1 ) 



 

Compute the DFE and (part of) the PED for the subsequent layer (PED2 ) 

Mapping of the LORD algorithm: macro #1

macro #1
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

 

Compute the PED2 and the ED from the PED1 of macro #1



 

Generate the LLRs using the EDs computed by macro #2 
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r2

r3

Rest of
PED2

Rest of
PED2
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Mapping of the LORD algorithm: macro #2 and #3
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macro #2

macro #1

macro #3

15

Mapping of the LORD algorithm: pipeline and timing

Vector length depends 
on the number of carriers 
processed with a single 
instruction 
(4 in this case).

Vector length depends 
on the number of carriers 
processed with a single 
instruction
(4 in this case).

For adequate vector 
lengths the execution of a 
bunch of basic 
instructions does not 
affect total execution time 

For adequate vector 
lengths the execution of a 
bunch of basic 
instructions does not 
affect total execution time

Loop on 13 vector 
instructions for a total of 
52 IEEE 802.11n OFDM 
symbol carriers 

Loop on 13 vector 
instructions for a total of 
52 IEEE 802.11n OFDM 
symbol carriers

vector instructionvector instruction

flow-control instructionflow-control instruction





 

Processing time for one IEEE 802.11n OFDM symbol @400MHz



 

Real-time capabilities for both 16-QAM and 64-QAM can be achieved using 
a cluster of 4xBPEs with minimum vector length of 4 carriers
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Performance of LORD on the BPE
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Synthesis results

BPE 4

 

BPE
Technology STMicroelectronics CMOS 65nm

Area 0.9mm2 3.6mm2

Clock 400MHz

Detector Type near-ML SO

Max theoretical Gops 12 48

Near-ML detector Gops 9.6 38.4

Utilization (%) 80

Throughput [Mbit/s] @ 16-QAM 98 392

Throughput [Mbit/s] @ 64-QAM 38 152
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