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ABSTRACT 
 
The continuous emerging of new communication standards 
is pushing towards the introduction of the Software Defined 
Radio (SDR) concept. SDR is enabled by performing 
computational intensive task in software rather than using 
dedicated hardware. Within the SDR framework, Soft-
Output (SO) Multiple-Input Multiple-Output (MIMO) 
detection is still a major challenge, which only few papers 
have dealt with so far. In this paper we describe the 
implementation of the Layered ORthogonal Lattice Detector 
(LORD) SO MIMO detector on the programmable Block 
Processing Engine (BPE). Results show that real-time 
MIMO detection can be achieved using a cluster of four 
BPEs running at 350 MHz (65 nm STMicroelectronics 
CMOS technology) and delivering up to 150 Mbit/s for the 
64-QAM modulation, 2×2 antennas configuration. 
 
 

1. INTRODUCTION 
 

ultiple antennas wireless communications currently 
enjoy great popularity because of the demand of high 

data rate such as multimedia services. MIMO transmission 
consists of the simultaneous transmission of T complex 
symbols using T transmit antennas. MIMO systems take 
advantage of multi-path propagation to increase the diversity 
gain and enhance channel capacity on frequency-selective 
fading channels when operating in a rich scattering 
environment. 
 Among the others, a significant example of a system 
endorsing MIMO combined with OFDM is provided by the 
next generation Wireless Local Area Networks (WLANs), 
see e.g., the IEEE 802.11n standard [1]. 
 Despite the increasing interest in commercial baseband 
software implementation, available literature on Soft-Output 
(SO) MIMO detection mainly targets Application Specific 
Integrated Circuit (ASIC) design [2][3][4]. Although it 
remains a major challenge due to high computational 
complexity, a few examples already exist implementing 
MIMO over programmable architectures.  

 IMEC has been the first, and indeed one of the few 
disclosing a software implementation of a full 2×2 MIMO 
OFDM transceiver. IMEC proposes a platform embedding 
the ADRES processor, a coarse-grain Application Specific 
Instruction Set Processor (ASIP) specifically designed for 
communications [5]. Similar work has been disclosed by 
ETH using a dual-core platform based on the fine-grain 
ASPE processor [6]. Both solutions target the Minimum 
Mean Square Error (MMSE) algorithm, which is highly sub-
optimal when compared to near-ML detection [7]. 
 Recently IMEC enhanced the ADRES platform so as to 
support near-ML detection for a 2×2 IEEE 802.11n [8]. The 
platform evolved from a 4-way SIMD to a 16-way SIMD to 
deliver a maximum throughput enabling real-time 64-QAM 
detection. 
 This paper presents a software implementation of the 
Layered Orthogonal Lattice Detector (LORD), a SO near-
ML MIMO detection algorithm [7]. The algorithm has been 
mapped on the Block Processing Engine (BPE), a fine-grain 
vector processor specifically optimized for intensive 
wireless communications [9]. 
 The paper is organized as follows: Section 2 details the 
target system model and recalls the LORD algorithm; 
Section 3 presents the BPE core; Section 4 describes the 
mapping of LORD on the BPE; Section 5 summarizes the 
results. 
 

2. MIMO DETECTION 
 
2.1. SYSTEM MODEL 
 
In order to simplify the notation we consider a frequency 
non-selective MIMO communication system with T 
transmits and R receives antennas. For OFDM systems, like 
those of interest for 802.11n WLANs, the following 
equations are to be intended valid per sub-carrier in 
frequency domain.  
 The signal received at each antenna is therefore a 
superposition of the T transmitted signals corrupted by 
multiplicative fading and additive white Gaussian noise. The 
complex path gains are samples of zero mean Gaussian 
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Random Variables (RV) with variance σ2 = 0.5 per 
dimension. Fading processes for different transmit and 
receive antenna pairs are assumed to be independent. 
Complex gains are assumed constant over the duration of a 
codeword and vary independently from one codeword to 
another (i.e. quasi-static block fading). Ideal Channel State 
Information (CSI) at the receiver is assumed (i.e. the R×T 
channel matrix H is perfectly known). The transmitted signal 
can be represented as a vector X of size T×1, where the t-th 
symbol st taken from a generic M2-QAM constellation is 
transmitted by the t-th antenna. Under these assumptions, the 
received R×1 vector Y is given by:  

NHXY +=
T

Es , (1) 

where ES is the total per symbol transmitted energy (under 
the hypothesis that the average constellation energy is 

1|s| 2
k = ) and N is the noise vector of size R×1, whose 

elements are samples of independent circularly symmetric 
zero-mean complex Gaussian RVs with variance N0/2 per 
dimension. The signal-to-noise-ratio (SNR) per receive 
antenna is ES/N0. 
 ML detection over a MIMO channel corresponds to 
finding the transmitted sequence X  which minimizes the 
square norm of the error matrix: 

2

s

T

E
min arg HXYX

X
−= . (2) 

 Equation (2) can be solved by performing the 
exhaustive search of M2T sequences, where M is the 
modulation order of a generic M2-QAM constellation. This 
results into a prohibitive complexity for growing T. 
 
2.2. THE LORD ALGORITHM 
 
Prior to the detection stage, QR decomposition is applied to 
the channel matrix H, generating an orthonormal matrix Qt 
and an upper triangular matrix Rt as H t = QtRt.  
 The index t refers to symbol sequence permutations 
where the t-th layer is taken as reference layer (the terms 
layer and transmit antenna will be used interchangeably 
throughout this paper); more specifically, each permutation 
has to differ from the others by the complex symbol placed 
in the t-th position in the complex sequence X, 
corresponding to the t-th I and Q couple in the real sequence 
xt. Multiplying (1) by (Qt)T: 

ttttTtt ~
)(

~
NXRYQY +== . (3) 

 The noise vector t~
N has still independent components 

and equal variances. 
 
 
 

From the above expression, the minimization problem (2) 
translates to: 

2
tttt ~

min argˆ XRYX
X

−= . (4) 

 After the QR decomposition, the ML demodulation (4) 
can be evaluated according to the so-called max-log 
approximation. The Log-Likelihood Ratio (LLR) of the 
bit bT,k can be expressed as [7]:  

)]x~,x~(ˆ[Dmin

)]x~,x~(ˆ[Dmin)~b(L
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−
−−

−

=

x

xy
, (5) 

where t
EDD is the Euclidean Distance (ED) metric: 

2ttt
ED

~)(D xRyx −= . (6) 

 In (5), the following notation is used: Mc-bit transmitted 
symbols belong to a M2-QAM complex constellation; 

),( 212 TT xx ~~x̂ −−−− denotes the sequence obtained by grouping a 
candidate value ),( 212 TT xx ~~

−−−− of the I and Q couple of the 
reference layer complex symbol XT and the (2T−2) I and Q 
estimates of the T−1 non-reference layer symbols 
determined through spatial Decision Feedback Equalization 
(DFE) starting from such candidate value; bT,k are the bits 
mapped onto XT having bit index k = 1,…,Mc; 

++++
TkS )(  and 

−−−−
TkS )(  represent the sets of symbols of the reference layer 

having bT,k = 1 and bT,k = 0, respectively [7].  
 It should be recalled that the LORD demodulation 
method requires to consider all the constellation symbols as 
candidate symbols for each reference layer and then 
minimizes the ED metrics over the sequences X wherein a 
given bit value is 1 or 0. 
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Fig. 1. The BPE template architecture. 
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3. THE BLOCK PROCESSING ENGINE 
 
The template architecture of the BPE is shown in Fig. 1 
 The controller performs fetch, decoding and scheduling 
of the instructions. Two types of instruction exist: basic 
scalar instructions (hereafter called b-instruction) mainly 
devoted to flow control and data access configuration and 
dedicated vector instructions (d-instruction) performing 
intensive data processing. While b-instructions are locally 
executed, d-instructions are executed on the customizable d-
unit bank. Depending on data dependencies and resources 
availability, units can be scheduled to run in parallel. 
Vectors are allocated on the d-memory bank, a set of static 
memories allowing fast and parallel access to data. 
 Interconnection between d-memory bank and d-unit 
bank is guaranteed by the routing mesh, which is run-time 
configured by the controller on an instruction-by-instruction 
basis. To further optimize the data exchange between units, 
the routing mesh supports instruction pipelining through 
direct connection between units. 
 
3.1. VECTORS MANAGEMENT 
 
D-instructions act on vectors allocated on the d-memory 
bank. Each memory can hold several vectors, with the 
obvious limitation that vectors allocated on the same 
memory cannot be accessed concurrently. Vectors size can 
be as large as the size of available memories. 
 Once the size and the position of a vector within the 
memory have been defined, the addressing scheme can be 
specified by the programmer on an instruction basis. 
 Vector elements can be accessed performing intra-
vector permutation according to pre-defined or user-defined 
schemes, such as decimating or interpolating by an arbitrary 
factor, reversing the order of the elements, applying well 

known shuffling patterns like matrix transpose, FFT re-
ordering, Gray mapping.  
 
3.2. RESOURCES ALLOCATION 
 
Dealing with very long vectors, d-instructions are typically 
asked to process large amount of data, thus consuming 
several clock cycles to complete. While this has the benefit 
of considerably shortening the program size, it requires a 
complex semaphore mechanism between the controller and 
the d-unit bank to manage resources allocation and to 
prevent stalling.  
 The controller fetches and schedules instructions one 
after another until one of them requires resources that have 
been already allocated, as can be the case for a d-memory or 
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(a) 

arith0.mul(v0,v1);
arith1.mul(v0,v2)
v7 = comm0.ed( arith0,v3)
v8 = arith2.sub(v4, arith1)
comm1.qt( arith2,v5)
v9 = arith3.mul( comm1,v6)

 
(b) 

Fig. 2. Macros implementation: block diagram (a) and assembly code (b). 
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(b) 
Fig. 3. Macro timing diagram when using d-instruction parallelism only 
(a) and both parallelism and pipelining (b). 
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Fig. 4. Pipeline builder (a) and pipeline optimization through the use of 
memory aliasing (b). 
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another d-unit. It then waits until the execution of the 
instructions using those resources has been completed. This 
mechanism has the major benefit of being agnostic with 
respect to the latency of each d-unit, requiring the controller 
to be notified only when a resource has been released. A 
side benefit of such policy is that b-instructions executed 
right after the scheduling of d-instructions do not cause 
additional delay. The latter consideration inherently suggests 
that maximum efficiency can be reached only using vectors 
large enough to absorb b-instruction execution. 
 
3.3. UNITS PIPELINING 
 
As previously stated, routing mesh can be instructed to 
directly connect units. Pipelined processing is the key 
enabler for high computational efficiency, since it allows 
propagating data from unit to unit without needing to store 
intermediate results for subsequent processing. 
 
3.4. MACROS 
 
Macros can be seen as a set of d-instruction combining 
parallel and pipelined processing. Macros directly translate 
into block diagrams, as the one represented in Fig. 2.   
 The corresponding assembly code (b) clearly shows the 
data dependencies, and both parallelism and pipelining level 
among units. Timing diagrams of Fig. 3 show the consistent 
advantage when using units pipelining. 
 
3.5. PIPELINE BUILDER AND MEMORY ALIAS 
 
Optimized coarse-grain operations implemented through 
macros can be in turn pipelined by using the pipeline 
builder. It consists of a set of b-instructions specifically 
designed to further optimize the execution. Using those 
instructions the programmer marks each macro as part of a 
pipeline and sets the rules for data exchange between the 
pipeline stages.  
 Fig. 4(a) shows a 3-stage pipeline implemented using 
the pipeline builder. Since pipeline stages are typically 
decoupled by memories, additional instructions are provided 
to implement ping-pong mechanism among those memories. 
These instructions allow defining a register as a memory 
alias, i.e. a placeholder for any memory of the d-memory 
bank. Once the memory alias register has been defined, its 
content can be toggled so as to implement ping-pong 
mechanism according to the stage of the processing. Fig. 4 
(b) shows how memory aliasing can be used to overcome 
conflicts on shared memories. 

 
4. MAPPING THE ALGORITHM ON THE BPE 

 
Mapping consists of breaking the algorithm into computing 
elements and then re-grouping them in a set of macros so as 
to build a pipeline.  
 From the system perspective, LORD algorithm basically 
performs two operations: constellation sweeping and soft-
output generation.  
 Constellation sweeping consists of computing M2 EDs 
per antenna to demodulate M2-QAM symbols [7]. This can 
be graphically seen as the tree traversal of Fig. 5(a), showing 
the computation of the EDs for a 2×R transmission scheme 
(T = 2). Each ED is the result of the summation of T Partial 
Euclidean Distances (PEDs), where the PED is defined as 
the sum of two independent squares related to the I and Q 
components of a given complex symbol. 
 For each candidate complex symbol of the reference 
layer, constellation sweeping involves the operations 
hereafter summarized: 

1. compute the PED metrics of the reference layer; 
2. compute the PED metrics of each subsequent layer 

based on spatial DFE; 
3. compute the ED metrics as sum of all the PEDs. 

Reference 
Layer

Subsequent 
Layer

ED

PED1

PED2

 

(a) 

b0  
b1  

b2  

b3  
b4  

b5  
(b) 

Fig. 5. MIMO tree traversing according to LORD (a) and 64-QAM 
constellation partitioning for LLR computation (b). 
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 Soft-output generation consists of finding the minimum 
ED among the EDs obtained from constellation sweeping 
and then computing the LLRs according to (5). The 
constellation partition depends on the modulation order and 
the evaluated bit, as shown in Fig. 5(b) for a 64-QAM 
modulation (darker areas identify EDs with XT having bT,1 = 
1). 
 Once parallelism and dependencies among data have 
been identified, the algorithm has been translated into the 3-
stage pipeline described in Fig. 6. Macros from (a) to (c) 
implement the different stages (from p0 to p2) of the 
pipeline. 
 More specifically, the stage p0 implements the 
computation of the PED for the reference layer (PED1) and 
part of the PED for subsequent layer (PED2), including the 
DFE processing. At this stage, the two layers are 
independent and thus the calculation of both PED can be 
performed in parallel, with evident advantage in terms of 
throughput. 
 Stage p1 mainly compute the ED from the PEDs coming 
from stage p0. It must be noted that calculation of PED2 has 
been split among the two stages p0 and p1 to reduce the 
latency of stage p0. 

 Stage p2 collects all the EDs generated by the stage p0 
and p1 and evaluate the LLR according to (5). 
 Assembly template implementing the 3-stage pipeline is 
shown in Fig. 6(d). Pipeline is defined through the pipeline 
builder instructions. Each stage is delimited by the 
corresponding label and the pipe() instruction. Pipeline 
stages make use of memory aliasing, implemented through 
malias() and mtoggle() instructions. This allows completely 
filling the pipeline, as shown in Fig. 6(e). 
 To fully support data parallelism, the BPE has been 
equipped with a d-unit bank consisting of 18 units chosen 
among arith , vect and comm types. Both arith  and vect 
units offer general purpose fine-grain instructions devoted to 
complex arithmetic and vector manipulation respectively, 
while comm units provide the programmer with a set of 
dedicated, but still general purpose instructions within the 
telecommunications domain. Instructions belonging to the 
comm unit allows, among the others, to calculate the ED 
between complex numbers, to implement a step function 
(here used for slicing operation within the DFE) and to 
compute Gray mapping. 
 The scheme of Fig. 6 implements LORD algorithm for a 
generic layer, starting from the processed received signal (3) 
up to the LLR generation (5). It allows computing one ED 
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pipe.def(test)
pipe.set(p0)
pipe.set(p1)
pipe.set(p2)

r0 = malias()
r1 = malias()
r2 = malias()
r3 = malias()

// Gray mapping
v0 = comm0.gray(mod_order)

p0: // macro p0 implementation
carrier_cnt = add(carrier_cnt,1)
test = cmp.eq(carrier_cnt,`NB_CARRIER)
pipe(test)

p1: // macro p1 implementation
r0 = mtoggle(v10,v11)
r1 = mtoggle(v12,v13)
r2 = mtoggle(v14,v15)
pipe(test)

p2: // macro p2 implementation
add(llr_cnt,1)
r3 = mtoggle(v16,v17)
pipe(test)
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Fig. 6. LORD 3-stage pipeline: macros block diagrams (a, b and c respectively), assembly code template (d) and pipeline timing diagram (e). 
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for each clock cycle, i.e. the same throughput achieved by 
dedicated hardware architectures, as the one implemented 
in [10]. 
 The scheme of Fig. 6 is able to process vectors of 
different lengths. The programmer can choose to process 
data on an OFDM subcarrier-by-subcarrier basis, or to take 
advantage of longer vectors by evaluating groups of 
subcarriers. It must be noted that, especially for low 
modulation orders, the vector length of one subcarrier (M2) 
can result too short to absorb the execution time of the b-
instructions controlling the data flow. This ultimately 
slightly degrades the throughput. 
 

5. RESULTS 
 
Fig. 7 shows the processing time as a function of the vector 
length (expressed in number of OFDM subcarriers): the 
values below the gray area satisfy the real-time processing 
requirements of a MIMO WLAN transmission (i.e, 4 µs) [1]. 
The plot shows 16-QAM and 64-QAM modulations, for 
both a single BPE and a cluster of 4 BPEs running at a clock 
frequency of 350 MHz. The 16-QAM modulation can be 
real-time processed by a single BPE using a minimum vector 
length of 13 subcarriers, while for the most demanding 64-
QAM modulation a cluster of 4 BPEs is needed. 
 Lastly, TABLE I summarizes the specification and the 
implementation results of the above configuration. 
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TABLE I 
BPE SPECIFICATIONS AND IMPLEMENTATION RESULTS 
(STMICROELECTRONICS 65NM CMOS TECHNOLOGY) 

ARCHITECTURE SPECIFICATION 

instructions type fine-grain 
D-unit bank size 18 
D-unit bank customization arith (8) – vect (6) – comm (4) 
Register file 32×16 bit 
D-memory bank size 18×256×32 bit 
I-memory 512×32 bit 

IMPLEMENTATION RESULTS 

 
1 BPE 

cluster of  
4 BPEs 

Clock 350 MHz 
Area 0.9 mm2 3.9 mm2 
Max Gops (16-bit real ops) 12 Gops 48 Gops 
Near-ML detector Gops 9.6 Gops 38.4 Gops 
Utilization (%) 80 % 
Throughput (16/64-QAM) 50/40 Mbps 185/150 Mbps 
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Fig. 7. Processing time with 1 BPE and a cluster of 4 BPEs (dotted) as a 
function of the vector length (number of carriers). 
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