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Abstract — Wireless protocols strive to increase spectral 
efficiency and achieve high data throughput. Low-density 
parity-check (LDPC) codes are advanced forward error 
correction (FEC) codes that use iterative decoding 
techniques to achieve Shannon capacity. Due to their 
superior performance, state-of-art wireless protocols such 
as WiMAX and LTE Advanced are adopting LDPC codes. 
LDPC codes come with the high cost of drastically 
increased computational effort for decoding. Among the 
proposed decoding algorithms, the belief propagation (BP) 
algorithm leads to a good approximation of an optimal 
ideal decoder; however, it uses compute-intensive 
hyperbolic trigonometric functions. To reduce the 
computational complexity, typical LDPC decoder 
implementations use simplified algorithms such as the 
min-sum algorithm at the expense of reduced signal 
processing performance. Efficient and accurate ways of 
computing hyperbolic trigonometric functions can 
facilitate the use of the BP algorithm in real-time LDPC 
decoder implementations. This paper investigates 
hyperbolic COordinate Rotation DIgital Computer 
(CORDIC) instruction set architecture (ISA) extensions 
for software-defined radio (SDR) processors to efficiently 
compute the hyperbolic trigonometric functions. The 
CORDIC ISA extensions are evaluated on the low-power 
multi-threaded Sandbridge Sandblaster® SB3000 
platform. The computational performance, numerical 
accuracy, hardware estimates, power consumption 
estimates, and memory requirements with the CORDIC 
ISA extensions are compared to a baseline implementation 
on the SB3000. 

Keywords – LDPC decoding, Belief propagation algorithm, 
Hyperbolic tangents, CORDIC, SDR, ISA extensions  

I. INTRODUCTION 

The International Telecommunications Union (ITU) 
recommendations for the next generation (4G – Fourth 
Generation) wireless protocols (ITU-R M.1645) advocates 
maximum data rates of 100 megabits per second (Mbps) for 
high-mobility situations and 1 gigabit per second (Gbps) for 

stationary and low-mobility situations [1]. Current and next-
generation wireless protocols propose sophisticated techniques 
including low-density parity-check (LDPC) [2] [3] forward 
error correction (FEC) codes to increase the wireless channel 
capacity and spectral efficiency. The advent of these new 
techniques rapidly increases the algorithmic complexity and 
computational requirements of wireless systems. 

The LDPC codes are FEC codes that exhibit excellent 
error-correcting capabilities, close to the Shannon capacity. 
Due to their superior performance, state-of-art wireless 
protocols such as WiMAX and LTE Advanced are adopting 
the LDPC codes. The improved error-correction capabilities of 
LDPC codes come with the high cost of drastically increased 
computational effort for decoding. The LDPC decoder is 
implemented as an iterative message-passing algorithm 
between data nodes and parity-check nodes with termination 
criteria. Among the proposed LDPC decoding algorithms, the 
belief propagation (BP) algorithm [2] exhibits the highest 
error-correction capability and is a good approximation of an 
optimal ideal decoder [4]. However, in the BP algorithm, 
message computation at the parity-check nodes involves the 
compute-intensive evaluation of hyperbolic trigonometric 
functions. Simplified decoding algorithms such as the min-
sum algorithm trade error correction capability for reduced 
computational complexity, and are used in typical LDPC 
decoder implementations. Efficient and accurate ways of 
computing hyperbolic trigonometric functions can facilitate 
the use of the BP algorithm in real-time LDPC decoder 
implementations. 

Compute-intensive wireless techniques such as LDPC 
decoders traditionally have been implemented using 
application-specific integrated circuits (ASICs). ASICs 
achieve high performance at the expense of flexibility. 
Software-defined radio (SDR) [5] is an alternative 
programmable platform that is being increasingly adopted by 
the wireless industry due to dramatically reduced development 
and hardware costs, accelerated time to market, increased 
flexibility, and upgradeability.  

In this paper, we address the computational challenges of 
implementing the BP algorithm for LDPC decoding on SDR 
platforms. When profiling the BP algorithm on the SB3000 
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platform [6-7], a state-of-the-art SDR processor, we observed 
that more than 32% of the computation time is spent 
performing hyperbolic tangent computations.  

Convenient ways to compute transcendental functions 
including hyperbolic trigonometric functions using the 
iterative COordinate Rotation DIgital Computer (CORDIC) 
algorithms have been proposed previously [8-11]. However, 
the sequential CORDIC algorithm is inefficient to implement 
completely in software using conventional SDR processors. 
Consequently, instruction set architecture (ISA) extensions 
and hardware designs based on the CORDIC algorithms can 
enable efficient implementation of the BP LDPC decoding 
algorithm on SDR processors.  

We propose, discuss, and evaluate different design 
choices for CORDIC ISA extensions when implementing the 
CORDIC algorithm on a SDR architecture. We evaluate the 
proposed CORDIC ISA extensions on the SB3000 platform by 
augmenting the Sandblaster tool chain with the proposed 
CORDIC ISA extensions. Our investigations demonstrate a 
speed-up of more than 1.2x on the BP LDPC algorithm when 
using the CORDIC ISA extensions compared to a non-
CORDIC baseline software implementation on the SB3000, 
which uses powerful single-instruction/multiple-data (SIMD) 
DSP instructions. The CORDIC-based implementations also 
have better numerical accuracy than the non-CORDIC 
baseline software implementation when evaluating the 
hyperbolic trigonometric functions. This paper makes the 
following contributions: 

 It addresses the high computational complexity of the BP 
algorithm in LDPC decoding on SDR platforms. It 
presents the speed-ups when using the CORDIC ISA 
extensions. 

 It investigates the class of architectures extended with 
CORDIC functional units [15][16], and performs an 
analysis to determine the set of  CORDIC ISA extensions 
to evaluate hyperbolic trigonometric functions.  

In the rest of this paper, Section II provides background 
information on LDPC codes, the BP decoding algorithm, 
CORDIC, and the SB3000 SDR platform. Section III 
discusses various design considerations for CORDIC ISA 
extensions and describes our proposed ISA extensions. Section 
IV describes the evaluation methodology and compares 
computational performance, numerical accuracy, power 
consumption estimates, and memory requirements of 
implementations that use the CORDIC ISA extensions with 
those from the non-CORDIC baseline software 
implementation. It also provides hardware synthesis estimates 
for functional units that implement the proposed CORDIC ISA 
extensions. Section V summarizes our observations.  

II. BACKGROUND 

A. Low-density Parity-check (LDPC) Codes  

The LDPC codes, first proposed by Robert Gallager [2], 
are some of the most promising FEC codes. They are being 
adopted by wireless protocols such as LTE and WiMAX. The 

LDPC codes exhibit excellent error-correcting capability; 
close to the Shannon theoretical limits [18]. They are a class of 
linear block codes whose code words satisfy a set of linear 
parity-check constraints. The LDPC codes can be expressed in 
matrix form using parity-check matrices [2] or in graphical 
representation using bipartite graphs [3]. 

Each LDPC code has a set of parity-check constraints that 
is defined by an (m x n) parity-check matrix H, whose m rows 
define the m parity-check constraints, and n columns represent 
the length of the code word. An entry (i, j) in the parity-check 
matrix is 1 if and only if the jth element of the code word is 
connected to the ith parity-check constraint. Then, the LDPC 
code is defined by a set of equations satisfying Equation 1. 

0 TH c   (1) 

where c = (c1, c2, … , cn) is the set of n elements of the code 
word. Wireless protocols typically specify the LDPC parity-
check matrices in the physical layer specifications. 

For example, the parity-check matrix for a LDPC code is 
shown in Equation 2.  
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Using this parity-check matrix H, the LDPC code is defined 
by Equation 3. 

0 1 3 4 7

1 0 1 2 5

2 2 5 6 7

3 0 3 4 6

0

0

0

0

f c c c c

f c c c c

f c c c c

f c c c c

    
    
    
    

  (3) 

Two numbers, wr and wc, can be used to further 
characterize the parity-check matrix H; wr is the number of 1s 
in each row and wc is the number of 1s in each column. For a 
matrix to be called low-density, the two conditions wc << n 
and wr << m must be satisfied. The sparsity of the matrix is the 
key property that provides the algorithmic efficiency of the 
LDPC codes. 

An LDPC code is called a regular LDPC code if wc is 
constant for every column. In other words, all the parity-check 
nodes should have the same number of incoming edges and all 
the element nodes of the code word should have the same 
number of incoming edges. The example LDPC structure 
shown in Equation 2 is regular, with wc = 2 and wr = 4. If the 
number of 1s in each row or column is not constant in the 
parity-check matrix H, then the LDPC code is called an 
irregular LDPC code.                                    
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Tanner [3] introduced an effective graphical 
representation of LDPC codes using bipartite graphs that 
contain two distinctive sets of nodes and edges that only 
connect two nodes of different types. The two distinctive types 
of nodes in the Tanner bipartite graph are the variable nodes 
and the parity-check nodes. Figure 1 is an example of a Tanner 
bipartite graph with eight variable nodes and four parity-check 
nodes corresponding to the parity-check matrix H shown in 
Equation 2. 

 

Figure 1.  Tanner bipartite graph for a LDPC code.  

 The construction of the Tanner graph shown in Figure 1 
is straightforward. A parity-check node fi is connected to a 
variable node cj if the element hij of the parity-check matrix H 
shown in Equation 2 is equal to 1.  

LDPC codes are decoded iteratively using message-
passing algorithms [2]. Message-passing algorithms involve 
passing of likelihood or belief messages from variable nodes 
to parity-check nodes and from parity-check nodes to variable 
nodes with termination criteria. The input to the decoding 
algorithm is a message vector giving the intrinsic likelihood of 
each bit being a 0 or 1. An iteration of LDPC decoding 
consists of a round of message passing from each variable 
node to all parity-check nodes connected to it, followed by 
another round of message passing from each parity-check 
node to all variable nodes connected to it. Decoding 
performance is achieved through repeated iterations of 
message passing along edges in the graph, with a termination 
criterion. 

Messages from variable nodes to the parity-check nodes 
are computed based on the observed value at the variable node 
and messages that are passed on from other neighboring 
parity-check nodes in the previous iteration. An important 
aspect is that the message passed from a variable node c to a 
parity-check node f must not take into account the message 
sent from node f to node c in the previous iteration. The same 
is true for messages passed from the parity-check node to the 
variable nodes. 

Among the proposed decoding algorithms, the original 
algorithm proposed by Gallager for LDPC decoding -- the BP 
algorithm -- leads to the best decoding performance [4]. 
However, the BP algorithm is computationally intensive 
because it uses hyperbolic tangents and arctangents. The Min-

Sum algorithm is a simplified algorithm that trades 
computational complexity for reduced decoding performance.  

B. Belief Propagation Algorithm  

In the BP algorithm, the message passed from the variable 
node c to a parity-check node f is the likelihood L that c has a 
certain value based on the observed value at node c and input 
received in the previous iteration from other parity-check 
nodes connected to c. On the other hand, the message passed 
from parity-check node f to variable node c is the likelihood 
that c has a certain value based on the inputs received in the 
current iteration from other variable nodes connected to the 
parity-check node f.  

The iteration steps in the BP algorithm are as follows: 

Step 1: Messages are passed from each variable node c to all 
connected parity-check nodes f at the beginning of the 
iteration. The messages are represented as mcf[i], where i is the 
iteration number, and shown in Equation 4. 

' ( { }) '

0

[ ]

[ 1] 1
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cf
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m if i

m i
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 (4) 

where mc is the log-likelihood of the variable node c, 
conditioned on the observed value x, and is independent of any 
parity-check node f. ' ( { })cf F f   is the list of all parity-

check nodes Fc connected to variable node c, except the 
parity-check node f for which the message mcf[i] is intended, 
and mf’c[i-1] is the message received from parity-check node f’ 
in the previous iteration. The value of mc is given by   
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x
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Pr[x = 0] is the probability that x = 0 and Pr[x = 1] is the 
probability that x = 1. For iterations in which the iteration 
counter i is greater than 0, the messages received from all 
parity-check nodes f’ need to be considered. If yk is the log 
likelihood message received from parity-check node fk ε f’, 
then  
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where    Pr[ 0 ]
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 and Pr[ 0 ]kx y  is 

the probability that x = 0 conditional on yk.  

 

Step 2: Messages are passed from each parity-check node f to 
all connected variable nodes. The messages are represented as 
mfc[i], as shown in Equation 7. 

f 0
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8 variable nodes

4 parity-check nodes
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where i is the iteration number, ' ( { })fc C c   is the list of all 

variable nodes Cf connected to parity-check node f, except the 
variable node c for which that the message mfc[i] is intended, 
and mc’f [i] is the message received from variable node c’ in 
the current iteration.  

Steps 1 and 2 are repeated until convergence is obtained. 

C. CORDIC  

CORDIC is an iterative algorithm to perform vector 
rotations in a two-dimensional plane using simple shift and 
add/subtract operations. The CORDIC algorithm was 
introduced by Volder [8] for the circular and linear coordinate 
systems. It is used for rotation of vectors, determination of a 
vector’s magnitude and phase, computation of trigonometric 
and transcendental functions, multiplication, division, and 
data-type conversion. Later, Walther generalized CORDIC to 
the hyperbolic coordinate system to compute hyperbolic 
trigonometric functions [9]. 

Equation 8 presents a generalized set of equations that 
defines the CORDIC algorithm and is applicable to multiple 
coordinate systems as: 

       
       
       

1 2

1 2
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iy i y i i x i
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   (8) 

where x and y are the vector coordinates, z is the angle 
accumulator, σ is the direction of rotation, m = 1 and               
α[i] = tan-1(2-i) for the circular coordinate system, m = 0 and 
α[i] = 2-i for the linear coordinate system, and m = -1 and α[i] 
= tanh-1(2-i) for the hyperbolic coordinate system. There are 
two modes of operation defined by the CORDIC algorithms. 
The rotation mode is used to rotate a vector by a specified 
rotation angle. The rotation decision made in each iteration 
decreases the magnitude of the residual angle in the angle 
accumulator, z. The vectoring mode is used to rotate the input 
vector to align the result vector with the X axis. The result of 
the vectoring operation is the angle and scaled magnitude of 
the original vector. The rotation decision at each iteration is 
made to decrease the magnitude of the y coordinate.  

Considerable research has been done on hardware 
implementations of the CORDIC algorithms for different 
applications [10-11]. Unlike related work in this area, this is the 
first time CORDIC ISA extensions have been used to perform 
LDPC decoding on a programmable DSP for SDR. 

D. The Sandbridge Sandblaster 3000 

The SB3000 SDR platform [6-7] is designed to exploit 
parallelism inherent in emerging communication applications 
at different levels of granularity. It has four Sandblaster DSP 
cores and an ARM core. Each Sandblaster DSP core supports 
multi-threading and has eight hardware threads. The 
Sandblaster DSP features compound instructions that can issue 
three parallel operations in a single cycle. It has a powerful 
ISA that supports saturating arithmetic, SIMD vector dot 
products, and SIMD vector multiply-accumulate operations.  

The Sandblaster DSP micro-architecture is partitioned 
into three units: a program flow control unit, an integer and 
load/store unit, and a SIMD vector processing unit (VPU). The 
SIMD VPU consists of four vector processing elements 
(VPEs), a shuffle unit, a reduction unit, and an accumulator 
register file. The four VPEs perform arithmetic and logic 
operations in SIMD fashion on 16-bit, 32-bit, and 40-bit fixed-
point data types. High-speed 64-bit data busses allow each 
VPE to load or store 16 bits of data each cycle in SIMD 
fashion. Vector instructions have four execute stages in the 
pipeline. Since there is considerable data-level parallelism in 
the algorithms under investigation, SIMD vector CORDIC 
ISA extensions are proposed in this paper.  

III. PROPOSED CORDIC ISA EXTENSIONS 

This section discusses the various considerations that 
affect the design of CORDIC ISA extensions and describes 
our proposed ISA extensions. In the SB3000, our CORDIC 
ISA extensions are implemented as SIMD vector operations, 
but they can easily be modified to provide scalar CORDIC 
operations. 

A. Convergence 

The CORDIC algorithm, summarized in Equation 8, 
performs vector rotations by splitting the rotation angle θ into 
a sequence of fixed micro-rotation angles, as shown in 
Equation 9. 

   
1

0

[0] [1] [ 1]
n

i

n i i     




          (9) 

where n is the total number of CORDIC iterations, α[i] is the 
fixed micro-rotation angle, and σ[i] is the direction of rotation, 
-1 or +1, at iteration i. To guarantee convergence, the chosen 
set of fixed micro-rotation angles must satisfy the two 
convergence criteria shown in Equation 10 and 11.  
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Equation 10 enforces the constraint that if, at any iteration 
i, the remaining rotation angle z is zero, it will be changed to 
±α[i+1] in the next iteration. Then, the sum of the remaining 
fixed micro-rotation angles has to be large enough to bring the 
remaining rotation angle to within α[n-1] after the last 
iteration (n-1). 

  
1

0

[ 1]
n

i

i n  




         (11) 
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Equation 11 ensures that the total rotation angle θ does not 
exceed the sum of all fixed micro-rotation angles plus the final 
micro-rotation angle.  

The CORDIC algorithm produces one additional bit of 
accuracy each iteration. Since wireless algorithms typically 
operate on 16-bit data, 16 CORDIC iterations are performed. 
For the hyperbolic coordinate system, it has been shown [9] 
that certain iterations have to be repeated to satisfy the 
convergence criterion shown in Equation 10. In the basic 
CORDIC algorithm, the iteration sequence when executing 16 
CORDIC iterations is chosen as i = 1, 2, 3, 4, 4, 5, … 13, 13, 
14. For this iteration sequence, the sum of all fixed micro-
rotation angles is ±64˚. If the rotation angle θ for any 
hyperbolic CORDIC operation is restricted to be within ±64˚, 
then this iteration sequence is suitable.  

However, it was observed that the hyperbolic 
trigonometric functions in the BP algorithm require a 
convergence range close to ±180˚ for good decoding 
performance. Hence, the convergence range for the hyperbolic 
CORDIC algorithm was increased by performing two 
additional iterations with i = 0 and i = -1 (elementary rotation 
angles computed tanh-1(1-2i-2)) to yield a new convergence 
range of ±197˚.    

B. Precision Requirements and Operand Representation 

While designing the CORDIC ISA extensions, precision 
and computational accuracy are critical because, if the error 
introduced by the use of CORDIC ISA extensions exceeds the 
allocated system error budget, it can adversely affect the 
reliability of the wireless system. 

The finite word length also results in accumulation of 
rounding errors while computing the coordinates x and y. The 
impact of these rounding errors can be reduced by using 
additional fraction guard bits. If n is the number of CORDIC 
iterations, W is the number of accurate fractional bits desired 
in the output, and C is the number of additional fractional 
guard bits used in intermediate computations, the rounding 
error can be considered to have a minor effect on the output 
accuracy if Equation 12 is satisfied. 

 
2 2

W C Wn
          (12)  

which yields )(2log nC  . Hence, at least log2(n) additional 

fractional bits should be provided to reduce the impact of 
rounding errors to at most one unit in the last place (ulp) [13]. 
For this study, 20-bit internal precision is maintained within 
the CORDIC functional unit to produce 16-bit outputs.   

The coordinates x and y are represented as two’s 
complement numbers. The angle accumulator z that tracks the 
residual angle of rotation after each CORDIC iteration can be 
represented in radian format as a two’s complement number. 
The disadvantage of the radian format is that it does not 
provide wrap-around capability for the angle accumulator. We 
keep the angle representation in radian format because angles 
are typically represented in the radian format in 
communication protocols.  

In fixed-point formats, the CORDIC iterations for the x 
and y coordinate data paths return the same number of integer 
and fractional bits (Q format) as the input. In the z data path, 
pre-computed fixed micro-rotation angles have to match the Q 
format of the input angle. It is beneficial to provide 
configurability for the Q format in the z data path to 
accommodate varying precision requirements from different 
communication protocols. We implement this configurability 
by keeping more bits for extra precision of the fixed micro- 
rotation angles within the CORDIC unit and choosing the right 
number of bits to match the input Q format using a 
configurable CORDIC angle precision register.  

C. CORDIC Iterations   

The CORDIC iteration is a four-operand operation, with 
coordinates x and y, angle accumulator  z, and iteration counter 
i, as shown in Equation 8. Each CORDIC iteration reads all 
four operands and updates the value of all four operands. The 
final values of two operands (coordinate y or angle z and the 
iteration counter i) are not needed after the fixed number of 
CORDIC iterations. Consequently, if all required CORDIC 
iterations can be performed in a single DSP instruction, only 
two operands need to be written back. However, it is unlikely 
that all CORDIC iterations can be performed within one DSP 
instruction given the limited number of execute stages in a 
typical DSP pipeline. For example, in the SB3000 platform, 
four CORDIC iterations fit in the four available execute 
pipeline stages of a vector instruction. If not all required 
CORDIC iterations can be performed by a single DSP 
instruction, then all four operands, including the iteration 
counter, must be written and reread between successive 
CORDIC instructions.  

DSP instructions typically have one to three input 
operands and one output operand. If all four operands of the 
CORDIC iteration need to be read from and written to 
registers, it poses a challenge. In typical DSP architectures 
with 32-bit registers, two 16-bit CORDIC operands (x, y, and z 
are 16 bits and i is at most 4 bits) can be packed into one 
register. They can be unpacked into 20-bit zero-padded 
registers in the CORDIC unit before being used. Two 32-bit 
input registers can thus be used to pass the four input 
CORDIC operands. The write back of all four CORDIC 
operands (two output registers) still remains a challenge. We 
have explored a couple of design options to alleviate this 
problem. 

D. Full-CORDIC Approach 

The full-CORDIC approach augments the CORDIC unit 
with an auxiliary register that is read and written implicitly by 
each CORDIC instruction. This auxiliary register holds two 
CORDIC operands between CORDIC instructions. The other 
two operands are packed into one 32-bit register that is used as 
both a source and target register for the CORDIC instruction. 
The auxiliary register is setup using a special instruction 
before the CORDIC iterations. The two CORDIC operands 
that are not needed as results; y or z and i, are assigned to these 
auxiliary registers. This choice is logical because these two 
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operands need not be written back after all iterations are 
complete and i  requires fewer bits than the other operands.  

Four kinds of instructions are proposed for the full-
CORDIC approach: 

1. Configure Set CORDIC (CFG_SET_CORDIC) 

2. Configure Read CORDIC (CFG_READ_CORDIC) 

3. CORDIC Rotate (ROT_CORDIC) 

4. CORDIC Vector (VEC_CORDIC) 

The CFG_SET_CORDIC instruction is used to initialize 
the auxiliary register, and the CFG_READ_CORDIC 
instruction is used to read the auxiliary register in the 
CORDIC unit. The ROT_CORDIC and the VEC_CORDIC 
instructions can be used in circular, linear, or hyperbolic 
modes to perform four CORDIC iterations in rotation mode or 
vectoring mode. 

The full-CORDIC approach is straightforward to 
implement in a typical DSP architecture. However, the 
hardware overhead due to multiple copies of the auxiliary 
register becomes substantial compared to the hardware cost of 
the entire CORDIC functional unit when considering a multi-
threaded SIMD architecture. The other consideration is saving 
and restoring this additional state of the CORDIC unit during 
interrupt processing. 

E. Semi-CORDIC Approach  

The semi-CORDIC approach splits each CORDIC 
operation into two semi-CORDIC operations, each executed 
using separate semi-CORDIC instructions. The semi-CORDIC 
instructions read x, y, z, and i packed in two 32-bit registers. 
One semi-CORDIC instruction writes back x and y packed 
into one 32-bit register while the other semi-CORDIC 
instruction writes back z and i packed into a second 32-bit 
register. XY CORDIC Rotation (XY_ROT_CORDIC), and ZI 
CORDIC Rotation (ZI_ROT_CORDIC) are the two semi-
CORDIC rotation instructions: 

 XY_ROT_CORDIC computes the new value of x and 
y using i and the sign of z. 

 ZI_ROT_CORDIC then updates the value of z and i. 

Since the XY_ROT_CORDIC instruction depends on the 
current values of z and i, it has to be executed before the 
ZI_ROT_CORDIC instruction. 

ZI CORDIC Vectoring (ZI_VEC_CORDIC) and XY 
CORDIC Vectoring (XY_VEC_CORDIC) are the two semi-
CORDIC vectoring instructions: 

 ZI_VEC_CORDIC computes the new value of z and 
i, based on i and the sign of y. 

 XY_VEC_CORDIC computes the new value of x and 
y, using the previous value of i and the sign of y. 

Since the ZI_VEC_CORDIC instruction depends on the 
sign of the current y value, it has to be executed before 
XY_VEC_CORDIC. Even though the dependency on i is 
violated in this case, the previous value of the iteration counter 

can be determined easily by subtracting the number of 
iterations per instruction.  

All four instructions can be used in circular, linear, or 
hyperbolic modes. Depending on the type of CORDIC 
operation, the respective sequential semantics between the 
semi-CORDIC instructions have to be maintained. The semi-
CORDIC approach readily fits into a traditional RISC 
architecture with two source operands and one destination 
operand per instruction. This approach does not have the 
drawbacks of the full-CORDIC approach, but it almost 
doubles the number of CORDIC instructions needed to 
implement a CORDIC operation.  

IV. EVALUATION METHODOLOGY AND RESULTS 

A. Baseline Implementation 

The LDPC decoder specifications used for this evaluation 
are from the Mobile WiMAX IEEE 802.16e standard. The 
LDPC decoder data-block size considered is 2,304 bits with 
half-rate coding (1,152 data bits and 1,152 parity bits). The BP 
algorithm described in Section II is used for LDPC decoding. 
Four iterations of the BP algorithm are used to obtain a 
balance between decoding capability and computational 
complexity. The hyperbolic tangents (tanh) and hyperbolic 
arctangents (atanh) functions can be computed either using 
polynomial approximations or table lookup operations. 

The polynomial approximations have low memory 
requirements, but are not very accurate. The table lookup 
operations produce results with better accuracy, but have a 
large memory footprint because of the pre-computed lookup 
tables. Since the BP algorithm was very sensitive to the 
accuracy of the hyperbolic functions, especially the atanh 
function, the hyperbolic functions are computed using table 
lookup operations. To meet the required numerical accuracy, 
the lookup tables are 8 KB and 32 KB for tanh and atanh, 
respectively. The large memory footprint for the table lookup 
approach is a disadvantage when using this technique on DSPs 
with small amounts of high-speed memory. 
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Figure 2.  Computation time breakdown for the BP LDPC decoding 
algorithm on the Sandbridge Sandblaster SB3000. 

The breakdown of the computation time utilized by 
various operations in the BP algorithm is shown in Figure 2. 
For a given LDPC code, the parity-check nodes and the 
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variables nodes appear to be connected at random, which is 
key to the superior error-correction performance of LDPC 
codes. However, this randomness results in a large memory 
overhead of reading and writing small chunks of data 
throughout memory. Hence, the computation of the messages 
in the parity-check nodes and variable nodes utilize nearly half 
the computation time. The computation of the tanh and atanh 
functions also contributes to a significant portion of the 
computation time, 14% and 18% respectively.  

B. Evaluation Methodology 

To study the effects of the proposed CORDIC ISA 
extensions on LDPC decoding, the ISA extensions were added 
to the SB3000 tool chain. The CORDIC instructions were 
simulated with four CORDIC iterations per instruction. Since 
the compiler is not able to automatically generate the proposed 
CORDIC instructions from the C application code, the BP 
algorithm for LDPC decoding under investigation was re-
written using intrinsic functions that the compiler replaces 
with CORDIC instructions and optimizes. The functional 
correctness, numerical accuracy, computational performance, 
and power consumption of the modified BP algorithm was 
studied with the help of the modified SB3000 DSP cycle-
accurate simulator and compared against the baseline 
implementation. 

C. Performance Results 

The performance is represented as a speed-up normalized 
to the non-CORDIC baseline implementation. The 
computational speed-up is computed as shown in Equation 13, 
since each instruction takes one thread cycle. 
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Figure 3 shows the speed-up of the full-CORDIC and 
semi-CORDIC algorithm implementations normalized to the 
non-CORDIC baseline software implementation.  
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Figure 3.  Speed-ups on tanh, atanh, and BP algorithm relative to the baseline 
non-CORDIC implementation. 

Both CORDIC implementations of the BP algorithm that 
use CORDIC ISA extensions exhibit speed-up compared to 
the non-CORDIC baseline software implementation. The 
elementary hyperbolic tangent and arctangent operations 
demonstrate significant speed-ups when using the CORDIC 

ISA extensions. However, this speed-up is not translated to the 
BP algorithm completely because the speed-ups apply to 32% 
of the execution time of the BP algorithm, while the rest of the 
execution time remains unchanged. The full-CORDIC and 
semi-CORDIC implementations demonstrate speed-ups of 
1.27x and 1.21x on the BP algorithm, respectively. As 
expected, the semi-CORDIC approach is slower than the full-
CORDIC approach, because it almost doubles the number of 
CORDIC instructions. The LDPC decoder parity-check matrix 
used in the WiMAX standard has repetitive patterns that can 
be exploited to improve the memory performance of the 
algorithm. If these memory optimizations are utilized, then the 
speed-ups observed on the BP algorithm will be improved 
further. 

D. Arithmetic Error 

The arithmetic error is computed by comparing all fixed-
point implementations against a floating-point 
implementation. The arithmetic error is represented as a 
normalized root mean square percentage error and is computed 
using Equation 14. 
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   (14) 

Since the output of the LDPC decoder is decoded bits, the 
arithmetic error is computed on the results of the tanh and 
atanh functions. Both CORDIC-based implementations 
demonstrated similar accuracy and are better than the standard 
Sandblaster implementation. With the non-CORDIC baseline 
software implementation, the arithmetic error for the 
computed hyperbolic functions was 2.08%, while the 
CORDIC implementations reduced the arithmetic error to 
0.05%. The accuracy of the baseline non-CORDIC 
implementation can be improved by increasing the resolution 
of the lookup tables, but this would result in the increase in 
memory requirements.  

E. Hardware Synthesis Estimates 

Hardware synthesis for CORDIC functional units was 
performed using Synopsys® Design Compiler and TSMC’s 
tcbn65gplus 65-nm CMOS standard cell library. All 
environmental and process parameters were set to their 
nominal or typical conditions. In this technology, a fan-out-of-
four (FO4) inverter’s delay is 31.3 ps. 
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Figure 4.  Hardware synthesis estimates for CORDIC functional units.  

All CORDIC functional units are designed to fit in the 
SB3000 SIMD vector pipeline with four SIMD elements and 
four execute pipeline stages. Additional details regarding the 
CORDIC functional units and the impact of the CORDIC ISA 
extensions on power dissipation of wireless algorithms are 
presented by Senthilvelan [17]. The designs are synthesized 
with a clock constraint of 600 MHz to match the clock speed 
of the SB3000. For comparison, the SB3000 SIMD-vector-
multiply-accumulate (VMAC) instruction data path is also 
synthesized in the same environment. Figure 4 presents the 
synthesis area, delay, and power estimates for CORDIC 
functional units that implement full-CORDIC and semi-
CORDIC approaches normalized to the SB3000 VMAC 
datapath. 

The combinational areas of the CORDIC units are similar 
to the combinational area of the SB3000 VMAC units. All 
designs contain pipeline registers to support four execute 
pipeline stages. The CORDIC units contain three 250-bit 
pipeline registers. In addition to the pipeline registers, the full-
CORDIC approach also has auxiliary registers for storing the 
two CORDIC operands in between instructions. The auxiliary 
registers account for 47% of the non-combinational area in the 
full-CORDIC approach, making its CORDIC functional units 
much larger than with the other two approaches.   

The delays of all approaches are similar because the 
synthesis was performed to meet a clock frequency of 600 
MHz. The critical paths for all three CORDIC approaches pass 
through the z data path. The semi-CORDIC and the refined 
semi-CORDIC approaches add a 3-bit constant adder and 
multi-plexer that are used to re-generate the value of the 
iteration counter to this critical path, which causes a small 
increase in delay.  

F. Power Consumption Estimates 

An analytical methodology using instruction type 
profiling and instruction power consumption measurements 
from real hardware is employed to estimate the power 
consumption of wireless algorithms [17]. Previous 
experiments indicate that this power model is accurate to 
within about 10% when modeling the power dissipation of 
compute-intensive wireless communication algorithms. The 
profiler in the Sandblaster simulator is used to perform the 
instruction type profiling on wireless algorithms.  

The Sandblaster DSP’s instruction set can be divided into 
the following instruction classes: 

 Wide-vector instruction class (40-bit or 32-bit SIMD 
vector instructions) 

 Vector instruction class (16-bit SIMD vector 
instructions) 

 Scalar instruction class 

 Control instruction class 

These instruction classes are further divided into 
instruction sub-classes that have similar computational 

complexity in hardware. The power consumption for each of 
these instruction sub-classes is measured on hardware. The 
fraction of computation time each of these instruction sub-
classes constitutes can be measured using simulator profiling. 
The power estimate for the entire application can be computed 
as a dot product of these two measurements. 

To make a fair comparison when comparing power 
numbers computed from two different implementations and 
using this technique, both the implementations need to 
estimate power over the same amount of time. For the shorter 
implementation, after the necessary computations are 
completed, there can be three power scenarios for the 
remaining time: 

1. Least-power scenario is one in which the processor is 
shut down after the computations are completed, 
yielding maximum power savings. 

2. Nominal-power scenario is one in which the 
processor is clock gated to reduce the dynamic 
power. 

3. Most-power scenario is one in which the processor is 
executing NOP instructions. 

In practice, the type of power scenario would be decided 
based on the overhead of restoring normal functionality to the 
Sandblaster DSP after turning it OFF or putting it in stand-by 
mode. 
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Figure 5.  Percentage savings in power consumption on BP algorithm relative 
to the baseline non-CORDIC implementation.  

Figure 5 shows the percentage savings in power 
consumption for the full-CORDIC and semi-CORDIC 
approaches relative to the non-CORDIC baseline 
implementation. Considerable power savings are obtained in 
the nominal- and least-power modes. 

V. SUMMARY 

The CORDIC-augmented Sandblaster implementations 
exhibit 1.2x speed-up over the non-CORDIC baseline 
implementation and provide better arithmetic accuracy and 
power savings with low memory overhead when performing 
LDPC decoding using the BP algorithm. Memory access 
optimizations based on the LDPC parity-check matrix patterns 
can further improve the observed speed-ups. The CORDIC 
algorithms can also be used to efficiently implement vector 
rotations, transcendental functions, and division, which are 
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commonly used in wireless protocols. The penalty is the 
additional silicon area consumed by the CORDIC functional 
units.  

Of the ISA extensions presented, the semi-CORDIC 
approach provides significant performance benefits with a 
reasonable hardware overhead. Other variations of the 
CORDIC algorithm proposed in the literature can potentially 
yield further performance improvements. The general 
techniques presented in this paper are applicable to other high-
performance DSP systems. 
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