
Software Implementation of
 near‐ML Soft‐Output MIMO Detection

Daniele Lo Iacono
3 December 2010

SDR'10
30 November 

3 December, 2010
Washington, DC

T. Cupaiuolo and D. Lo Iacono
Advanced System Technology, STMicroelectronics

Outline



Reduced complexity MIMO detection: The LORD algorithm



The Block Processing Engine (BPE) architecture



Mapping of the LORD algorithm over the BPE



Performance and synthesis results

2

MIMO detection



Exhaustive-search Maximum-Likelihood (ML)


Find the transmitted sequence minimizing the square norm of the error matrix:



For M2-QAM modulation it requires search of M2T symbols (brute-force approach)


Rapidly unfeasible for growing T transmitting antennas

2

s

X T
E

minarg HXYX 

3



Soft-output near-ML MIMO detection: the LORD algorithm


High performance gain over state-of-the-art detectors (ZF, MMSE)


The hard-output version has performance comparable with that of Sphere Decoder


Optimal (ML) max-log soft-output for T=2, near optimal for T>2


Candidate list set has linear instead of exponential dependency on T

The LORD algorithm

A. Pre-processing


Channel estimation matrix H decomposition using H = QR factorization


Multiple QR decomposition (one for each T) to compute LLRs efficiently


Enabling spatial Decision Feedback Equalization (DFE)


For static channel, computed once per frame (latency with no impact on throughput)

B. Detection


For each T and each M2-QAM symbol, compute M2 Euclidean Distances (EDs) :

C. Soft-output LLR generation


For each bit bi of the constellation, compute the difference between the minimum EDs
evaluated over the two sets S+(bi) and S-(bi) defined by bi =0 and bi =1 respectively

4

  2
ED

~D Rxyx 

   xDxD)~b(L ED
Sx

ED
Sx

i minmin
 

y

For each transmitting antenna T and for each received symbol, compute
M2 Euclidean Distances (EDs) to demodulate M2 -QAM symbols:

For 2 transmitting antennas, it consists of computing:


Partial ED (PED) metrics of the reference layer (PED1)


Symbol estimate of the subsequent layer based on spatial DFE


PED metric of the subsequent layer (PED2)


ED metric as sum of all the PEDs (ED= PED1 + PED2)

The LORD algorithm – Detection

  2
ED

~D Rxyx 

5

Reference
Layer

Subsequent
Layer

ED

PED1

PED2 …

The LORD algorithm – Soft-output generation

For each bit bi of the M2-QAM constellation:



Identify the two sets S+(bi) and S-(bi) corresponding to bi =0 and bi =1 respectively



Subtract the two minimum EDs evaluated over the sets S+(bi) and S-(bi)

b0 b1 b2

EDs associated
to the
reference layer
with complex
symbol bit bi = 0

EDs associated
to the
reference layer
with complex
symbol bit bi = 0

EDs associated
to the
reference layer
with complex
symbol bit bi = 1

EDs associated
to the
reference layer
with complex
symbol bit bi = 1

6

   xDxD)~b(L ED
Sx

ED
Sx

i minmin
 

y

Block Processing Engine template architecture

d‐unit
bank

d‐memory
bank

d‐instruction
scheduler

memory
management

fetch
&

decoding

instruction
memory

b‐instruction
execution

system bus interface

data‐port

registers space

Customizable
bank of
heterogeneous
mixed-grain
processing units

Customizable
bank of
heterogeneous
mixed-grain
processing units

Customizable
bank of static
memories for
vector allocation

Customizable
bank of static
memories for
vector allocation

programmable
controller
programmable
controller

7

Flow-control: b-instruction

d‐unit
bank

d‐memory
bank

d‐instruction
scheduler

memory
management

fetch
&

decoding

instruction
memory

b‐instruction
execution

system bus interface

data‐port

registers space

out = opcode(in0,in1,in2)

b-instruction
are also used
to set the way
d-instruction
will access
the memory
bank

b-instruction
are also used
to set the way
d-instruction
will access
the memory
bank

b-instruction
execution unit
b-instruction
execution unit

register fileregister file

8

Vector processing: d-instruction

d‐unit
bank

d‐memory
bank

d‐instruction
scheduler

memory
management

fetch
&

decoding

instruction
memory

b‐instruction
execution

system bus interface

data‐port

registers space

out = unit1.opcode(unit0,in0,in1)

d-instruction
scheduling unit
d-instruction
scheduling unit

bank of static
memories for
vector allocation

bank of static
memories for
vector allocation

routing mesh
dynamically
configuring
unit-memory
and unit-unit
connections

routing mesh
dynamically
configuring
unit-memory
and unit-unit
connections

processing units
performing
parallel and
pipelined
vector
processing

processing units
performing
parallel and
pipelined
vector
processing

9

Block diagrams (macros)

arith0.mulv0 comm0.ed

v1 v3

arith1.mul arith2.sub

v2 v4

comm1.qt arith3.mul

v5 v6

v7

v8

v9

v9 = arith3.mul(comm1,v6)
comm1.qt(arith2,v5)
v8 = arith2.sub(v4,arith1)
v7 = comm0.ed(arith0,v3)
arith0.mul(v0,v1);
arith1.mul(v0,v2)

arith0.mul

arith1.mul

arith2.sub

comm0.ed

comm1.qt

arith3.mul

macro made by
two parallel
branches each
performing
pipelined
processing among
different units

macro made by
two parallel
branches each
performing
pipelined
processing among
different units

parallel and
pipelined
processing
to reduce
execution time
and
memory accesses

parallel and
pipelined
processing
to reduce
execution time
and
memory accesses

10

Pipeline of macros using memory alias

v0 macro #0 v2 macro #1 v3 macro #2 v1

v0 macro #0 r0 macro #1 r1 macro #2 v1

macro #0

macro #1

macro #2

macro #0

macro #1

macro #2

macro #0

macro #1

macro #2

macro #0

macro #1

macro #2

macro #0

macro #1

macro #2

11

vodd

veven

Registers used as memory
alias to implement ping-
pong mechanism among
memories

Registers used as memory
alias to implement ping-
pong mechanism among
memories

v0 macro #1

r0

macro #2 r3 macro #3 v8r1

r2
v9

v7

v1 v6…

12

Mapping of the LORD algorithm: a 3-stage pipeline



Detection
1. Compute the PED of the reference layer (PED1), the DFE and (part of) the PED for the

subsequent layer (PED2)

2. Compute (rest of) PED2 and the ED from the PED1



Soft-output generation
3. Evaluate the LLRs

arith0.mulv0 comm0.ed

v1 v3

arith1.mul arith2.sub

v2 v4

comm1.qt arith3.mul

v5 v6

r0

r1

r2

PED1
PED1

DFEDFE

Part of
PED2

Part of
PED2



Compute the PED of the reference layer (PED1)



Compute the DFE and (part of) the PED for the subsequent layer (PED2)

Mapping of the LORD algorithm: macro #1

macro #1

13



Compute the PED2 and the ED from the PED1 of macro #1



Generate the LLRs using the EDs computed by macro #2

r1 comm2.ed

r2

r3

Rest of
PED2

Rest of
PED2

EDsEDs

Mapping of the LORD algorithm: macro #2 and #3

arith4.add

r0

vect0.min

vect1.min

vect2.min

vect3.min

vect4.min

vect5.min

r3 arith5.sub

arith6.sub

arith7.sub

v7

v8

v9

LLRsLLRs

macro #2

macro #3

14

macro #2

macro #1

macro #3

15

Mapping of the LORD algorithm: pipeline and timing

Vector length depends
on the number of carriers
processed with a single
instruction
(4 in this case).

Vector length depends
on the number of carriers
processed with a single
instruction
(4 in this case).

For adequate vector
lengths the execution of a
bunch of basic
instructions does not
affect total execution time

For adequate vector
lengths the execution of a
bunch of basic
instructions does not
affect total execution time

Loop on 13 vector
instructions for a total of
52 IEEE 802.11n OFDM
symbol carriers

Loop on 13 vector
instructions for a total of
52 IEEE 802.11n OFDM
symbol carriers

vector instructionvector instruction

flow-control instructionflow-control instruction



Processing time for one IEEE 802.11n OFDM symbol @400MHz



Real-time capabilities for both 16-QAM and 64-QAM can be achieved using
a cluster of 4xBPEs with minimum vector length of 4 carriers

16

Performance of LORD on the BPE

4s OFDM symbol

duration for IEEE 802.11n

pr
oc

es
si

ng
 ti

m
e

(
s)

vector length (number of carriers)

16-QAM

64-QAM

64-QAM
16-QAM

25

20

15

10

5

0

1 4 13 52

1xBPE
4xBPE

Synthesis results

BPE 4

BPE
Technology STMicroelectronics CMOS 65nm

Area 0.9mm2 3.6mm2

Clock 400MHz

Detector Type near-ML SO

Max theoretical Gops 12 48

Near-ML detector Gops 9.6 38.4

Utilization (%) 80

Throughput [Mbit/s] @ 16-QAM 98 392

Throughput [Mbit/s] @ 64-QAM 38 152

17

	Software Implementation of �near-ML Soft-Output MIMO Detection
	Outline
	MIMO detection
	The LORD algorithm
	The LORD algorithm – Detection
	The LORD algorithm – Soft-output generation
	Block Processing Engine template architecture
	Flow-control: b-instruction
	Vector processing: d-instruction
	Block diagrams (macros)
	Pipeline of macros using memory alias
	Mapping of the LORD algorithm: a 3-stage pipeline
	Mapping of the LORD algorithm: macro #1
	Mapping of the LORD algorithm: macro #2 and #3
	Mapping of the LORD algorithm: pipeline and timing
	Performance of LORD on the BPE
	Synthesis results

