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ABSTRACT

Software-defined radios (SDRs) improve flexibility and re-

duce development and maintenance costs in modern wireless

communication systems. Unfortunately, they also present in-

creased interference risks as a result of their ability to access

wide spectral bands and their vulnerability to malicious

software attacks. Hence, monitoring execution integrity is a

critical element in regulatory policy for SDRs.

Power fingerprinting (PF) has been proposed as a tech-

nique to assess the integrity of SDRs and detect the execu-

tion of unauthorized software. PF obtains execution status

information from the dynamic power consumption of the

processor and extracts discriminatory features from it to

determine whether the execution is authorized. In this paper,

we provide further evidence of the ability of PF to detect

unauthorized execution in SDR. Our results show that PF is

able to detect an unauthorized change in the configuration of

a PICDEM Z evaluation board which doubles the occupied

transmission bandwidth.

1. INTRODUCTION

Software defined radio (SDR) delivers unseen flexibility in

communications systems, reducing time to market, facil-

itating upgrades, and enabling exciting new technologies,

such as cognitive radio. This flexibility, however, also brings

difficult challenges in terms of spectral regulation and inter-

ference risk management. A malfunctioning radio (due to

misconfiguration, malfunction, of a malicious attack), can

cause interference in wider frequency bands and disrupt

critical communication systems. Regulatory bodies, such as

the US Federal Communications Commission (FCC), have

recognized this challenge and require radio manufacturers,

as part of the certification process, to demonstrate that no

unauthorized software that affects spectral emissions can

be executed in a deployed radio. The FCC, however, did

not define how to accomplish this and it is left to the

manufacturers to select a technique to maintain software

integrity. Power fingerprinting (PF) has been proposed as

a technique to monitor the integrity of SDRs and detect

the execution of unauthorized software. In this paper we

provide further evidence to support the application of power

fingerprinting in SDR for regulatory applications.

Dynamic power consumption in a digital processor is due

to transient currents and load capacitances charge and dis-

charge that occur during bit transitions [1]. These transitions

depend on the specific instructions being executed, param-

eters, and addresses. Therefore, the execution of a given

software routine yields a specific power consumption pattern,

or fingerprint. Any deviation from authorized execution, such

as malicious intrusion or bypass of a critical module, will

disrupt the fingerprints.

Using PF we can develop an external monitoring device

which is constantly looking for deviations from the finger-

prints of authorized code. This monitor can be used to enforce

the exclusive execution of certified software in SDR. During

device certification, the power fingerprint of the certified

software is stored independently and then used at runtime

to verify that only the software used during certification is

executed. Regulatory entities can improve interference risk

management using this approach and promptly stop execution

when critical software that affects spectral emissions is

modified after deployment.

In this paper, we extend previous work on PF. We provide

further experimental evidence of the ability of PF to detect

deviations from authorized code that affects spectral emis-

sions. In our experiments, we successfully detect configura-

tion changes that cause a violation in the spectral emissions

of a basic commercial radio platform from Microchip.

2. PREVIOUS WORK

Run-time execution status monitoring is traditionally accom-

plished by inserting small software constructs and reporting

tasks in the target system, as described in [2]. A similar

approach is presented in [3] with the addition of an expressive

specification method for defining time constraints. These tra-

ditional schemes, however, suffer from the observer’s effect

and depend on the same processor to perform the monitoring

tasks.

In terms of software integrity, most of the literature is fo-

cused on the host domain (e.g. personal computers). Current

approaches to address software integrity include: static tech-

niques (identify vulnerability at compile time), dynamic tech-

niques (based on formal methods or on software constructs to

monitor execution behavior), and hardware-based approaches

(tamper resistance and cryptography). Examples of hardware-

based approaches include the Trusted Computing Module

(TCM) and Intel’s Trusted Execution Technology. The former

performs load time attestation using hash functions and

secure key management and storage. The latter builds from

the TCM and provides hardware-based protected execution

and memory spaces. Unfortunately, the collision resistance

of some hash functions has already been compromised [4].

Furthermore, these techniques only authenticate the loading

of software, not its execution, leaving devices vulnerable to

fault induction by unexpected environmental conditions. Our

proposed approach monitors the actual execution of software,
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providing an extra layer of protection to complement existing

approaches.

Using dynamic power consumption to obtain software

execution status is the basis for power analysis side-channel

attacks. In these attacks, dynamic power consumption is

analyzed to obtain cryptographic keys and other secret in-

formation from digital devices [5]. Because dynamic power

consumption is directly related to the computations being

performed, attackers can use this information to break what

could be considered mathematically strong algorithms. The

same phenomena that allow attackers to “see” inside a cryp-

tographic device, is used in power fingerprinting to assess the

integrity of the code we expect to be executing in a processor.

Previous results in [6], [7] showed the ability of power

fingerprinting to detect execution deviations from a simple

routine that toggled the contents of a register. In this paper

we extend the previous results by demonstrating the ability of

PF to detect execution variations that can potentially impact

spectral emissions.

3. APPROACH DESCRIPTION

The general structure of the proposed PF monitor is depicted

in Fig. 1. A sensor is placed between the power supply and

the main processing hardware to measure the instantaneous

current drain of the processor. The sensor should be placed

as close to the core processor as possible to reduce inter-

ference caused by other components on the board. For our

experiments, we use a current probe, but other approaches

such as a current mirror can be used [8].

Fig. 1. Proposed system description

The most critical aspect in PF is the selection and extrac-

tion of discriminatory features from power traces. Correct

integrity assessment depends on the discriminatory qualities

of the features selected. Unfortunately, there is no effective

procedure to identify optimal features. For this work we

use simple time-domain correlation, but other approaches

(e.g Euclidean distance, energy ratios, wavelet analysis) can

be applied in different domains (e.g. frequency and cyclic-

frequency).

Once the discriminatory features are extracted from the

power traces, a suitable detector compares them with the

expected signatures to determine whether the current exe-

cution is authorized or not. In our case a simple detector

using the Neyman-Pearson criteria is designed, but different

approaches, including neural networks and support vector

machines, can be applied.

4. EXPERIMENT DESIGN

The goal for our experiments is to determine whether power

fingerprinting is able to detect deviations from authorized

software that affect spectral emissions. In order to accomplish

this, we select a basic commercial radio platform which can

be configured in two different operational modes: Normal

Mode, which will be considered allowed, and Turbo Mode,

which allows higher throughput but uses 2.5 times the

bandwidth of the Normal Mode. The goal is to identify when

the Turbo Mode is configured instead of the Normal Mode.

4.1. Hardware Platform

Our target platform is a PICDEM Z Demonstration Kit from

Microchip Technology Inc. [9]. This kit is intended as an

evaluation and development platform for IEEE 802.15.4 [10]

application designers. This standard describes the physical

(PHY) and media access control (MAC) layers for low-

rate wireless personal area networks (WPANs) implemented

using low-cost devices. In the 2450 MHz band, the standard

defines a PHY layer using direct-sequence spread spectrum

(DSSS), supporting an over-the-air data rate up to 250 kb/s.

The 802.15.4 standard is the basis for the ZigBee and

MiWi specifications, which define upper layers not covered

in the standard to provide a complete networking solution.

The kit includes a motherboard with a PIC18LF4620 8-

bit microcontroller, a MRF24J40MA daughterboard with RF

transceiver and antenna, and three different software stack

implementations for Zigbee, MiWi, and MiWi P2P.

The MRF24J40MA in its Normal Mode implements

the IEEE 802.15.4 specifications PHY layer. It employs a

16-ary quasi-orthogonal modulation technique and direct-

sequence spread spectrum with a chip rate of 2000 Mchips/s.

Four informations bits are used to select one of 16 nearly-

orthogonal pseudo-noise sequences (PN) to be transmitted.

The sequences are 32 bits long yielding a spreading gain of

8. The PN sequences for successive data symbols are concate-

nated, and the aggregate chip sequence is modulated onto the

carrier using offset quadrature phase-shift keying (O-QPSK).

Figure 2 shows a snapshot of the spectrum usage during a

transmission using this normal (default) configuration.

The module, however, also implements a Turbo Mode

which can deliver a maximum throughput of 625 kbps. This is

an increase of 2.5 times the IEEE 802.15.4 specifications. The

Turbo Mode is not compliant with the IEEE specifications

and no information is given about the specific modifications

that yield the Turbo Mode. After observing the occupied

spectrum, however, it is clear the throughput improvements

come as a result of wider spectrum usage, as can be seen in

Figure 3. Notice how the spectrum occupancy is also roughly

2.5 time the occupancy in the IEEE 802.15.4 standard.
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Fig. 2. Normal mode spectral occupancy

Fig. 3. Turbo mode spectral occupancy

4.2. Different Test Scenarios

The two possible configurations of the MRF24J40MA RF

module are used in our experiment to test whether power

fingerprinting can detect execution changes that impact spec-

tral emissions. The Normal Mode, as specified in the IEEE

802.15.4 standard, is considered our authorized configuration.

We consider the following scenario: A product using the

MRF24J40MA configured by a PIC processor is approved

for market release by a regulatory body under the Normal

Mode. A savvy user, or an insider, (the “attacker”) looks to

benefit from higher throughput and reconfigures the system

to use the Turbo Mode. This modification affects spectral

emissions, invalidates the regulatory certification granted, and

can potentially cause interference to other users. The actual

attack model is irrelevant. So, we assume that the attacker

has access to the source code and a way to reprogram the

PIC processor configuring the RF module.

Once again, our goal is to use PF to detect an execution

violation during the configuration of the RF module. It is

assumed that a power fingerprint is extracted at certification

time from a device configuring the Normal Mode. A power

fingerprinting monitor will capture traces at run-time and

determine whether the execution corresponds to the code use

during certification or if tampering has occurred.

4.3. Profiling Software

We use a simple software structure to test the previous

scenarios. The test code, shown in Listing 1, uses the set of

APIs provided by Microchip as part of the implementation

of the MiWi P2P Wireless Protocol stack.

In this routine, the board is initialized, a connection is

established, the RF transceiver sends a packet using the

UnicastConnection API, and a software reset is performed

after a short delay.

Listing 1. MiWi P2P Profiling Code
1 BoardInit();

2 ConsoleInit();

3 P2PInit();

4 SetChannel(myChannel);

5 EnableNewConnection();

6 CreateNewConnection();

7 FlushTx();

8 //write payload data

9 UnicastConnection(0, //ID

10 FALSE,//Cmd?

11 TRUE);//crypto?

12 //delay

13 _asm

14 RESET //Software Reset

15 _endasm

Within the P2PInit() implementation, there is a call to

another function called MRF24J40Init() at the end of which

the code shown in Listing 2 is included. The three lines writ-

ing to the different base-band registers (BBREG0, BBREG3,

BBREG4) in the MRF24J40 configure it in the Turbo Mode.

The last two lines, perform a reset of the RF state machine so

the changes are implemented by the MRF24J40. The default

configuration of the MRF24J40 upon reset is the Normal

Mode.

Listing 2. MiWi P2P Configuration Code
1 .

2 .

3 .

4 TMR0H = 0x00; //Clear Timer0 high byte

5 TMR0L = 0x00; //Clear Timer0 high byte

6 LED_2 = 1; //Falling edge in LED2

7 LED_2 = 0; //to trigger oscilloscope

8

9 #ifdef TURBO_MODE

10 PHYSetShortRAMAddr(WRITE_BBREG0, 0x01);

11 PHYSetShortRAMAddr(WRITE_BBREG3, 0x38);

12 PHYSetShortRAMAddr(WRITE_BBREG4, 0x5C);

13

14 PHYSetShortRAMAddr(WRITE_RFCTL,0x04);

15 PHYSetShortRAMAddr(WRITE_RFCTL,0x00);

16 #endif

We test two different scenarios. In Scenario 1, we aim to

discriminate between code compiled with and without the

TURBO MODE definition. The attacker, then, would just have

to recompile using the TURBO MODE directive to set up the

Turbo Mode. The authorized version does not include the

code within the #ifdef section.

Notice that in Scenario 1, extra instructions are inserted

for configuring the Turbo Mode. This makes the job of

the PF monitor easy, as the insertion changes instructions,

fetches, and parameters, therefore yielding a much different

fingerprint.

In Scenario 2, however, the Normal Mode configuration is

explicit. The #ifdef directives are removed and the Normal
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Mode is configured by setting the values of BBREG0,

BBREG3, BBREG4 to 0x00, 0xD8, and 0x9C, respectively.

The attacker still has to write the base-band registers with

the values in Listing 2 to set the Turbo Mode. Scenario 2

makes power fingerprinting more challenging, as there are

no instructions added, just a change in the parameters.

In order to make power trace capture of the configuration

code more efficient, we execute a software reset, after a short

delay, once the unicast transmission is completed. This does

not affect the execution of the profiled code.

There are other important aspects of the profiling code

that were included to facilitate trace captures. Right before

executing the configuration code, we restart Timer 0 in the

processor and turn on and off LED 2 in the board. Timer

0, a 16-bit timer, is used by the MiWi P2P software stack

and is always running. By reinitializing it, we have a more

deterministic power signature without affecting the operation

of the system. LED 2 is used to trigger trace capture.

4.4. Measurement Setup

Trace collection is performed using a Tektronix TDS 649C

real-time oscilloscope and a Tektronix CT-6 current probe.

The probe is connected right after the voltage regulators on

the mother board, which actually has embedded provisions

for doing this kind of measurements. The oscilloscope is

configured to 500 MS/s and 10 mVΩ. The trigger is con-

figured to external source (driven by LED2), falling-edge, 40

mV level, and no pre-trigger samples are kept. A total of

L = 30, 000 samples are collected after every trigger event.

The experiment setup is depicted in Fig 4. Two hundred

traces are captured from the execution of each scenario and

transfered to a host computer using GPIB for their posterior

analysis in MATLAB.

Fig. 4. Measurement Setup

The board itself was slightly modified to let power con-

sumption features be captured. From the motherboard, a total

of six decoupling capacitors were removed totaling a cumu-

lative 6 µF. The function of these capacitors is to mitigate

the stress placed on the power supplies by the strong current

peaks caused by digital processors. It is important to note

that removing decoupling capacitors would not be necessary

if the current sensor is placed closer to the processor power

pins.

4.5. Feature Extraction

Trace analysis to extract signatures and feature vectors fol-

lows that of [6]. We describe the process here for complete-

ness.

Traces captured during the ith execution of code α are

represented by

r(i)α [n] ; n = 0, . . . , L− 1

Because the current probe is placed right after the voltage

regulators, other board components introduce interference to

the measurements. Particularly, the RF transceiver introduces

a low frequency, but strong, oscillation due to charge pumps.

Because software-related power consumption is characterized

by sharp transitions, the first difference between traces is

used.

d(i)α [n] = r(i)α [n]− r(i)α [n− 1]

By using the sample difference, just as in the case of deriva-

tives, sharp transitions are preserved while slow changing

elements are greatly reduced. This operation is effectively

a high-pass filter. Captured traces from the configuration

of Normal Mode are used to create a signature, our target

fingerprint. N traces are averaged to form the target signature

and reduce the effects of random noise in our measurements.

sα [n] =
1

N

N−1
∑

i=0

d(i)α [n] ; n = 0, . . . , L− 1

For this paper, the process of extracting discriminatory

features from the execution of code β consists of simple

time-domain correlation against the target signature. The

correlation, however, is performed on J partial sections

of the signature and the trace, each section has a length

w = ⌊L/J⌋. This partial correlation is performed to avoid

spreading potential differences in the power traces across the

full trace.

The cross correlation for different sample lags, 0 ≤ k ≤ w,

of section j = 1, 2, . . . , J of the traces is given by:

ρ
sαd

(i)

β

(j, k) =
1

(w − 1)σsσd

j∗w
∑

n=(j−1)∗w

sα[n]d
(i)
β [k + n]− ws̄d̄

where s̄ and σs are the sample mean and standard deviation

of the corresponding section in sα, and d̄ and σd are the

sample mean and standard deviation of the corresponding

section in d
(i)
β .

In order to compensate for any clock drifts, we keep the

maximum correlation values for different lags. This action

reduces the dimensionality of our traces to only a sequence

of J peak correlation values for every trace.

ρ̂
sαr

(i)

β

(j) = max
k

{

ρ
sαr

(i)

β

(j, k)

}

Under ideal conditions and with β = α , ρ̂
sαr

(i)

β

(j) = 1 for

every section j. Any deviation from the power consumption

characteristics would be reflected by a reduced correlation

factor. The final test statistic or discriminatory feature used in
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this work to evaluate traces is the minimum peak correlation

value for that specific trace

x
(i)
β = minj ρ̂sαr

(i)

β

(j)

Xβ = x
(i)
β ; ∀i

The random variable x
(i)
β indicates the maximum deviation

from the signature of instance i of code β. Using Xβ ,

we can design appropriate detectors using different criteria

depending on the statistical information we can gather from

the system a priori.

In summary, after capturing traces, we divide them into

J subsections, align each section against the corresponding

section of the target signature, calculate the correlation co-

efficient between them, determine the maximum deviation

from the signature, and make a decision whether the traces

correspond to the execution of the target code.

5. RESULTS

For our Scenario 1, the average peak correlation values

ρ̄sαrβ (j) =
1

N

N
∑

i=1

ρ̂
sαr

(i)

β

(j)

from N = 100 execution instances are shown in Figure 5.

There is a noticeable difference between the correlation with

traces from the same configuration code, Normal Mode (α),

and those from different configuration code, Turbo Mode (β).

As expected, the average peak correlation value is higher

for traces from the configuration of Normal Mode. Additive

noise prevents a perfect correlation in this case.

Fig. 5. Average minimum peak correlation value when original code uses
default configuration

The distribution of the minimum peak correlation values

for traces captured from configuration in both modes Normal

and Turbo, Xα and Xβ , is given in Figure 6. The separation

between sample distributions clearly indicate the ability of

power fingerprinting to discriminate between them. Notice

that not a single sample overlaps to the opposite distribution.

Having these sample distributions, it is possible to design

a suitable detector using the Neyman-Pearson criteria. The

difference between distributions, however, is so large that the

Fig. 6. Minimum peak correlation values sample distribution when original
code uses default configuration

probability of making a classification error is negligible. The

robust performance of power fingerprinting in discriminating

between both configurations is expected, given that dynamic

power consumption depends not only on instructions and

inter-instructions transitions but also on addresses and param-

eters. In Scenario 1, we are greatly disrupting the execution

patterns by adding extra instructions, which requires fetch-

ing from different memory locations, different parameters,

and different inter instruction transitions. Hence, a marked

difference is expected.

Scenario 2 is more challenging from the PF perspective.

In this scenario, the Normal Mode configuration is made

explicitly. Hence, the calls to write the baseband registers in

the RF module are made regardless of whether the Normal

or Turbo modes are configured. This time, there are no

instruction or address changes, only parameters are modified.

The average minimum peak correlation values of the traces

captured in our second scenario are shown in Figure 7 and

their sample distributions in Figure 8

Fig. 7. Average minimum peak correlation value when original code uses
explicit configuration

We can see how the distributions are closer than in the

previous scenario, but still not a single trace is misclassified.

The probability of a classification error using a Neyman-

Pearson criteria is once again negligible.
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Fig. 8. Minimum peak correlation values sample distribution when original
code uses explicit configuration

These two scenarios cover a large number of potential

attacks. If the attacker manages to insert malware by means

other than having the source code, it would be a scenario sim-

ilar to our first experiment. Notice, however, that in order to

detect execution deviations, it is necessary to pre-characterize

the authorized code, including every execution path. This

would be necessary in order to catch an attacker that manages

to insert configuration code outside the configuration section.

On the other hand, if an attacker does not require to insert

malicious code to configure the RF module to Turbo Mode,

as in the case of the explicit configuration used in the second

scenario, the approach can still detect the execution violations

as demonstrated in our second experiment.

6. CONCLUSIONS

In this paper we presented the results of two feasibility

experiments that further support the application of power

fingerprinting in integrity assessment for regulatory purposes.

We successfully demonstrated the ability of power finger-

printing to detect when the expected configuration code is

modified in a simple, but real, radio platform.

In the first experiment we were able to detect when

unauthorized code is inserted to change the RF module in

the PICDEM Z board to Turbo Mode. Furthermore, we were

also able to detect when the parameters change during an

explicit configuration of the RF module to Turbo instead of

Normal mode. In both experiments, we were able to detect

with a 100% accuracy modifications in the configuration code

that can lead to deviations in spectral emissions. While these

results by themselves do not guarante the effectiveness of

power fingerprinting in all platforms and all applications, they

present strong evidence of its feasibility and potential impact.
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