

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

COMPLEXITY ANALYSIS OF SOFTWARE DEFINED DVB-T2 PHYSICAL

LAYER

Stefan Grönroos (Åbo Akademi University, Turku, Finland; stefan.gronroos@abo.fi);
Kristian Nybom (Åbo Akademi University, Turku, Finland; kristian.nybom@abo.fi); and
Jerker Björkqvist (Åbo Akademi University, Turku, Finland; jerker.bjorkqvist@abo.fi)

ABSTRACT

The second generation terrestrial TV broadcasting standard
from the Digital Video Broadcasting (DVB) project, DVB-
T2, has recently been standardized. In this paper we will
perform a complexity analysis of our GNU Radio based
implementation of the modulator/demodulator parts of a
DVB-T2 transmitter and receiver. First we describe the
various stages of a T2 modulator and demodulator, as well
as how they have been implemented in our system. We then
perform an analysis of the computational complexity of
each signal processing block. The complexity analysis is
performed in order to identify the blocks that are not
feasible to run in realtime on a general purpose processor.
Furthermore, we discuss possibilities of implementing these
computationally heavy blocks on other architectures, such
as GPUs (Graphics Processing Units) and FPGAs (Field-
Programmable Gate Arrays), that would still allow them to
be implemented in software and thus be easily
reconfigurable.

1. INTRODUCTION

The DVB-T (Digital Video Broadcast – Terrestrial) system
for digital television broadcasting is widely used for
broadcasting around the world. As high bitrate High-
Definition Television (HDTV) broadcasts become more
prevalent, however, the need for a more spectrum efficient
standard increases. The DVB-T2 standard [1,2] has been
developed to address this need.
 Compared to its predecessor, DVB-T2 has a more
efficient physical layer using state-of-the-art technologies to
achieve close to optimal performance in terms of true bit-
rate in quasi error free conditions: concatenated LDPC
(Low-Density Parity-Check) and BCH (Bose-Chaudhuri-
Hocquenghem) coding, rotated high-order QAM
constellations, MISO (Multiple Input Single Output)
antenna reception, efficient time and frequency interleaving,
large FFT sizes, etc. All in all, DVB-T2 is expected to give
an increase in capacity (bit rate) of at least 30% as compared
to DVB-T, and for some configurations up to 70%[2]. The

upcoming next generation mobile TV broadcasting system,
DVB-NGH (Next Generation Handheld), is also expected to
be based on DVB-T2.
 In this paper, we will present a work-in-progress
software defined DVB-T2 modulator and demodulator using
the GNU Radio framework [3]. In addition to other benefits
of a fully software defined implementation of DVB-T2, the
reconfigurability of such an implementation can be very
beneficial in developing future standards such as DVB-
NGH. As mentioned, the GNU Radio based project is
incomplete, and a number of parts have not yet been
finished. However, the implementation is directly based on
a DVB-T2 simulator, which is more complete.
 We will examine the computational complexity of the
various parts of a DVB-T2 modulator and demodulator
using benchmarks performed on the already implemented
GNU Radio signal processing blocks, as well as on the
simulator blocks. We are not comparing the results to ASIC
(Application-Specific Integrated Circuit) implementations,
as our main motivation for this work is to analyze the
applicability of a DVB-T2 system on a generic SDR
(Software Defined Radio) platform.
 We will also discuss alternative implementations of the
most computationally complex blocks on platforms such as
FPGAs (Field-Programmable Gate Arrays) and GPUs
(Graphics Processing Units), which may allow us to reach
realtime performance, while still retaining the
reconfigurability of a software defined implementation.
 Related work can be found in [4], where a GNU Radio
implementation of a DVB-T modulator is described. An
SDR implementation of a DVB-T2 receiver is described in
[5], where most of the system has been realized using
FPGAs and DSPs (Digital Signal Processors). In contrast,
our implementation aims at keeping most functionality, if
possible, on general purpose, commodity hardware.
 The paper is laid out as follows. In section 2 we will
describe the various parts of a DVB-T2 system. In section 3
we introduce the experimental setup on which
measurements were performed. Section 4 contains the
results of the measurements, while section 5 is reserved for
discussion of the viability of the measured blocks for

SDR'10 Session 7A- 4

634

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

realtime performance. Finally, we conclude the paper in
section 6.

2. A DVB-T2 SYSTEM

In this section, we will describe the main building blocks of
a DVB-T2 modulator, as defined in [1]. These are the
blocks that were benchmarked for this paper.
 The input data streams, which are in the form of
MPEG2 Transport Streams or GSE (Generic Stream
Encapsulation) encapsulated data are first split into one or
more Physical Layer Pipes (PLPs), where each PLP may use
different coding and modulation. In this paper, we will only
consider a single-PLP system. The first module of such a
system is the Input Processing module. This module
converts the input data streams into DVB-T2 baseband
frames. This module will not be discussed further in this
paper, however. After passing through the input processing
module, each baseband frame is processed by the Bit
Interleaved Coding & Modulation (BICM) module, which
contains the following stages (in order):
 FEC (Forward Error Correction) coding. DVB-T2 uses
an outer BCH code, as well as an inner LDPC code. The
resulting FEC blocks can be either 16200 (short code) or
64800 bits (long code) long. 6 different LDPC code rates
are available.
 Bit Interleaver (not used for QPSK modulation).
Consists of parity bit interleaving, followed by column
twist interleaving.
 Mapper, which maps bits onto constellations. Produces
cell words.
 Constellation Rotation, if rotated constellations are
used. The cell values produced by the mapper are rotated
in the complex plane (the angle depends on the
modulation used), and the imaginary part is cyclically
delayed by one cell.
 Cell Interleaver. Used to uniformly spread the cell
words of a FEC block.
 Time Interleaver. The cells of groups of FEC blocks,
making up TI-blocks – which in turn make up
Interleaving Frames – are interleaved.

 The BICM module is followed by the Frame Builder,
the task of which is to assemble so-called T2 frames from
the Interleaving Frames of each PLP, as well as various
signalling data. The modulated cells that are going to be
included in one OFDM (Orthogonal Frequency-Division
Multiplexing) symbol are grouped together in this module.
The Frame Builder module also includes frequency
interleaving, where the cells belonging to an OFDM symbol
are interleaved, providing interleaving in the frequency
domain.
 The frames produced by the Frame Builder are sent to
the OFDM Generation module for further processing. The
OFDM Generation module includes the following parts:

 MISO processing. This is optional, and allows for the
generation of two slightly different output signals for
transmission from two groups of transmitters.
 Pilot Insertion. Cells containing reference information
are inserted at, to the receiver, known points in the
transmitted signal. Pilots can be, among other uses, used
to aid in synchronization and channel estimation at the
receiver.
 IFFT (Inverse Fast Fourier Transform). This is where
the OFDM symbols are modulated. FFT sizes of 1K, 2K,
4K, 8K, 16K, and 32K are supported.
 PAPR reduction. This optional part allows us to reduce
the Peak-to-Average Power Ratio (PAPR) of the
transmitted signal.
 Guard interval insertion. This is where we insert guard
intervals, which are a cyclic continuation of the useful
part of an OFDM symbol.
 P1 symbol insertion. P1 symbols are special 1K OFDM
symbols that are used mainly to aid the receiver in
recognizing and tuning in to the T2 signal.

 The output of the OFDM module is a signal ready for
transmission. In the following section, we will discuss how
the partial implementation in GNU Radio and the T2
simulator were used to benchmark the various functional
blocks of a DVB-T2 system.

3. EXPERIMENTAL SETUP

As mentioned in the introduction, we have implemented
some of the functional blocks discussed in section 2 within
the GNU Radio environment. The actual functionality is
written in C++ and is directly based on the building blocks
of a DVB-T2 simulator developed at Åbo Akademi
University. The blocks that had not yet been implemented in
GNU Radio were run in the simulator instead. The simulator
was not 100% complete, and lacked support for some
configurations such as multiple PLPs, some pilot patterns
etc. Neither the simulator nor the GNU Radio
implementation included the necessary support for tuning in
to a T2 channel, nor for various forms of receiver
synchronization at the time when this paper was written.
 The GNU Radio implementation included the full
BICM module. The time interleaver, however, was
benchmarked using the simulator due to some memory
related issues with that block in the GNU Radio
implementation. The Frame Builder and OFDM Generation
modules, in addition to the time interleaver, were
benchmarked within the simulator.
 The benchmarking was performed on an Ubuntu Linux
operating system using the Linux 2.6.32 kernel. The laptop
computer in question was equipped with an Intel Core 2
Duo T7100 dual core CPU running at 1.8 GHz. During
benchmarking, multithreading was not used within the
measured functionality (and thus only one CPU core was

635

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

exploited). 3GB of DDR2 RAM at 666 MHz was available
in the system.
 The used technology was already a few years old when
this paper was written. Thus, the benchmarks in the
following section would quite certainly be significantly
improved on top-of-the-line equipment.
 The measurements were made by using the
clock_gettime function to return the time before and after
execution of what was considered to be the core
functionality of a functional block, such as a main loop. The
impact of additional memory transfers between blocks and
similar setup operations were mostly ignored.
 The efficiency of the code has been considered when
the blocks were written. The code does however not contain
low level optimizations, such as optimized inline assembly
code. Some blocks could also possibly benefit from the use
of lookup tables instead of calling mathematical functions.
 The possibility for further optimizations combined with
the somewhat dated hardware used, means that the
benchmarks presented in the following section should be
seen mainly as indications of the relative complexity of the
involved functional blocks, as well as indications of the
feasibility of running the blocks on general purpose CPUs.
In the following section, we present the results of
benchmarking the main functionality of the implemented
parts of a T2 system.

4. BENCHMARK RESULTS

In this section the results of the benchmarked algorithms are
presented. As DVB-T2 offers quite many customization
possibilities, we fixed most parameters in the configurations
used for the benchmarks. We used pilot pattern 1, and a
guard interval of ¼ throughout the benchmark tests. Also
only the 8K FFT mode was considered.
 Tables 1 and 2 show the throughputs of the various
blocks in the modulator and demodulator, respectively. The
throughput was measured by timing the core functionality of
the block, and dividing the time used for processing one
FEC block by the size of the FEC block (16200 bits for
short code length, and 64800 bits for long code). Thus, the
throughput measure does not give the actual useful bitrate,
but rather the bitrate including parity data. To gain an
approximate useful bitrate, the throughput figure must be
multiplied by the code rate.
 It is worth noting that the BCH and LDPC encoder and
decoder functionality depends on code rate. The throughputs
in tables 1 and 2 are measured for code rate 1/2. It was
found that the BCH encoder's throughput was roughly
halved from the lowest code rate, 1/2, to the highest, 5/6.
The LDPC encoder was found to not vary significantly in
performance between code rates. A BCH decoder had not
been completely implemented at the time of writing, which
is the reason for the missing measurements in table 2.

 In order to gain a clearer view of which blocks are
suitable for realtime operation, it can be mentioned that
using the 8K FFT mode with the extended carrier mode
enabled, each OFDM symbol contains 6296 data cells, with
each cell representing 2, 4, 6, or 8 bits for QPSK, 16-QAM,
64-QAM, and 256-QAM modulation, respectively. The
maximum amount of OFDM symbols in a frame using the
8K mode, and a guard interval of 1/4 (as in the
experiments), is 223. The duration of such a DVB-T2 frame
is 250ms. From the above information, we can calculate that
in order to fully process such frames, we will require
throughputs of roughly 22.5 and 45 Mbps for 16-QAM and
256-QAM, respectively. The throughputs of the modulator
and demodulator (as presented in tables 1 and 2) divided by
these “target” throughputs for realtime performance,
expressed as percentage values on a logarithmic scale, are
presented in figures 1 and 2. In the figures, a percentage
value at or above 100% thus means that a block has a
throughput at or above the required realtime throughput.
 The following section is dedicated to the discussion of
these results, as well as optimization strategies and
alternative implementation platforms for the most
computationally costly blocks.

5. DISCUSSION

In this section we discuss the results presented in the last
section, and identify which blocks might not be suitable for
execution on general purpose processors.
 It is worth noting that the benchmarked throughputs
indicate the throughput that the main functionality of the
block is capable of if it is run repeatedly with no other
blocks competing for CPU time. In an actual system, these
blocks will need to share the computing resources available.
At the time of writing, it was however possible to purchase
server grade hardware using dual 6-core CPUs, with each
CPU core running at a higher clock frequency than the CPU
of the test hardware. In such a system, each block could, if
necessary, be given exclusive access to at least one CPU
core.
 From figure 1, we can see that the BCH and LDPC
blocks were the slowest blocks of the modulator with less
than 20% of the target bitrate for BCH and less than 25%
for LDPC in the slowest case, i.e. 256-QAM with long code
length. With 16-QAM and short code length, these blocks
performed at about 40% and 80% of the target, respectively.
While these figures are quite low, the combination of further
code optimizations and faster processors might still be able
to make these blocks capable of realtime performance. The
other modulator blocks showed at least close to realtime
performance, where most blocks surpassed realtime
performance.
 It is on the demodulator side that larger problems
emerged. Here also, most blocks operated at close to or

636

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

above realtime performance, except for the constellation
demapper and LDPC decoder. These blocks performed
orders of magnitude below the realtime target. The
demapper was only capable of a throughput of around 100
kbps at 256-QAM, and about 600 kbps at 16-QAM. The
block would require a speedup of roughly 500 times in order
to be able to handle 256-QAM in a realtime system.
 Further profiling of the demapper revealed that the Log-
Likelihood Ratio (LLR) estimation is responsible for the
high complexity here. The LLR estimation algorithm used
in our current implementation – where each bit of each
received cell gets assigned a likelihood value based on
calculated distances to each point in the constellation
diagram – involves several computationally intensive
operations per bit (such as logarithms and exponents, as
well as multiplications and divisions).

Table 1: Modulator throughput (Mbps)

 Short code Long code

 16-QAM 256-QAM 16-QAM 256-QAM

BCH 9.53 9.53 7.45 7.45

LDPC 18.00 18.00 10.13 10.13

Bit
Interleaver 36.00 36.00 36.00 34.11

Mapper 95.29 108.00 72.00 81.00

Rotation 1800.00 3240.00 1296.00 3240.00

Cell
Interleaver 540.00 1620.00 324.00 648.00

Time
Interleaver 53.05 96.61 51.36 95.98

Frame
Builder 98.34 190.28 96.08 196.67

Frequency
Interleaver 295.01 590.87 293.31 590.02

Pilot
Insertion 41.83 82.55 39.81 80.07

FFT 56.05 112.27 55.73 112.10

 It might perhaps be possible to significantly reduce the
computational complexity of the block by using lookup
tables instead of calling mathematical functions. However,
this has not been attempted by the authors. A proposed
methodology for exploiting the large amounts of memory
typically present on general purpose computing systems in
order to accelerate SDR systems, can be found in [6]. This
method, or similar methods, could perhaps be used in the
demapper, as well as in other parts of the system. An FPGA

implementation of a DVB-T2 demapper, together with some
simplifications of the algorithm, is discussed in [7].
 The LDPC decoder performance in the benchmark
results is the performance assuming 10 iterations of the
iterative Belief Propagation (BP) decoder. The amount of
iterations necessary might however vary with the quality of
the received signal, making the LDPC decoder complexity
highly variable.
 The currently used LDPC decoder algorithm is that of
the sum-product decoder [8,9]. This decoder gives good
error correction performance, but is quite computationally
intensive, involving for example hyperbolic tangent
evaluations. The min-sum approximation [8,9] simplifies
this algorithm, trading precision for speed, and involves
mostly additions and comparisons. The long code lengths
involved in DVB-T2 might still make realtime decoding
(with acceptable error correction performance) quite hard to
perform on general purpose processors.

Table 2: Demodulator throughput (Mbps)

 Short code Long code

 16-QAM 256-QAM 16-QAM 256-QAM

LDPC 0.12 0.12 0.10 0.10

Bit
Interleaver 33.06 33.06 32.40 32.40

Mapper 0.54 0.10 0.59 0.09

Rotation 704.35 952.94 648.00 1620.00

Cell
Interleaver 101.25 180.00 108.00 216.00

Time
Interleaver 24.54 49.11 18.27 53.10

Frame
Builder 140.13 280.67 139.32 280.26

Frequency
Interleaver 31.14 59.09 29.33 59.00

Pilot
Insertion 62.28 112.27 37.15 112.10

FFT 70.07 140.33 61.92 124.56

 A Xilinx Virtex-5 LX110 FPGA was used for handling
the realtime LDPC decoding in the DVB-T2 SDR system
described in [5]. Also, in [10] a parallel architecture for
LDPC decoding in a DVB-S2 system (only some minor
differences exist between LDPC codes used for DVB-T2
and DVB-S2) on an FPGA is described.
 LDPC decoding on Graphics Processing Units (GPUs),
and other multicore architectures, is discussed in [11].
While the benchmark results in [11] do show that GPUs can
achieve rather high throughputs for certain codes, the results

637

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

suggest that performance may not be very good for the long
code lengths used in DVB-T2. The authors of [11] point out
that for long codes, the memory bandwidth between host
memory and GPU RAM might become a bottleneck, as well
as the fact that data structures for large codes do not fit very
well into the fast constant memory on a typical GPU.
 We benchmarked our system only using the 8K FFT
size (because the other sizes were largely untested), while
DVB-T2 supports up to 32K FFTs. Use of the larger FFT
sizes will likely be quite detrimental to the throughputs of
the FFT blocks in the modulator and demodulator. The
FFTW [12] library is used for FFT calculations. FFTW
should however compute discrete Fourier transforms in O(n
log n) time for FFT length n [12], which would seem to not

make the use of larger FFT sizes on general purpose
processors infeasible.
 As mentioned earlier, some parts of a complete DVB-
T2 system – such as synchronization functionality in the
receiver – have not been benchmarked here, as they have
not been implemented yet. Thus it is unclear to the authors,
at this point, how much extra complexity these parts would
bring to the system.

6. SUMMARY

In this paper, we have measured the performance of our
software implementations of most of the various signal
processing blocks of a DVB-T2 modulator and

Figure 1: Modulator block throughput relative to required throughput for realtime performance (100% is realtime)

Figure 2: Demodulator block throughput relative to required throughput for realtime performance

638

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

demodulator. The results were presented as throughputs
based on timing the core functionality of each block.
 The results indicate that the modulator should be
possible to realize entirely in software on general purpose
computing systems, given some further optimization of the
algorithms involved. The demodulator, however, might not
be suitable for running exclusively on general purpose
processors. Results indicate that the most computationally
heavy parts of the demodulator are the FEC decoding and
demapper functional blocks. We have discussed alternative
architectures, specifically GPUs and FPGAs, and their
suitability for executing these tasks. These architectures
would retain the reconfigurability that is a major benefit of
SDR systems.
 As the GNU Radio implementation is not finished, the
next step would be to implement all of the remaining blocks
in the GNU Radio environment, as well as to apply some of
the techniques discussed here to improve the performance of
blocks where necessary.

7. REFERENCES

[1] ETSI EN 302 755 v1.1.1, “Digital Video Broadcasting

(DVB); Frame Structure Channel Coding and Modulation for
a Second Generation Digital Terrestrial Television
Broadcasting System (DVB-T2),” 2009.

[2] L. Vangelista, et al., "Key technologies for next-generation
terrestrial digital television standard DVB-T2,"
Communications Magazine, IEEE, vol.47, no.10, pp.146-153,
October 2009.

[3] E. Blossom, “Exploring GNU Radio,” Revision v1.1, Nov.
2004, Available online at: http://www.gnu.org/software
/gnuradio/doc/exploring-gnuradio.html

[4] V. Pellegrini, G. Bacci, and M. Luise, “Soft-DVB, a Fully
Software, GNURadio Based ETSI DVB-T Modulator,” 5th
Karlsruhe Workshop on Software Radios, 2008.

[5] A. Viessmann, et al., "A DVB-T2 receiver realization based
on a software-defined radio concept," Communications,
Control and Signal Processing (ISCCSP), 2010 4th
International Symposium on, pp.1-4, 3-5 March 2010.

[6] V. Pellegrini, L. Rose, and M. Di Dio, “On Memory
Accelerated Signal Processing within Software Defined
Radios”, Technical Report arXiv:1004.0263, April 2010.

[7] Li Meng, C.A. Nour, C. Jego, and C. Douillard, "Design of
rotated QAM mapper/demapper for the DVB-T2 standard,"
Signal Processing Systems, 2009. SiPS 2009. IEEE Workshop
on, pp.018-023, 7-9 Oct. 2009.

[8] N. Wiberg. “Codes and Decoding on General Graphs,” PhD
Thesis, Linköping University, 1996.

[9] Chen, et al., "Reduced-Complexity Decoding of LDPC
Codes," Communications, IEEE Transactions on, vol.53,
no.7, pp. 1232- 1232, July 2005

[10] M. Gomes et al., "Flexible Parallel Architecture for DVB-S2
LDPC Decoders," Global Telecommunications Conference,
2007. GLOBECOM '07. IEEE, pp.3265-3269, 26-30 Nov.
2007.

[11] G. Falcao, L. Sousa, and V. Silva, "Massively LDPC
Decoding on Multicore Architectures," Parallel and
Distributed Systems, IEEE Transactions on, no.99, pp.1-1,
2010.

[12] M. Frigo, and S.G. Johnson, "The Design and Implementation
of FFTW3," Proceedings of the IEEE , vol.93, no.2, pp.216-
231, Feb. 2005.

639

