
Interfacing a Reasoner with an 
SDR using a Thin, Generic API:

 A GNU Radio Example

Jakub Moskal
Mieczyslaw Kokar
Shujun Rachel Li



Introduction


 
Our focus: Cognitive Radios that utilize ontologies, 
rules (policies) and an inference engine (reasoner)

1Northeastern University

Reasoner Configuration:
- Ontology
- Rules (System Strategy)
- Procedural Attachments

SDR

Applications

General-purpose 
reasoner

Environment

Tx Rx

get(meter)

set(knob)



Using Ontology


 
Ontology –

 
a formal, explicit specification of a 

set of concepts in a specific domain and the 
relationship between these concepts



 
Benefits of Ontology-based approach to CR:


 
Ontology captures domain knowledge that is abstract and 
easy to exchange between radios



 
Ontology is not part of the architecture, it is provided 
dynamically to the reasoner



 
Rules written in ontological terms are abstract and 
independent of implementation details of the SDR software 
or hardware layers

Northeastern University 2



OWL –
 

Web Ontology 
Language



 
OWL captures ontological knowledge in a format suitable for 
automatic interpretation (reasoning)



 
KB consists of:


 
TBox –

 

axioms about the domain


 
Abox –

 

facts pertaining to a particular radio

Northeastern University 3

Radios:
•share common Tbox
•exchange ABox –

 

facts about 
themselves
•infer implicit facts from the KB



Objective


 
Reasoner needs access to SDR’s Parameters


 
Knobs

 

and Meters (K&M)

 

need to be represented in the 
Knowledge Base (ontology)



 
Knobs

 

and Meters

 

need to be accessible from within the rules 
(via procedural attachments)



 
Design a universal interface for accessing SDR’s K&M

Northeastern University 4

if
meter_A < 30 and meter_B == true

then
knob_K = 0.9

SDR A

SDR B

SDR C

General-purpose 
Reasoner ?

CR 
OntologyRules



Traditional approaches –
 Domain-specific API



 
SDR API

Northeastern University 5



 
Standard API

Drawbacks:
•Limited to a finite set of APIs known at design 
time (SDR C is not supported)
•Requires dedicated code and maintenance for 
each SDR
•Limited to common functionality
•Potentially language/platform dependent

Drawbacks:
•Requires maintenance of the standard API-

 
dedicated code
•Requires adapters for non-compliant software
•Assumes community agreed on a standard
•API may become a bottleneck
•Frequent updates unlikely

SCA CR API would most likely fall in this 
category

API-dedicated code

SDR D
SDR C

(unsupported)



Setting a knob with domain-
 specific API



 
API known at design time



 
API becomes a hard-coded 
part of CR implementation



 
API changes require 
recoding, recompiling, 
redeploying…



 
Not suitable for 
heterogeneous inter-radio 
requests for K&M



 
Lack of standard

Northeastern University 6



Alternative: PropertySet API


 
Two methods: set and get



 
Parameter names passed 
as arguments



 
Parameter names are fixed, 
meaningful only for radios 
that use exactly the same 
names



 
Not suitable for inter-radio 
requests

Northeastern University 7

txPower ≠

 

transmissionPower

scanDuration ≠

 

detectionDuration



Reflection


 

Reflection allows programs to observe and modify their own structure 
and behavior dynamically, at runtime

Northeastern University 8

Class sdrClass = getClass(“SDR_A”);
Object sdrObject = sdrClass.newInstance();
Method method = findMethod(“getTxAmplitude”);
Object txAmp = method.invoke(sdrObject);

Class sdrClass = getClass(“SDR_B”);
Object sdrObject = sdrClass.newInstance();
Method method = findMethod(“getTxAmp”);
Object txAmp = method.invoke(sdrObject);

Pass different arguments



LiveKB API


 
SDR-independent, thin and generic API

Northeastern University 9

LiveKB API:
•any get(string owlProperty)
•void set(string owlProperty, any value)
•string getAll()

LiveKBFactory API:
•LiveKB getInstance(string IDL, string OWL, string mapping)

Characteristics:
•Not specific to any SDR
•Platform-independent via CORBA
•Uses reflection to invoke SDR-specific invocations
•Requires three components:

•

 

Domain ontology
•

 

SDR’s IDL
•

 

Mapping from OWL to IDL



Setting a knob with LiveKB

Northeastern University 10

SDR-agnostic call
(specified in OWL terms)

SDR-specific call(s)

CORBA Any type



LiveKB Mapping
Mapping:

<sdro:Radio resourse=“radioA:Radio_A”>
<sdro:participatesIn>

<sdro:hasParticipant>
<sdro:txAmplitude 

get="GNURadio.getTransmitter.getTxAmpl”
set="GNURadio.getTransmitter.setTxAmp" />

</sdro:hasParticipant>
</sdro:participatesIn>

</sdro:Radio>

Northeastern University 11

In Rules:

<set>
<param>/sdro:Radio/sdro:participatesIn/sdro:hasParticipant/sdro:txAmplitude</param>
<param datatype=“xsd:float”>0.9</param>

</set>

Name of CORBA NamingService object

Sequence of invocations



Domain-specific vs. LiveKB
Feature Domain-specific 

API
LiveKB API

Style of invocation Tied to a specific API Defined in abstract terms from 
the ontology shared by all 
radios (WINNF Standard)

Access to remote knobs 
and meters

Limited to homogenous 
radios

Available via exchange of 
control messages

Platform-independence It depends … Inherent in the API design

Consequence of API 
change

Recode, recompile, 
redeploy, etc.

Adjust mapping

Required resources None Additional middleware –

 
CORBA, LiveKB

Northeastern University 12



Cognitive Radio Framework

Northeastern University 13

LiveKB
API

Monitor Service

Data In/Out

Reasoner

CORBA
&

Services

SDR

Data
messages

Reflection

Rx/Tx
API

Control
messages

DFE APIData Front-End (DFE)

LiveKB

Platform-independent
SDR-independent

Reusable
Knowledge

Data
Exchange

Control 
knowledge
Exchange

Knobs & Meters
Access



Demo setup

Northeastern University 14

GNU Radio
USRP + RFX2400

CRF

CORBA & Services

GNU Radio
USRP + RFX2400

CRF

CORBA & Services

BaseVISor BaseVISor

LiveKB LiveKB

Control Knowledge
Exchange

Remote K&B

Data
Exchange

Local
Knobs &
Meters

Local
Knobs &
Meters



Improving power efficiency

Northeastern University 15

mSNR reading
(local meter)

Sender’s power efficiency
(remote meter)

Request to alter sender’s 
Transmit Amplitude
(remote knob)



Future work


 
Establish metrics for a quantitative evaluation of 
differences between LiveKB and traditional API



 
Integrate LiveKB with SCA



 
Use LiveKB on a different SDR platform and in a 
different self-controlling software domain



 
Investigate alternatives to CORBA+IDL



 
Implement a Protégé

 
OWL Editor plugin for supporting 

mapping development (optional)

Northeastern University 16



Thank you!

Northeastern University 17



Roles and artifacts

Northeastern University 18

•

 

Establish ontology 
(WINNF Standard)

•

 

Write rules

•

 

Provide IDL
•

 

Write mapping


	Interfacing a Reasoner with an SDR using a Thin, Generic API:� �A GNU Radio Example
	Introduction
	Using Ontology
	OWL – Web Ontology Language
	Objective
	Traditional approaches – Domain-specific API
	Setting a knob with domain-specific API
	Alternative: PropertySet API
	Reflection
	LiveKB API
	Setting a knob with LiveKB
	LiveKB Mapping
	Domain-specific vs. LiveKB
	Cognitive Radio Framework
	Demo setup
	Improving power efficiency
	Future work
	Thank you!
	Roles and artifacts

