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ABSTRACT 
 
The second generation terrestrial TV broadcasting standard 
from the Digital Video Broadcasting (DVB) project, DVB-
T2, has recently been standardized. In this paper we will 
perform a complexity analysis of our GNU Radio based 
implementation of the modulator/demodulator parts of a 
DVB-T2 transmitter and receiver. First we describe the 
various stages of a T2 modulator and demodulator, as well 
as how they have been implemented in our system. We then 
perform an analysis of the computational complexity of 
each signal processing block. The complexity analysis is 
performed in order to identify the blocks that are not 
feasible to run in realtime on a general purpose processor. 
Furthermore, we discuss possibilities of implementing these 
computationally heavy blocks on other architectures, such 
as GPUs (Graphics Processing Units) and FPGAs (Field-
Programmable Gate Arrays), that would still allow them to 
be implemented in software and thus be easily 
reconfigurable. 
 
 

1. INTRODUCTION 
 
The DVB-T (Digital Video Broadcast – Terrestrial) system 
for digital television broadcasting is widely used for 
broadcasting around the world. As high bitrate High-
Definition Television (HDTV) broadcasts become more 
prevalent, however, the need for a more spectrum efficient 
standard increases. The DVB-T2 standard [1,2] has been 
developed to address this need.  
 Compared to its predecessor, DVB-T2 has a more 
efficient physical layer using state-of-the-art technologies to 
achieve close to optimal performance in terms of true bit-
rate in quasi error free conditions: concatenated LDPC 
(Low-Density Parity-Check) and BCH (Bose-Chaudhuri-
Hocquenghem) coding, rotated high-order QAM 
constellations, MISO (Multiple Input Single Output) 
antenna reception, efficient time and frequency interleaving, 
large FFT sizes, etc. All in all, DVB-T2 is expected to give 
an increase in capacity (bit rate) of at least 30% as compared 
to DVB-T, and for some configurations up to 70%[2]. The 

upcoming next generation mobile TV broadcasting system, 
DVB-NGH (Next Generation Handheld), is also expected to 
be based on DVB-T2.  
 In this paper, we will present a work-in-progress 
software defined DVB-T2 modulator and demodulator using 
the GNU Radio framework [3]. In addition to other benefits 
of a fully software defined implementation of DVB-T2, the 
reconfigurability of such an implementation can be very 
beneficial in developing future standards such as DVB-
NGH. As mentioned, the GNU Radio based project is 
incomplete, and a number of parts have not yet been 
finished. However, the implementation is directly based on 
a DVB-T2 simulator, which is more complete.  
 We will examine the computational complexity of the 
various parts of a DVB-T2 modulator and demodulator 
using benchmarks performed on the already implemented 
GNU Radio signal processing blocks, as well as on the 
simulator blocks. We are not comparing the results to ASIC 
(Application-Specific Integrated Circuit) implementations, 
as our main motivation for this work is to analyze the 
applicability of a DVB-T2 system on a generic SDR 
(Software Defined Radio) platform. 
 We will also discuss alternative implementations of the 
most computationally complex blocks on platforms such as 
FPGAs (Field-Programmable Gate Arrays) and GPUs 
(Graphics Processing Units), which may allow us to reach 
realtime performance, while still retaining the 
reconfigurability of a software defined implementation.
 Related work can be found in [4], where a GNU Radio 
implementation of a DVB-T modulator is described. An 
SDR implementation of a DVB-T2 receiver is described in 
[5], where most of the system has been realized using 
FPGAs and DSPs (Digital Signal Processors). In contrast, 
our implementation aims at keeping most functionality, if 
possible, on general purpose, commodity hardware.  
 The paper is laid out as follows. In section 2 we will 
describe the various parts of a DVB-T2 system. In section 3 
we introduce the experimental setup on which 
measurements were performed. Section 4 contains the 
results of the measurements, while section 5 is reserved for 
discussion of the viability of the measured blocks for 
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realtime performance. Finally, we conclude the paper in 
section 6. 
 

2. A DVB-T2 SYSTEM 
 
In this section, we will describe the main building blocks of 
a DVB-T2 modulator, as defined in [1]. These are the 
blocks that were benchmarked for this paper.  
 The input data streams, which are in the form of 
MPEG2 Transport Streams or GSE (Generic Stream 
Encapsulation) encapsulated data are first split into one or 
more Physical Layer Pipes (PLPs), where each PLP may use 
different coding and modulation. In this paper, we will only 
consider a single-PLP system. The first module of such a 
system is the Input Processing module. This module 
converts the input data streams into DVB-T2 baseband 
frames. This module will not be discussed further in this 
paper, however. After passing through the input processing 
module, each baseband frame is processed by the Bit 
Interleaved Coding & Modulation (BICM) module, which 
contains the following stages (in order): 
 FEC (Forward Error Correction) coding. DVB-T2 uses 
an outer BCH code, as well as an inner LDPC code. The 
resulting FEC blocks can be either 16200 (short code) or 
64800 bits (long code) long. 6 different LDPC code rates 
are available. 
 Bit Interleaver (not used for QPSK modulation). 
Consists of parity bit interleaving, followed by column 
twist interleaving. 
 Mapper, which maps bits onto constellations. Produces 
cell words. 
 Constellation Rotation, if rotated constellations are 
used. The cell values produced by the mapper are rotated 
in the complex plane (the angle depends on the 
modulation used), and the imaginary part is cyclically 
delayed by one cell. 
 Cell Interleaver.  Used to uniformly spread the cell 
words of a FEC block. 
 Time Interleaver. The cells of groups of FEC blocks, 
making up TI-blocks – which in turn make up 
Interleaving Frames – are interleaved.  

  The BICM module is followed by the Frame Builder, 
the task of which is to assemble so-called T2 frames from 
the Interleaving Frames of each PLP, as well as various 
signalling data. The modulated cells that are going to be 
included in one OFDM (Orthogonal Frequency-Division 
Multiplexing) symbol are grouped together in this module. 
The Frame Builder module also includes frequency 
interleaving, where the cells belonging to an OFDM symbol 
are interleaved, providing interleaving in the frequency 
domain. 
  The frames produced by the Frame Builder are sent to 
the OFDM Generation module for further processing. The 
OFDM Generation module includes the following parts: 

 MISO processing. This is optional, and allows for the 
generation of two slightly different output signals for 
transmission from two groups of transmitters. 
 Pilot Insertion. Cells containing reference information 
are inserted at, to the receiver, known points in the 
transmitted signal. Pilots can be, among other uses, used 
to aid in synchronization and channel estimation at the 
receiver. 
 IFFT (Inverse Fast Fourier Transform). This is where 
the OFDM symbols are modulated. FFT sizes of 1K, 2K, 
4K, 8K, 16K, and 32K are supported. 
 PAPR reduction. This optional part allows us to reduce 
the Peak-to-Average Power Ratio (PAPR) of the 
transmitted signal. 
 Guard interval insertion. This is where we insert guard 
intervals, which are a cyclic continuation of the useful 
part of an OFDM symbol. 
 P1 symbol insertion. P1 symbols are special 1K OFDM 
symbols that are used mainly to aid the receiver in 
recognizing and tuning in to the T2 signal. 

  The output of the OFDM module is a signal ready for 
transmission. In the following section, we will discuss how 
the partial implementation in GNU Radio and the T2 
simulator were used to benchmark the various functional 
blocks of a DVB-T2 system.   
 

3. EXPERIMENTAL SETUP 
 
As mentioned in the introduction, we have implemented 
some of the functional blocks discussed in section 2 within 
the GNU Radio environment. The actual functionality is 
written in C++ and is directly based on the building blocks 
of a DVB-T2 simulator developed at Åbo Akademi 
University. The blocks that had not yet been implemented in 
GNU Radio were run in the simulator instead. The simulator 
was not 100% complete, and lacked support for some 
configurations such as multiple PLPs, some pilot patterns 
etc. Neither the simulator nor the GNU Radio 
implementation included the necessary support for tuning in 
to a T2 channel, nor for various forms of receiver 
synchronization at the time when this paper was written. 
 The GNU Radio implementation included the full 
BICM module. The time interleaver, however, was 
benchmarked using the simulator due to some memory 
related issues with that block in the GNU Radio 
implementation. The Frame Builder and OFDM Generation 
modules, in addition to the time interleaver, were 
benchmarked within the simulator. 
 The benchmarking was performed on an Ubuntu Linux 
operating system using the Linux 2.6.32 kernel. The laptop 
computer in question was equipped with an Intel Core 2 
Duo T7100 dual core CPU running at 1.8 GHz. During 
benchmarking, multithreading was not used within the 
measured functionality (and thus only one CPU core was 
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exploited). 3GB of DDR2 RAM at 666 MHz was available 
in the system. 
 The used technology was already a few years old when 
this paper was written. Thus, the benchmarks in the 
following section would quite certainly be significantly 
improved on top-of-the-line equipment. 
 The measurements were made by using the 
clock_gettime function to return the time before and after 
execution of what was considered to be the core 
functionality of a functional block, such as a main loop. The 
impact of additional memory transfers between blocks and 
similar setup operations were mostly ignored. 
 The efficiency of the code has been considered when 
the blocks were written. The code does however not contain 
low level optimizations, such as optimized inline assembly 
code. Some blocks could also possibly benefit from the use 
of lookup tables instead of calling mathematical functions.  
 The possibility for further optimizations combined with 
the somewhat dated hardware used, means that the 
benchmarks presented in the following section should be 
seen mainly as indications of the relative complexity of the 
involved functional blocks, as well as indications of the 
feasibility of running the blocks on general purpose CPUs. 
In the following section, we present the results of 
benchmarking the main functionality of the implemented 
parts of a T2 system. 
 

4. BENCHMARK RESULTS 
 
In this section the results of the benchmarked algorithms are 
presented. As DVB-T2 offers quite many customization 
possibilities, we fixed most parameters in the configurations 
used for the benchmarks. We used pilot pattern 1, and a 
guard interval of ¼ throughout the benchmark tests. Also 
only the 8K FFT mode was considered.  
 Tables 1 and 2 show the throughputs of the various 
blocks in the modulator and demodulator, respectively. The 
throughput was measured by timing the core functionality of 
the block, and dividing the time used for processing one 
FEC block by the size of the FEC block (16200 bits for 
short code length, and 64800 bits for long code). Thus, the 
throughput measure does not give the actual useful bitrate, 
but rather the bitrate including parity data. To gain an 
approximate useful bitrate, the throughput figure must be 
multiplied by the code rate.   
 It is worth noting that the BCH and LDPC encoder and 
decoder functionality depends on code rate. The throughputs 
in tables 1 and 2 are measured for code rate 1/2. It was 
found that the BCH encoder's throughput was roughly 
halved from the lowest code rate, 1/2, to the highest, 5/6. 
The LDPC encoder was found to not vary significantly in 
performance between code rates. A BCH decoder had not 
been completely implemented at the time of writing, which 
is the reason for the missing measurements in table 2. 

 In order to gain a clearer view of which blocks are 
suitable for realtime operation, it can be mentioned that 
using the 8K FFT mode with the extended carrier mode 
enabled, each OFDM symbol contains 6296 data cells, with 
each cell representing 2, 4, 6, or 8 bits for QPSK, 16-QAM, 
64-QAM, and 256-QAM modulation, respectively. The 
maximum amount of OFDM symbols in a frame using the 
8K mode, and a guard interval of 1/4 (as in the 
experiments), is 223. The duration of such a DVB-T2 frame 
is 250ms. From the above information, we can calculate that 
in order to fully process such frames, we will require 
throughputs of roughly 22.5 and 45 Mbps for 16-QAM and 
256-QAM, respectively. The throughputs of the modulator 
and demodulator (as presented in tables 1 and 2) divided by 
these “target” throughputs for realtime performance, 
expressed as percentage values on a logarithmic scale, are 
presented in figures 1 and 2. In the figures, a percentage 
value at or above 100% thus means that a block has a 
throughput at or above the required realtime throughput. 
 The following section is dedicated to the discussion of 
these results, as well as optimization strategies and 
alternative implementation platforms for the most 
computationally costly blocks. 
 

5. DISCUSSION 
 
In this section we discuss the results presented in the last 
section, and identify which blocks might not be suitable for 
execution on general purpose processors. 
 It is worth noting that the benchmarked throughputs 
indicate the throughput that the main functionality of the 
block is capable of if it is run repeatedly with no other 
blocks competing for CPU time. In an actual system, these 
blocks will need to share the computing resources available. 
At the time of writing, it was however possible to purchase 
server grade hardware using dual 6-core CPUs, with each 
CPU core running at a higher clock frequency than the CPU 
of the test hardware. In such a system, each block could, if 
necessary, be given exclusive access to at least one CPU 
core. 
 From figure 1, we can see that the BCH and LDPC 
blocks were the slowest blocks of the modulator with less 
than 20% of the target bitrate for BCH and less than 25% 
for LDPC in the slowest case, i.e. 256-QAM with long code 
length. With 16-QAM and short code length, these blocks 
performed at about 40% and 80% of the target, respectively. 
While these figures are quite low, the combination of further 
code optimizations and faster processors might still be able 
to make these blocks capable of realtime performance. The 
other modulator blocks showed at least close to realtime 
performance, where most blocks surpassed realtime 
performance. 
 It is on the demodulator side that larger problems 
emerged. Here also, most blocks operated at close to or 
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above realtime performance, except for the constellation 
demapper and LDPC decoder. These blocks performed 
orders of magnitude below the realtime target. The 
demapper was only capable of a throughput of around 100 
kbps at 256-QAM, and about 600 kbps at 16-QAM. The 
block would require a speedup of roughly 500 times in order 
to be able to handle 256-QAM in a realtime system. 
 Further profiling of the demapper revealed that the Log-
Likelihood Ratio (LLR) estimation is responsible for the 
high complexity here. The LLR estimation algorithm used 
in our current implementation – where each bit of each 
received cell gets assigned a likelihood value based on 
calculated distances to each point in the constellation 
diagram – involves several computationally intensive 
operations per bit (such as logarithms and exponents, as 
well as multiplications and divisions). 
 

Table 1: Modulator throughput (Mbps) 

 Short code  Long code  

 16-QAM 256-QAM 16-QAM 256-QAM 

BCH 9.53 9.53 7.45 7.45 

LDPC 18.00 18.00 10.13 10.13 

Bit 
Interleaver 36.00 36.00 36.00 34.11 

Mapper 95.29 108.00 72.00 81.00 

Rotation 1800.00 3240.00 1296.00 3240.00 

Cell 
Interleaver 540.00 1620.00 324.00 648.00 

Time 
Interleaver 53.05 96.61 51.36 95.98 

Frame 
Builder 98.34 190.28 96.08 196.67 

Frequency 
Interleaver 295.01 590.87 293.31 590.02 

Pilot 
Insertion 41.83 82.55 39.81 80.07 

FFT 56.05 112.27 55.73 112.10 
 
  
 It might perhaps be possible to significantly reduce the 
computational complexity of the block by using lookup 
tables instead of calling mathematical functions. However, 
this has not been attempted by the authors. A proposed 
methodology for exploiting the large amounts of memory 
typically present on general purpose computing systems in 
order to accelerate SDR systems, can be found in [6]. This 
method, or similar methods, could perhaps be used in the 
demapper, as well as in other parts of the system. An FPGA 

implementation of a DVB-T2 demapper, together with some 
simplifications of the algorithm, is discussed in [7]. 
 The LDPC decoder performance in the benchmark 
results is the performance assuming 10 iterations of the 
iterative Belief Propagation (BP) decoder. The amount of 
iterations necessary might however vary with the quality of 
the received signal, making the LDPC decoder complexity 
highly variable.  
 The currently used LDPC decoder algorithm is that of 
the sum-product decoder [8,9]. This decoder gives good 
error correction performance, but is quite computationally 
intensive, involving for example hyperbolic tangent 
evaluations. The min-sum approximation [8,9] simplifies 
this algorithm, trading precision for speed, and involves 
mostly additions and comparisons. The long code lengths 
involved in DVB-T2 might still make realtime decoding 
(with acceptable error correction performance) quite hard to 
perform on general purpose processors. 
 

Table 2: Demodulator throughput (Mbps) 

 Short code  Long code  

 16-QAM 256-QAM 16-QAM 256-QAM 

LDPC 0.12 0.12 0.10 0.10 

Bit 
Interleaver 33.06 33.06 32.40 32.40 

Mapper 0.54 0.10 0.59 0.09 

Rotation 704.35 952.94 648.00 1620.00 

Cell 
Interleaver 101.25 180.00 108.00 216.00 

Time 
Interleaver 24.54 49.11 18.27 53.10 

Frame 
Builder 140.13 280.67 139.32 280.26 

Frequency 
Interleaver 31.14 59.09 29.33 59.00 

Pilot 
Insertion 62.28 112.27 37.15 112.10 

FFT 70.07 140.33 61.92 124.56 
  
   
 A Xilinx Virtex-5 LX110 FPGA was used for handling 
the realtime LDPC decoding in the DVB-T2 SDR system 
described in [5]. Also, in [10] a parallel architecture for 
LDPC decoding in a DVB-S2 system (only some minor 
differences exist between LDPC codes used for DVB-T2 
and DVB-S2) on an FPGA is described. 
 LDPC decoding on Graphics Processing Units (GPUs), 
and other multicore architectures, is discussed in [11]. 
While the benchmark results in [11] do show that GPUs can 
achieve rather high throughputs for certain codes, the results 
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suggest that performance may not be very good for the long 
code lengths used in DVB-T2. The authors of [11] point out 
that for long codes, the memory bandwidth between host 
memory and GPU RAM might become a bottleneck, as well 
as the fact that data structures for large codes do not fit very 
well into the fast constant memory on a typical GPU. 
 We benchmarked our system only using the 8K FFT 
size (because the other sizes were largely untested), while 
DVB-T2 supports up to 32K FFTs. Use of the larger FFT 
sizes will likely be quite detrimental to the throughputs of 
the FFT blocks in the modulator and demodulator. The 
FFTW [12] library is used for FFT calculations. FFTW 
should however compute discrete Fourier transforms in O(n 
log n) time for FFT length n [12], which would seem to not 

make the use of larger FFT sizes on general purpose 
processors infeasible. 
 As mentioned earlier, some parts of a complete DVB-
T2 system – such as synchronization functionality in the 
receiver – have not been benchmarked here, as they have 
not been implemented yet. Thus it is unclear to the authors, 
at this point, how much extra complexity these parts would 
bring to the system.  
 

6. SUMMARY 
 
In this paper, we have measured the performance of our 
software implementations of most of the various signal 
processing blocks of a DVB-T2 modulator and 

Figure 1: Modulator block throughput relative to required throughput for realtime performance (100% is realtime) 

 
Figure 2: Demodulator block throughput relative to required throughput for realtime performance 

638



 

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved 

demodulator. The results were presented as throughputs 
based on timing the core functionality of each block. 
 The results indicate that the modulator should be 
possible to realize entirely in software on general purpose 
computing systems, given some further optimization of the 
algorithms involved. The demodulator, however, might not 
be suitable for running exclusively on general purpose 
processors. Results indicate that the most computationally 
heavy parts of the demodulator are the FEC decoding and 
demapper functional blocks. We have discussed alternative 
architectures, specifically GPUs and FPGAs, and their 
suitability for executing these tasks. These architectures 
would retain the reconfigurability that is a major benefit of 
SDR systems. 
 As the GNU Radio implementation is not finished, the 
next step would be to implement all of the remaining blocks 
in the GNU Radio environment, as well as to apply some of 
the techniques discussed here to improve the performance of 
blocks where necessary. 
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