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ABSTRACT 
 
Combined with BEEcube's 3rd generation Xilinx Virtex-5 
FPGA based hardware platform, the BEE3[1], an integrated 
set of BEEcube solutions for system implementation enables 
implementation of a wide range of high-performance real-
time military and defense applications, including signal 
intelligence, signal warfare, software defined radio, MIMO 
communications, radar, and many more. 
 The paper presents BEEcube's SDR reference design 
that highlights BEE3 as an SDR prototyping platform, 
featuring an FPGA-based continuous wideband vector 
signal generator, with real-time software control using Wind 
River's VxWorks [2] over Gigabit Ethernet.  Carrier 
frequency tones ranging from 0 to 2GHz highlight the 
inherent wideband capability of BEE3's I/Q 2Gsps DAC. 
 The BEE3 ADC expansion board simultaneously 
captures the analog output, with data being streamed and 
displayed directly in the Matlab™ [3] environment via the 
Ethernet data transfer libraries provided by BEEcube’s 
distributed Nectar OS™ [4] embedded and host-side 
software solution.  BEE3's ADC can sample up to 3GHz, 
offering true direct RF sampling capability. Through BEE3 
Easy Algorithm Deployment coupled with high-speed I/O 
and infrastructure, the BEE3 system software allows 
algorithm designers without any RTL or low-level hardware 
design knowledge to easily program the target BEE3 
system. 
 Advanced signal processing algorithms and complete 
SDR implementations can be rapidly prototyped on the 
BEE3 system, running at hundreds-of-MHz clock rates.  For  
deployment, the same design can be easily retargeted in the 
BEEcube Platform Studio (BPS) [5] design environment to 
fit into various hardware platforms with different form 
factors, capabilities, and FPGA technologies. 
 

1. INTRODUCTION 
 
Radio communication remains the simplest and the most 
flexible method to locally communicate in the battlefield 
today; however, frequency jamming, channel availability, 
contention and even spectrum capacity management remain 
relevant. Fortunately, new real-time and dynamic 

opportunities for solving these challenges exist in the form 
of Software Defined Radios (SDR) and Cognitive Radio 
strategies. 

Radio communication, like most electronic 
technologies today, is leveraging the advantages of moving 
analog concepts to the digital domain, thus forming a new 
field of Digital Communication Design.  With the move to 
digital, additional logic can be applied in real-time to both 
signal transmission as well as the information being carried.  
Though first generation (e.g. SDR) systems have been 
successfully deployed, new design ideas are far from 
exhausted. The challenge is having a vehicle to test new 
digital radio concepts and algorithms on an efficient 
prototyping platform that can handle the real-time multi-
GHz environment. 

The BEECube BEE3 system provides a flexible 
platform for design, implementation, and validation of next 
generation wideband SDR systems. Each BEE3 system 
provides 4 Xilinx Virtex-5 SX95T FPGA chips for DSP 
processing, two full 3GHz analog inputs, and two 2GHz 
analog outputs on two independent ADC and DAC modules. 
These ADC/DAC modules can be used in direct IF/RF 
synthesis applications.  Despite the 3GHz/2GHz sample rate 
of the ADC/DAC chip, FPGA processing can keep up with 
the ADC/DAC interfaces by using a built-in 
multiplexer/demultiplexer feature combined with on-FPGA 
DDR I/O resources.  For example, the 3GHz ADC is 
connected to each FPGA with 4 parallel DDR750 digital 8-
bit channels, and on the FPGA the internal signal path 
provides the end user with 8 parallel 8-bit channels running 
at 375MHz each; well within the 450MHz operating 
frequency of the FPGA device. This allows end users to use 
the BEE3 system to validate full end-to-end SDR systems 
running at real-time, in excess of full multi-GHz analog 
bandwidth. 

In addition to the hardware features listed above, 
the BEE3 unique software design environment—BEEcube 
Platform Studio (BPS)—is a Mathworks Simulink based 
turn-key algorithm to real-time implementation tool flow. 
Users can turn their original SDR communication algorithm 
simulation models in Simulink into actual hardware 
implementation, but still retain programmability of software 
parameters. 
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To further enhance the programmability and 
debugging of the system, the embedded component of 
BEEcube’s Nectar OS provides an extensible shell 
environment where the user can interact with all BPS-
generated cores at runtime.  Each BPS core provides a 
driver API which can be used to write custom code to 
manage and monitor the system under test directly on the 
FPGA.  In addition, Nectar OS can optionally provide a 
network service for control of all software components from 
a remote workstation. 

In this paper we explore a SDR oriented reference 
design using the BEE3.  The purpose of this design is not to 
provide a fully functional SDR communication radio, but to 
demonstrate the various pieces need to construct a multi-
GHz wide band SDR radio with real-time implementation 
on the BEE3-W platform.  

In a typical SDR system, the carrier frequency and 
waveform modulation schemes are the two most important 
parameters to remain flexible. In the BEE3 SDR reference 
design presented in this paper, carrier frequency is digitally 
synthesized on FPGAs based on the Direct Digital 
Synthesizer (DDS) core from Xilinx.  

Unlike traditional low-bandwidth DDS, in a wide-
band system, since the ADC/DAC interface has 8 parallel 
equally phased digital channels in order to produce the full 
multi-GHz analog coverage, the wide-band DDS also needs 
to be digitally phased to match the input/output 
requirements. Instead of hard locking each DDS core’s 
phase increments (controlling the frequency) and relative 
phase to other DDS cores (controlling the phase alignment), 
the BEE3 system combined with Nectar OS allows the end 
user to set these parameters at run-time, hence controlling 
the exact carrier frequency.  The BPS software 
automatically maps software control registers connected to 
each of the DDS cores’ hardware control ports. A user 
defined C program was written to provide the end user with 
command line access to modify carrier frequency with the 
BEEcube Nectar OS running on each FPGA in the BEE3 
system. This program takes the user input of frequency, and 
then calculates in software the proper phase increments and 
offset for each of the 8 DDS cores, and then toggles the 
corresponding DDS control signals to load the parameters to 
each core.  With networking support enabled in Nectar OS, 
this same functionality is available to a remote control host, 
for example a management RTOS such as VxWorks. 

Modulation schemes can also be modified on the 
transmitter side by using the BPS shared memory feature. 
On the output of the each of the eight parallel DDS cores, 
the carrier signal is digitally modulated with a periodic 
transmission signal stored in 8 shared memory Block RAM 
(BRAM) components, one for each DDS core. Users can 
upload arbitrary waveforms to each of the shared memories 
and observe the corresponding modulation on the analog 
output. 
 

On the receiver side, the parallel ADC inputs are 
directly captured in a similar shared BRAM scheme. Nectar 
OS fully controls the data capture, which can be triggered 
externally by the user via the embedded shell or Ethernet.  
In addition, once a complete window of data has been 
captured into shared BRAM, the data samples from the 
ADC can be streamed to a host computer for further 
analysis at very high speed.  
 

2. SDR EXAMPLE USING BEECUBE’S FPGA 
PROTOTYPING PLATFORM 

 
In this example, we use the BEE3 development and 
deployment platform as an SDR prototyping platform.  The 
BEE3 was developed out of research conducted at the 
Berkeley Wireless Research Center (BWRC) at the 
University of California, Berkeley, and is a real-time, rack 
mountable/table top symmetrical multi-FPGA platform.  
The objective is to demonstrate the use of a platform that 
allows for flexible algorithm and feature set definitions 
permitting various and changing mission critical needs. 
 
2.1. The BEE3 Platform and BPS Design Environment 
 
BEEcube’s third generation BEE (Berkeley Emulation 
Engine), the BEE3 [1], is a multiple FPGA platform that is 
specially suited for prototyping of signal processing 
algorithms and applications.  In this demonstration, we have 
used a single BEE3 module consisting of four Xilinx Virtex-
5 FPGAs.  The module has a capacity of 5M ASIC gates.  
The four FPGAs are interconnected with a ring and each 
includes two channels of DDR2-400 memory.  Each FPGA 
quadrant has a fully symmetrical design, including identical 
memory and I/O interfaces.  This symmetrical architecture 
allows both a high level of redundancy for fault-tolerant 
processing, as well as complete implementation 
compatibility regardless of which FPGA quadrant is 
programmed with a particular design.  Multiple high-speed 
data interfaces available on each module include: 160 Gbps 
SERDES, Quad x8 PCI Express, Quad 1000BASE-T 
Ethernet, and Quad 40-pair LVDS QSH expansion slots. 
Each module also has a net capability of 64GB of DRAM. 

BEEcube Platform Studio (BPS) [5] is a system-
level, hardware/software co-development environment built 
on top of the MathWorks™ Simulink® framework. BPS 
provides automatic generation of all platform specific 
hardware interfaces and corresponding software drivers. 
Months of engineering tasks to convert complex DSP 
algorithms to implementation can be achieved through BPS 
in a matter of days, all without requiring user knowledge of 
the low level FPGA implementation details, such as high 
speed I/O interfaces, timing closure, HW/SW interfaces, and 
IP integration issues. 
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The BEE3 hardware platform also supports ADC 
and DAC expansion boards.  The ADC expansion board is a 
dual channel 3 GSps model using two National 
Semiconductor ADC083000 ADCs with independent clock, 
data, reset and trigger SMA inputs for each ADC.  The quad 
channel 1.5 GSps version uses the ADC08D1500 device. 
All ADC boards support 8-bit resolution per channel per 
ADC/FPGA.  The analog sample rate supported is 1000 to 
3000 MHz, with a balun input bandwidth of 30 to 1800 
MHz.  

The DAC expansion board features a dual 2 GSps 
DAC from Teledyne (RDA112M4MSLPD) supporting dual 
independent clock inputs and data outputs.  The resolution is 
9-bit up to 2 GSps (with a 4:1 mux) or 12 bit resolution up 
to 1.5 Gsps (with a 2:1 mux).  The design presented in this 
paper uses the 9-bit, 4:1 multiplexed operating mode of the 
DAC. 
 
3. THE SDR REFERENCE DESIGN ARCHITECTURE 
 
Using the BEE3 FPGA prototyping platform we are able to 
support a continuous wideband vector signal generator 
design and generate sample real-time runs.  Controlled by 
software via a control host (e.g. VxWorks) over standard 
Gigabit Ethernet communication, the FPGA prototyping 
system can handle dynamic carrier frequency tone sweeps 
ranging from 0 to 2 GHz. With 2 Gbps I/O DACs, wideband 
capability can be handled natively.  Coupled with an ADC 
expansion board, simultaneous capture of the analog output 
can be directly displayed in real-time using standard low-
cost algorithm display tools, such as Matlab.  The ADC 
solution can sample up to 3GHz, offering true direct RF 
sampling capability. 

This SDR reference design uses only 2 of the 4 
BEE3 FPGAs, leaving plenty of logic resources for other 
radio components.  The first FPGA (FPGA-A) in our design 
is used as a 2 GSps DAC signal source.  FPGA-A generates 
the carrier tone, based on a numerically controlled oscillator 
(NCO), and contains an arbitrary modulation pattern, up to 
16,384 samples in length.  The modulation pattern is held in 
FPGA block memory (BRAM) and can be dynamically 
updated at runtime via a UART or Gigabit Ethernet link 
from a remote host using integrated software interfaces 
generated automatically by BPS. 

The second FPGA (FPGA-B) is associated with the 
3GSps ADC module and functions as a virtual oscilloscope.  
FPGA-B captures data into its BRAM in 16,834 sample 
windows. The captured data can be read via a UART or 
Gigabit Ethernet into Matlab running on the host for direct 
analysis. 
 

4. IMPLEMENTING THE FPGA DESIGN 
 
Though programming FPGAs traditionally requires detailed 
RTL and target knowledge, for this design example, we 
demonstrate the use of an “Algorithm Development” 
paradigm.  To program the target FPGA prototyping 
platform, we used the design component libraries provided 
by BPS and thus avoided implementation details such as 
timing closure and input/output interface issues. 
 

 
Figure 1: DAC Signal source model built using BEEcube Platform Studio (BPS) 

 

Figure 1: DAC Signal Source Model built using BEEcube Platform Studio (BPS) 
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4.1. The DAC Signal Generator Design 
 
BPS allows the use of prebuilt libraries to create a DAC 
signal source model and automatically program the FPGA 
and all the necessary I/O interfaces.  The DAC design used 
the reference design shown in Figure 1. For this design both 
the User IP clock rate and the Reference clock rate are set to 
250 MHz, 1/8 of the 2 GHz sampling clock rate.  

The two BPS Software Register blocks labeled 
“data” and “ctrl” are used to program the Xilinx DDS 
(Direct Digital Synthesizer) blocks, which generate the 
digital sine wave that drives the DAC.  The “data” signal is 
sent to all 8 DDS components and provides the sine wave 
data. The outputs of the Sine Generator block directly drive 
the inputs of the DAC block. The output of the DDS 
component is multiplied with the gain value before being 
sent to the block output, as shown in Figure 2.  The gain 
BRAM blocks allow for signal modulation up to 2,048 
samples. 

The BPS DAC block provides a direct, unmodified 
interface to the data inputs of the DAC device.  Because the 
FPGA to DAC physical interface uses DDR (double data 
rate) signaling, two full sets of inputs are provided: one set 
for data to be driven to the DAC on the rising clock edge, 
and one set for data to be driven to the DAC on the falling 
edge.  Within each set of inputs, each data port corresponds 
to a value that will be driven by the DAC on its analog 
output in sequence.  
 

4.1. The ADC Signal Capture Design 
 
The outputs of the ADC block are connected to the 
“Scopes” block.  The “Scopes” block is a wrapper for the 
software simulation scopes. There are two scopes, “Data” 
and “Out of Range”.  The “Data” scope gives a 
representation of the output of the ADC block.  Note that 
the first input of the “Data” scope bypasses the ADC block 
allowing comparisons between the source sine wave and the 
ADC output.  The “Out of Range” scope shows when the 
Out of Range outputs on the ADC block are high, indicating 
the data is out of the range of the ADC hardware.  Again the 
original sine wave signal, which bypassed the ADC block, is 
given as reference. See an example of the ADC virtual 
scope model in Figure 3. 
 

5. RUNTIME SOFTWARE CONTROL 
 
The previous sections have described all the infrastructure 
provided by the BEE3 hardware platform and  the BPS 
design environment which can be used for prototyping SDR 
applications.   The final component of a complete SDR 
system is the runtime software control interface itself, which 
provides the flexibility to monitor and modify the system in 
the field. 

This runtime software interface is provided by 
Nectar OS, which runs as a lightweight embedded 
application directly on each FPGA.  BPS automatically 
generates a small microcontroller with attached local 
memory to each design.  This processor is responsible for 
running the command shell (available via the integrated 
serial UART in BEE3), performing all initialization and 

 
Figure 2: Details of signal generator 
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maintenance routines defined for specific cores, and 
optionally servicing all network requests from remote hosts. 

In this reference design, software control is 
provided via shared memory components from the BPS 
blockset.  For the transmitter (shown in Figure 1), two 
software registers data and ctrl are used to pass frequency 
and phase values into the DDS components which generate 
the carrier tone.  A single custom command, dac_set_freq, 
is added to the shell which automatically calculates and sets 
the appropriate values to drive a specific frequency at the 
DAC output.  This same command can also be implemented 
on a remote control host, such as VxWorks, and sent over 
Ethernet as well.  The shared BRAM components gain0 
through gain7 can also be loaded with any arbitrary 
modulation pattern, which will automatically be mixed onto 
the carrier tone. 

For the receiver, a capture software register is used 
to trigger one window of ADC samples to be captured into 
local memories upon a rising edge of the register value.  
These shared BRAM components used to store the samples 
can then be read via Ethernet at high speed to continuously 
monitor and analyze the transmission channel. 
 

6. DAC/ADC SIGNAL AND SCOPE PERFORMANCE 
 
In our example design, our DAC Signal Source (FPGA-A) 
has a system clock of 250MHz, enforced by a DAC sample 
rate of 2GSps, DDR signaling, and 4:1 mux ratio.  The NCO 
is implemented using Xilinx DDS cores (v2.1) with up to 20 
bits of signal output precision, SFDR up to 120 dB and ∆f 
down to 0.02 Hz.  The total FPGA (SX95T) utilization for 
our NCO of 9 bit output, 1Hz resolution, 54 dB SFDR is: 
 

• 4% DSP48s,  
• 21% BRAM, and  
• 21% Slice utilization 

 
For our ADC virtual scope performance, the 

FPGA-B system clock runs at 375Mhz, for a sample rate of 
3 GSps,  DDR signaling, and 4:1 demux ratio.  Our total 
FPGA  (SX95T) utilization is: 
 

• 1% DSP48s,  
• 16% BRAM, and  
• 15% Slice utilization 

 
 

 
Figure 3: Details of ADC Virtual Scope 
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The overall system performance is measured for 
both a 10MHz tone and 667MHz tone.  Results are shown in 
Figures 4 and 5 and summarized below. 
 
10MHz tone: 

• Carrier peak @ 53.9 dB 
• Largest spur @ 10.6 dB 
• SFDR = 43.3dB 

 
667MHz tone: 

• Carrier peak @ 49.1 dB 
• Largest spur @ 3.1 dB 
• SFDR = 46 

 

7. CONCLUSION 
 
The implication for such real-time/high-speed prototyping 
systems is essential to adding “intelligence” to signal 
handling and information, and additional needs exist in the 
areas of defense applications, including MIMO (Many In 
Many Out) communications radar applications, signal 
intelligence and warfare. 
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Figure 5: Generated 667MHz Signal 

 

 Figure 4: Generated 10MHz Signal 
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