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ABSTRACT

This paper presents an interleaver / deinterleaver architec-
ture that meets all the requirements for complex SDR appli-
cations, basically, it offers enough flexibility to implement
about any interleaving method. This architecture allows to
run several interleaving processes concurrently, either with
the same method or with different ones, enabling high per-
formance multi-radio applications with the same hardware.
This architecture integrates the interleaving altogether with
the rate matching and the frame equalization – two closely
related processing –, improving the overall system’s perfor-
mance.

While the reconfigurable interleaver can be shared
among several steps of the communications process, it would
be very inefficient to use it for the internal interleaving of
turbo coding or decoding. It would require a large commu-
nication bandwidth between the interleaver and the channel
coder / decoder. This paper also discusses the implementa-
tion of two highly optimized interleaver architectures for the
specific requirements of turbo coding modules of LTE and
UMTS standards.

1. INTRODUCTION

It is widely accepted that future wireless communications
devices will be based in Software Defined Radio Platforms
(6),(8), Radio Platforms composed of shared hardware and
software modules, all of them being configurable enough to
support different standards.

This paper presents three interleaver architectures: a re-
configurable one that is capable of implementing any inter-
leaving method, and two other which are highly optimized
for the internal interleaving of the channel turbo coding / de-
coding modules of LTE and UMTS standards.

As the interleaving process has a direct impact on the per-
formance of the system, many papers have been written that
evaluate performance of different interleaving methods (5),
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(9), (10), (12). In contrast, few papers are focused on inter-
leaver architectures for SDR applications. (4), (11) and (14)
are examples of dual-mode interleaver architectures, which
are sufficient for systems targeting standards with similar in-
terleaving methods, but not for real SDR and CR applications.

Our reconfigurable interleaver / deinterleaver module
also implements rate-matching and frame-equalization within
the same hardware. To our knowledge, no other previous ar-
chitecture proposed this, which in fact increases not only the
performance of the interleaver itself, but also the overall sys-
tem performance.

The paper is organized as follows: Section II describes
the functionality and architecture of our full reconfigurable
interleaver. Section III presents the optimized core of LTE’s
inner interleaver. The section IV presents the optimized core
for UMTS inner interleaver. The cores are compared to other
implementations in section V. Section VI concludes.

2. FULL RECONFIGURABLE INTERLEAVER

As illustrated by figure 1, our fully reconfigurable interleav-
ing core uses three internal multi-port memories: an input
buffer X , an output buffer Y and a permutation buffer P ,
which holds the table that defines the permutation function
π(i). The basic operation mode is straightforward: entries
of the permutation table are pointers to input buffer entries;
during execution the permutation table stored in P is parsed,
one entry at a time, and the pointed input sample X[P [i]] is
copied in the output buffer: Y [i] = X[P [i]].

In the presented implementation, the input and output
buffers are 8 bits wide with length of 216 = 65536. The P
buffer is 16 bits wide, allowing to address the whole 64k sam-
ples from input buffer X . This memory configuration exem-
plifies the requirements of a worst case scenario, and can be
changed according to the particular requirements of a given
application, without altering the functionality of the core.

For systems targeting only one or two communica-
tions standards, and assuming their interleaving functions are
structured ones, it is likely that more efficient architectures
exist, both in terms of silicon area and power consumption:
while input and output buffers can usually not be avoided in
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any implementation, the permutation buffer can sometimes
be replaced by a more cost effective address generator. But
as we target complex SDR with a full range of flexibility and
as we want to adapt even to not yet defined interleaving meth-
ods, it was chosen using a permutation buffer as the one op-
tion that offers the level of flexibility and performance that is
required. In order to mitigate the overhead, we take benefit
of the offered flexibility and implement extra features as rate
matching, frame equalization, handling of soft bits and hard
bits, and mapping in multi-carrier waveforms.

An important characteristic of our architecture is its ca-
pability to handle concurrent instances of the same or differ-
ent standards (for multi-radio applications). Switching from
one standard to another is just a matter of loading a new per-
mutation table in memory or, when several tables fit in the P
buffer, pointing to a different table(see figure 1 ). In other ap-
proaches based on address generators this can be achieved by
duplicating the hardware and / or adding different generators
for different standards (assuming all of them are known at de-
sign time). . . up to the point where the number of generators
becomes intractable or where their cumulated cost exceeds
the cost of our table-based solution. Our figures account al-
ready for this capability.

16 bits

Permutation buffer (P ) Input buffer (X)

8 bits 8 bits

Output buffer (Y )

64k64k 64k

π1(0)

π1(l1 − 1))

l1

π2(0)
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π2(i)
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Fig. 1. Memory based interleaver architecture

2.1. Advanced Interleaving modes

As already mentioned, our reconfigurable architecture offers
several extra features, configured through a set of parameters.
It is important to note that these extra features do not require
extra computation time, they are performed while interleav-
ing and with the same hardware.

2.1.1. Hard-bits and soft-bits modes

The module handles soft bit samples of 1 to 8 bits, stored on
a one byte per sample basis, as shown on figure 2, example
(a). The unused bits on a byte are ignored in the input buffer
and forced to zero in the output buffer.

0..00
sample

(a)

(b) j

iπ1(i)

π2(i)

i

j

P X Y

smpl. width

x..x
smpl. width

bit offset13 bits

Fig. 2. Softbits (a) and Hardbits (b) operating mode

In the hard-bits mode, each byte of the input or output
buffer holds 8 different one-bit samples. The meaning of
the entries in the permutation table P changes: the 13 MSBs
(Most Significant Bits) are the byte offset in the input buffer
X and the 3 LSBs (Least Significant Bits) are the bit offset
of the input sample in the selected byte, as depicted in figure
2, example (b), where the input and output data are accessed
bitwise. Hard bits are frequently used on transmission and
soft bits on reception.

2.1.2. Rate-matching mode

The rate matching process is carried out so that the size of a
block of samples matches the size of radio frames. It will ei-
ther repeat bits to increase the rate or puncture bits to decrease
the rate.

At transmission the rate-matching is specified in the per-
mutation table, either by repeating entries in the P Buffer, or
by omitting them, accessing several times the same sample
from the X buffer, or simply not accessing it at all, according
to the rate-matching specification.

At reception, repeated samples will be handled differ-
ently from the others. When rate-matching mode is enabled,
the MSB of each P entry is considered as a repeat flag. The
15 LSBs form the pointer to the input sample, reducing the
range to 32768 instead of 65536. The repeat flag defines a
repeat sequences in the P buffer (figure 3). The pointers in a
repeat sequence point to the different copies of the same re-
peated input sample. The different copies can have different
values because of transmission errors. Depending on the se-
lected rate-matching mode, the corresponding, single, output
sample will be the average of the copies or the last one. If
rate-matching mode is average, a repeat sequence is at most
8 entries long. Unless the last of a repeat sequence, an entry
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with the repeat flag unset points to a regular, non-repeated,
sample.
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πrepeat
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Fig. 3. Rate-matching operating mode

2.1.3. Frame equalization mode

Frame equalization consists in adding stuffing bits to the data
stream, either zeros or ones, with the purpose of ensuring
that the output can be segmented into equal size segments to
be transmitted in a TTI (Transmission Time Interval).

When the frame equalization option is enabled, two spe-
cial values of permutation entry are defined: ForceZero
and ForceOne. When a ForceZero / ForceOne en-
try is encountered in the P buffer, the interleaver forces a
zero / one in the next (ith) position of the Y buffer. The
ForceZero and ForceOne special values can be specified
as an operation parameter, and should of course be different.
Figure 4 illustrates the frame equalization.

2.1.4. Very large permutation functions

Although the proposed buffer sizes are large enough for most
today’s standards, it is possible that future interleaving meth-
ods require larger permutation tables. Still, these large per-
mutations can be implemented in this architecture in several
passes.

When interleaving in several passes, it may be required
to skip output entries that were updated in previous passes
or will be updated in subsequent passes. In order to al-
low this, a third special value is defined for the permuta-
tion entries: the SkipValue. When the SkipValue en-
try is encountered and the skip mode is enabled, the pointer
to the output buffer is incremented without writing any out-
put sample, thus preserving the value of the skipped sam-
ple. The SkipValue entry can also be defined as an op-
erating parameter and should be different from ForceZero
and ForceOne if both skip and frame equalization modes
are enabled.

2.2. Implementation

The interleaver was implemented as a pipeline with stationary
control as depicted in figure 5. The pipeline is divided in nine

zero

one

π(i) = ForceZero

π

P Y

i

i

Fig. 4. Frame equalization mode

stages. Flushing or stalling it is never necessary. It runs at full
speed (one permutation entry per cycle) in all configurations.
Three out of the nine stages are dedicated to memory access,
the others are used to generate read and write addresses for
the three buffers, and to make calculations for Rate-matching
and Frame-equalization procedures.

The address generation logic of this module was synthe-
sized for a 130 nm CMOS standard cells library, its maxi-
mum speed is 350Mhz, although we require only 200Mhz.
At 200Mhz the area consumption is of just 0.02mm2.

3. OPTIMIZED INTERLEAVER CORES

A generic, table-based, interleaver such as the one described
in the previous section is not always the best solution, even in
the SDR context. The internal interleaver of turbo coders / de-
coders is tightly coupled with the channel coding / decoding.
It would be rather inefficient to delegate this specific inter-
leaving to an external generic interleaver. This is especially
true for the decoder because the interleaver is used several
times per iteration of the decoding process and the number
of iterations is frequently 5 to 10 per code word. A dedi-
cated, compact and energy efficient address generator, em-
bedded directly inside the channel coder / decoder seams a
much better solution. The two address generators presented
below are dedicated to the 3GPP UMTS and 3GPP LTE turbo
interleavers. They implement all variants of these two stan-
dards at a much lower hardware cost than the generic inter-
leaver. Their major drawback, of course, is that they would
not handle a possible new standard, with a totally different
turbo interleaving scheme.

Contrary to other implementations, like (3), these inter-
leavers are already designed to be embedded in a complete
SoC in which a CPU is in charge of controlling the whole dig-
ital baseband processing. Thanks to this CPU, some block-
length specific parameters are computed in software and di-
rectly used by the hardware address generators. This HW /
SW partitioning allows for a more efficient hardware utiliza-
tion.
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Fig. 5. Full reconfigurable Interleaver controller

3.1. LTE turbo encoder interleaver

This module implements an address generator for the LTE
turbo encoder and decoder as defined in (2). The block of
samples to interleave is first written in a buffer in the natural
order. It is then read out according to the sequence of ad-
dresses produced by the address generator. The inverse per-
mutation is applied by writing the input block with the ad-
dress generator and reading out in natural order.

The 3GPP LTE turbo internal interleaver is defined in (2)
as π(i) = P (i) = (f1× i+ f2× i2) mod k, where f1 and f2
are two parameters depending on the block size k. The mod-
ule generates a sequence of indexes P (0), P (1), . . . P (k−1).
P (i) is the position in the input block of the ith sample of
the output block. The first output index P (0) is thus the
index in the input block of the first output sample. The
parameters used by the module (α, β) are calculated in ad-
vance from the f1, f2 parameters of the 3GPP specification:
α = (f1 + f2) mod k and β = (2× f2) mod k.

In the course of an interleaving / deinterleaving opera-
tion, the i index increments from 0 to k − 1. The module
takes benefit of this simple scheme to compute the polyno-
mial P (i) incrementally:

P (i+ 1) = f1 × (i+ 1) + f2 × (i+ 1)2

= P (i) + f1 + 2× i× f2 + f2

= P (i) +Q(i)
Q(i+ 1) = Q(i) + 2× f2 = Q(i) + β

With P (0) = 0 and Q(0) = f1 + f2 = α. The sequence
wraps around k naturally. There is no need to detect the
last value of a sequence or to reload Q(0) and P (0) in their
corresponding registers. Indeed P (k) = 0 = P (0) and
Q(k) = α = Q(0). Because P (i), Q(i), α, β are naturals
less than k, the modulus k reduction when computingP (i+1)
and Q(i + 1) is a simple comparison with k and an optional
subtraction by k. The implementation is depicted in figure6.
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Fig. 6. Optimized architecture for LTE turbo interleaver

3.2. UMTS turbo encoder interleaver

This module implements an address generator for the UMTS
turbo encoder and decoder as defined in (1). As in the LTE
case, the interleaving / deinterleaving is implemented by writ-
ing in natural order and reading in permuted order or the op-
posite.

The module generates a sequence of indexes
n0, . . . nk−1. The ni index is the position in the input block
of the ith output sample. The first output value n0 is thus the
position in the input block of the first output sample.

After hardware / software partitioning, it was decided to
pre-compute several parameters in software. From the UTMS
standard, the parameters that are precomputed are: number
of rows rp, number of columns c, prime number p. We also
precompute the serie x, which can be of 5, 10 or 20 elements,
where xi = (vqi×256) mod p, all this parameters are passed
to the module before starting operation.

Once having the precomputed parameters, the interleaver
implements the following steps, according to the UMTS stan-
dard for turbo code internal interleaver:
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1. Find the 〈S(j)〉j∈{0,1,...,p−1} for intra-row permutation,
where S(j) = s(ν × s(j − 1)) mod p

2. Find the 〈qi)〉i∈{0,1,...,rp−1}, where q0 is equal to 1;
and qi is to be a least primer integer number such that
gdc(qi,p − q)=1; and qi > 6 and > qi−1 for each
i=1,2,3...,R-1.

3. Find the 〈ri)〉i∈{0,1,...,rp−1} sequence, where rT (i)=qi,
i = 0, 1, 2 . . . , rp and 〈T (I)〉I∈{0,1,...,rp−1} is selected
from the standard according to the block size k.

4. Perform intra-row permutation as: Ui(j) = s((j ×
ri) mod (p−1)); whereUi(j) is the original bit position
of j-th permuted bit of i-th row.

5. Perform inter-row permutation as UT (i)(j)

6. Read the matrix column by column.

In our algorithm, U sequences of 5, 10 or 20 elements
are constructed incrementally. The current value of each U
sequence is stored in a shift register (u(i) in figure 7). The jth

value of the T (i)th U sequence is:

UT (i)(j) = S((j × rT (i)) mod (p− 1))

= (v(j×rT (i)) mod (p−1)) mod p

As by definition rt(i) = qi, it can be written:

UT (i)(j) = (v(j×qi) mod (p−1)) mod p

Fermat’s little theorem allows to rewrite this expression as:

UT (i)(j) = (vj×qi) mod p =
( xi

256

)j

mod p

From which it comes:

UT (i)(j 6= 0) =
(
UT (i)(j − 1)× xi

256

)
mod p

With UT (i)(0) = 1. Then, using ×(a, b, p) 8 bits modu-
lar Montgomery (7) multiplication:

×(a, b, p) =
(
a× b
256

)
mod p

We end up with UT (i)(j 6= 0) = ×(UT (i)(j − 1), xi, p)

3.3. Architecture

This core is based on a Montgomery multiplication imple-
mentation, with two shift registers as inputs, x(i) and u(i)

for the two sequences UT (i)(j − 1) and xi respectively.
The Montgomery multiplication is implemented in 5 stages

Table 1. Design Results comparison
Design Process Standards Area

(mm2)
Freq
(MHz)

Design(13) 180 nm UMTS 0.24 130
Design(3) 90 nm UMTS, LTE ND ND
This work 130 nm UMTS, LTE 0.044 350

pipeline (corresponding to the minimum number of rows).
The first 4 stages of the pipeline implement the 8 iterations
of the 8 bits modular Montgomery multiplier, 2 bits of xi at a
time, LSBs first. The fifth stage implements a final reduction
modulus p.

As depicted in figure 7, for a new interleaving procedure,
the current value of each U sequence is initialized to 1. Then,
these values enter a five stages pipeline, one after the other.
The output of the pipeline is fed back to the first position in
the u(i) pipeline (which is different for 5, 10 and 20 rows
schemes). A 5, 10 or 20 stages pipeline (x(i)) contains the
xi. The x(i) and u(i) shift registers move together so that the
right U and x values are always input to the four first stages
of the modular Montgomery multiplier pipeline. The mod-
ular Montgomery multiplier also uses a 5 stages w(i) shift
register to store the intermediate results of the modular Mont-
gomery multiplication. Once computed, the current value of
each U sequence enters a 3 stages post-processing unit. This
unit computes the actual ni indexes from the U sequences as
specified in the 3GPP standards. The first stage computes the
input row and column indexes. The second stage computes
the input bit position. The U sequences naturally wrap so
there is no need for an initialization between two sequences
with the same parameter set.

3.4. implementation Results

The two address generators modules were synthesized for a
130 nm CMOS standard cells library, with 350 MHz a target
clock frequency. Table 1 summarizes the results. Silicon area
is used instead of the more classical (and more technology-
independent) gate count because some previous works count
instances of standard cells while others count gate equiva-
lents, that is, the less buffered, 2-inputs, NAND gate. Taking
into account the technology shift our design outperforms (13)
in terms of silicon area, maximum frequency and flexibility.
It is probably very close from the one of (3), which is very
similar. The main differences are the utilization of a Mont-
gomery modular multiplier, the absence of internal RAM (2
K-bits in (3)) and the pre-computation of parameters in our
case, while they require extra hardware to do this.
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Fig. 7. Optimized architecture for UMTS turbo interleaver

4. CONCLUSIONS

This paper presents three architectures of interleavers target-
ing complex SDR applications. The first is a full reconfig-
urable design that can be used for practically all known stan-
dards of communications, and providing more flexibility than
any other architecture of our knowledge. The two others are
optimized for the LTE and UMTS turbo interleavers respec-
tively. They are extremely compact and fast but their flexibil-
ity is limited to the variants of their target standard.
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