
Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

MULTI-GHZ SOFTWARE AND HARDWARE PLATFORM FOR SOFTWARE

DEFINED RADIO

Joseph Rothman (BEEcube Inc, Fremont, CA, USA, joseph@beecube.com)
Chen Chang (BEEcube Inc, Fremont, CA, USA, chen@beecube.com)

Kevin Camera (BEEcube Inc, Fremont, CA, USA, kcamera@beecube.com)

ABSTRACT

Combined with BEEcube's 3rd generation Xilinx Virtex-5
FPGA based hardware platform, the BEE3[1], an integrated
set of BEEcube solutions for system implementation enables
implementation of a wide range of high-performance real-
time military and defense applications, including signal
intelligence, signal warfare, software defined radio, MIMO
communications, radar, and many more.
 The paper presents BEEcube's SDR reference design
that highlights BEE3 as an SDR prototyping platform,
featuring an FPGA-based continuous wideband vector
signal generator, with real-time software control using Wind
River's VxWorks [2] over Gigabit Ethernet. Carrier
frequency tones ranging from 0 to 2GHz highlight the
inherent wideband capability of BEE3's I/Q 2Gsps DAC.
 The BEE3 ADC expansion board simultaneously
captures the analog output, with data being streamed and
displayed directly in the Matlab™ [3] environment via the
Ethernet data transfer libraries provided by BEEcube’s
distributed Nectar OS™ [4] embedded and host-side
software solution. BEE3's ADC can sample up to 3GHz,
offering true direct RF sampling capability. Through BEE3
Easy Algorithm Deployment coupled with high-speed I/O
and infrastructure, the BEE3 system software allows
algorithm designers without any RTL or low-level hardware
design knowledge to easily program the target BEE3
system.
 Advanced signal processing algorithms and complete
SDR implementations can be rapidly prototyped on the
BEE3 system, running at hundreds-of-MHz clock rates. For
deployment, the same design can be easily retargeted in the
BEEcube Platform Studio (BPS) [5] design environment to
fit into various hardware platforms with different form
factors, capabilities, and FPGA technologies.

1. INTRODUCTION

Radio communication remains the simplest and the most
flexible method to locally communicate in the battlefield
today; however, frequency jamming, channel availability,
contention and even spectrum capacity management remain
relevant. Fortunately, new real-time and dynamic

opportunities for solving these challenges exist in the form
of Software Defined Radios (SDR) and Cognitive Radio
strategies.

Radio communication, like most electronic
technologies today, is leveraging the advantages of moving
analog concepts to the digital domain, thus forming a new
field of Digital Communication Design. With the move to
digital, additional logic can be applied in real-time to both
signal transmission as well as the information being carried.
Though first generation (e.g. SDR) systems have been
successfully deployed, new design ideas are far from
exhausted. The challenge is having a vehicle to test new
digital radio concepts and algorithms on an efficient
prototyping platform that can handle the real-time multi-
GHz environment.

The BEECube BEE3 system provides a flexible
platform for design, implementation, and validation of next
generation wideband SDR systems. Each BEE3 system
provides 4 Xilinx Virtex-5 SX95T FPGA chips for DSP
processing, two full 3GHz analog inputs, and two 2GHz
analog outputs on two independent ADC and DAC modules.
These ADC/DAC modules can be used in direct IF/RF
synthesis applications. Despite the 3GHz/2GHz sample rate
of the ADC/DAC chip, FPGA processing can keep up with
the ADC/DAC interfaces by using a built-in
multiplexer/demultiplexer feature combined with on-FPGA
DDR I/O resources. For example, the 3GHz ADC is
connected to each FPGA with 4 parallel DDR750 digital 8-
bit channels, and on the FPGA the internal signal path
provides the end user with 8 parallel 8-bit channels running
at 375MHz each; well within the 450MHz operating
frequency of the FPGA device. This allows end users to use
the BEE3 system to validate full end-to-end SDR systems
running at real-time, in excess of full multi-GHz analog
bandwidth.

In addition to the hardware features listed above,
the BEE3 unique software design environment—BEEcube
Platform Studio (BPS)—is a Mathworks Simulink based
turn-key algorithm to real-time implementation tool flow.
Users can turn their original SDR communication algorithm
simulation models in Simulink into actual hardware
implementation, but still retain programmability of software
parameters.

SDR'10 Session 5G- 3

496

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

To further enhance the programmability and
debugging of the system, the embedded component of
BEEcube’s Nectar OS provides an extensible shell
environment where the user can interact with all BPS-
generated cores at runtime. Each BPS core provides a
driver API which can be used to write custom code to
manage and monitor the system under test directly on the
FPGA. In addition, Nectar OS can optionally provide a
network service for control of all software components from
a remote workstation.

In this paper we explore a SDR oriented reference
design using the BEE3. The purpose of this design is not to
provide a fully functional SDR communication radio, but to
demonstrate the various pieces need to construct a multi-
GHz wide band SDR radio with real-time implementation
on the BEE3-W platform.

In a typical SDR system, the carrier frequency and
waveform modulation schemes are the two most important
parameters to remain flexible. In the BEE3 SDR reference
design presented in this paper, carrier frequency is digitally
synthesized on FPGAs based on the Direct Digital
Synthesizer (DDS) core from Xilinx.

Unlike traditional low-bandwidth DDS, in a wide-
band system, since the ADC/DAC interface has 8 parallel
equally phased digital channels in order to produce the full
multi-GHz analog coverage, the wide-band DDS also needs
to be digitally phased to match the input/output
requirements. Instead of hard locking each DDS core’s
phase increments (controlling the frequency) and relative
phase to other DDS cores (controlling the phase alignment),
the BEE3 system combined with Nectar OS allows the end
user to set these parameters at run-time, hence controlling
the exact carrier frequency. The BPS software
automatically maps software control registers connected to
each of the DDS cores’ hardware control ports. A user
defined C program was written to provide the end user with
command line access to modify carrier frequency with the
BEEcube Nectar OS running on each FPGA in the BEE3
system. This program takes the user input of frequency, and
then calculates in software the proper phase increments and
offset for each of the 8 DDS cores, and then toggles the
corresponding DDS control signals to load the parameters to
each core. With networking support enabled in Nectar OS,
this same functionality is available to a remote control host,
for example a management RTOS such as VxWorks.

Modulation schemes can also be modified on the
transmitter side by using the BPS shared memory feature.
On the output of the each of the eight parallel DDS cores,
the carrier signal is digitally modulated with a periodic
transmission signal stored in 8 shared memory Block RAM
(BRAM) components, one for each DDS core. Users can
upload arbitrary waveforms to each of the shared memories
and observe the corresponding modulation on the analog
output.

On the receiver side, the parallel ADC inputs are
directly captured in a similar shared BRAM scheme. Nectar
OS fully controls the data capture, which can be triggered
externally by the user via the embedded shell or Ethernet.
In addition, once a complete window of data has been
captured into shared BRAM, the data samples from the
ADC can be streamed to a host computer for further
analysis at very high speed.

2. SDR EXAMPLE USING BEECUBE’S FPGA
PROTOTYPING PLATFORM

In this example, we use the BEE3 development and
deployment platform as an SDR prototyping platform. The
BEE3 was developed out of research conducted at the
Berkeley Wireless Research Center (BWRC) at the
University of California, Berkeley, and is a real-time, rack
mountable/table top symmetrical multi-FPGA platform.
The objective is to demonstrate the use of a platform that
allows for flexible algorithm and feature set definitions
permitting various and changing mission critical needs.

2.1. The BEE3 Platform and BPS Design Environment

BEEcube’s third generation BEE (Berkeley Emulation
Engine), the BEE3 [1], is a multiple FPGA platform that is
specially suited for prototyping of signal processing
algorithms and applications. In this demonstration, we have
used a single BEE3 module consisting of four Xilinx Virtex-
5 FPGAs. The module has a capacity of 5M ASIC gates.
The four FPGAs are interconnected with a ring and each
includes two channels of DDR2-400 memory. Each FPGA
quadrant has a fully symmetrical design, including identical
memory and I/O interfaces. This symmetrical architecture
allows both a high level of redundancy for fault-tolerant
processing, as well as complete implementation
compatibility regardless of which FPGA quadrant is
programmed with a particular design. Multiple high-speed
data interfaces available on each module include: 160 Gbps
SERDES, Quad x8 PCI Express, Quad 1000BASE-T
Ethernet, and Quad 40-pair LVDS QSH expansion slots.
Each module also has a net capability of 64GB of DRAM.

BEEcube Platform Studio (BPS) [5] is a system-
level, hardware/software co-development environment built
on top of the MathWorks™ Simulink® framework. BPS
provides automatic generation of all platform specific
hardware interfaces and corresponding software drivers.
Months of engineering tasks to convert complex DSP
algorithms to implementation can be achieved through BPS
in a matter of days, all without requiring user knowledge of
the low level FPGA implementation details, such as high
speed I/O interfaces, timing closure, HW/SW interfaces, and
IP integration issues.

497

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

The BEE3 hardware platform also supports ADC
and DAC expansion boards. The ADC expansion board is a
dual channel 3 GSps model using two National
Semiconductor ADC083000 ADCs with independent clock,
data, reset and trigger SMA inputs for each ADC. The quad
channel 1.5 GSps version uses the ADC08D1500 device.
All ADC boards support 8-bit resolution per channel per
ADC/FPGA. The analog sample rate supported is 1000 to
3000 MHz, with a balun input bandwidth of 30 to 1800
MHz.

The DAC expansion board features a dual 2 GSps
DAC from Teledyne (RDA112M4MSLPD) supporting dual
independent clock inputs and data outputs. The resolution is
9-bit up to 2 GSps (with a 4:1 mux) or 12 bit resolution up
to 1.5 Gsps (with a 2:1 mux). The design presented in this
paper uses the 9-bit, 4:1 multiplexed operating mode of the
DAC.

3. THE SDR REFERENCE DESIGN ARCHITECTURE

Using the BEE3 FPGA prototyping platform we are able to
support a continuous wideband vector signal generator
design and generate sample real-time runs. Controlled by
software via a control host (e.g. VxWorks) over standard
Gigabit Ethernet communication, the FPGA prototyping
system can handle dynamic carrier frequency tone sweeps
ranging from 0 to 2 GHz. With 2 Gbps I/O DACs, wideband
capability can be handled natively. Coupled with an ADC
expansion board, simultaneous capture of the analog output
can be directly displayed in real-time using standard low-
cost algorithm display tools, such as Matlab. The ADC
solution can sample up to 3GHz, offering true direct RF
sampling capability.

This SDR reference design uses only 2 of the 4
BEE3 FPGAs, leaving plenty of logic resources for other
radio components. The first FPGA (FPGA-A) in our design
is used as a 2 GSps DAC signal source. FPGA-A generates
the carrier tone, based on a numerically controlled oscillator
(NCO), and contains an arbitrary modulation pattern, up to
16,384 samples in length. The modulation pattern is held in
FPGA block memory (BRAM) and can be dynamically
updated at runtime via a UART or Gigabit Ethernet link
from a remote host using integrated software interfaces
generated automatically by BPS.

The second FPGA (FPGA-B) is associated with the
3GSps ADC module and functions as a virtual oscilloscope.
FPGA-B captures data into its BRAM in 16,834 sample
windows. The captured data can be read via a UART or
Gigabit Ethernet into Matlab running on the host for direct
analysis.

4. IMPLEMENTING THE FPGA DESIGN

Though programming FPGAs traditionally requires detailed
RTL and target knowledge, for this design example, we
demonstrate the use of an “Algorithm Development”
paradigm. To program the target FPGA prototyping
platform, we used the design component libraries provided
by BPS and thus avoided implementation details such as
timing closure and input/output interface issues.

Figure 1: DAC Signal source model built using BEEcube Platform Studio (BPS)

Figure 1: DAC Signal Source Model built using BEEcube Platform Studio (BPS)

498

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

4.1. The DAC Signal Generator Design

BPS allows the use of prebuilt libraries to create a DAC
signal source model and automatically program the FPGA
and all the necessary I/O interfaces. The DAC design used
the reference design shown in Figure 1. For this design both
the User IP clock rate and the Reference clock rate are set to
250 MHz, 1/8 of the 2 GHz sampling clock rate.

The two BPS Software Register blocks labeled
“data” and “ctrl” are used to program the Xilinx DDS
(Direct Digital Synthesizer) blocks, which generate the
digital sine wave that drives the DAC. The “data” signal is
sent to all 8 DDS components and provides the sine wave
data. The outputs of the Sine Generator block directly drive
the inputs of the DAC block. The output of the DDS
component is multiplied with the gain value before being
sent to the block output, as shown in Figure 2. The gain
BRAM blocks allow for signal modulation up to 2,048
samples.

The BPS DAC block provides a direct, unmodified
interface to the data inputs of the DAC device. Because the
FPGA to DAC physical interface uses DDR (double data
rate) signaling, two full sets of inputs are provided: one set
for data to be driven to the DAC on the rising clock edge,
and one set for data to be driven to the DAC on the falling
edge. Within each set of inputs, each data port corresponds
to a value that will be driven by the DAC on its analog
output in sequence.

4.1. The ADC Signal Capture Design

The outputs of the ADC block are connected to the
“Scopes” block. The “Scopes” block is a wrapper for the
software simulation scopes. There are two scopes, “Data”
and “Out of Range”. The “Data” scope gives a
representation of the output of the ADC block. Note that
the first input of the “Data” scope bypasses the ADC block
allowing comparisons between the source sine wave and the
ADC output. The “Out of Range” scope shows when the
Out of Range outputs on the ADC block are high, indicating
the data is out of the range of the ADC hardware. Again the
original sine wave signal, which bypassed the ADC block, is
given as reference. See an example of the ADC virtual
scope model in Figure 3.

5. RUNTIME SOFTWARE CONTROL

The previous sections have described all the infrastructure
provided by the BEE3 hardware platform and the BPS
design environment which can be used for prototyping SDR
applications. The final component of a complete SDR
system is the runtime software control interface itself, which
provides the flexibility to monitor and modify the system in
the field.

This runtime software interface is provided by
Nectar OS, which runs as a lightweight embedded
application directly on each FPGA. BPS automatically
generates a small microcontroller with attached local
memory to each design. This processor is responsible for
running the command shell (available via the integrated
serial UART in BEE3), performing all initialization and

Figure 2: Details of signal generator

499

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

maintenance routines defined for specific cores, and
optionally servicing all network requests from remote hosts.

In this reference design, software control is
provided via shared memory components from the BPS
blockset. For the transmitter (shown in Figure 1), two
software registers data and ctrl are used to pass frequency
and phase values into the DDS components which generate
the carrier tone. A single custom command, dac_set_freq,
is added to the shell which automatically calculates and sets
the appropriate values to drive a specific frequency at the
DAC output. This same command can also be implemented
on a remote control host, such as VxWorks, and sent over
Ethernet as well. The shared BRAM components gain0
through gain7 can also be loaded with any arbitrary
modulation pattern, which will automatically be mixed onto
the carrier tone.

For the receiver, a capture software register is used
to trigger one window of ADC samples to be captured into
local memories upon a rising edge of the register value.
These shared BRAM components used to store the samples
can then be read via Ethernet at high speed to continuously
monitor and analyze the transmission channel.

6. DAC/ADC SIGNAL AND SCOPE PERFORMANCE

In our example design, our DAC Signal Source (FPGA-A)
has a system clock of 250MHz, enforced by a DAC sample
rate of 2GSps, DDR signaling, and 4:1 mux ratio. The NCO
is implemented using Xilinx DDS cores (v2.1) with up to 20
bits of signal output precision, SFDR up to 120 dB and ∆f
down to 0.02 Hz. The total FPGA (SX95T) utilization for
our NCO of 9 bit output, 1Hz resolution, 54 dB SFDR is:

• 4% DSP48s,
• 21% BRAM, and
• 21% Slice utilization

For our ADC virtual scope performance, the

FPGA-B system clock runs at 375Mhz, for a sample rate of
3 GSps, DDR signaling, and 4:1 demux ratio. Our total
FPGA (SX95T) utilization is:

• 1% DSP48s,
• 16% BRAM, and
• 15% Slice utilization

Figure 3: Details of ADC Virtual Scope

500

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

The overall system performance is measured for
both a 10MHz tone and 667MHz tone. Results are shown in
Figures 4 and 5 and summarized below.

10MHz tone:

• Carrier peak @ 53.9 dB
• Largest spur @ 10.6 dB
• SFDR = 43.3dB

667MHz tone:

• Carrier peak @ 49.1 dB
• Largest spur @ 3.1 dB
• SFDR = 46

7. CONCLUSION

The implication for such real-time/high-speed prototyping
systems is essential to adding “intelligence” to signal
handling and information, and additional needs exist in the
areas of defense applications, including MIMO (Many In
Many Out) communications radar applications, signal
intelligence and warfare.

8. REFERENCES

[1] BEEcube, Inc. “BEE3-W”.

http://www.beecube.com/products.
[2] Wind River. “Wind River VxWorks”.
 http://www.windriver.com/products/vxworks.
[3] The MathWorks. “Matlab – The Language Of Technical

Computing”. http://www.mathworks.com/products/matlab.
[4] BEEcube, Inc. “Nectar Distributed OS”.

http://www.beecube.com/technology.
[5] BEEcube, Inc. “BPS 3.6”.
 http://www.beecube.com/products.

Figure 5: Generated 667MHz Signal

 Figure 4: Generated 10MHz Signal

501

