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Tutorial Scope

• An overview of GNU Radio and its purpose and 
capabilities

• A look inside to see how it works

• Understanding of the computational models, 
methods, and processes behind the software

• An appreciation for its multidisciplinary nature
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OPENING INTRODUCTION



GNU Radio
gnuradio.org

• Open source software radio

• Provides the scheduler for real-time operation

• Includes:
– Many signal processing blocks

– Interfaces to a few radio front ends

– Graphical user interfaces (GUI)

– Examples

• A platform to build and explore radios (or any 
other communications platform)



Python on top; C++ underneath

Python Interface C++ Libraries

USRP 
Source

Filter

FM 
Demod

Audio
Sink

libusrp.so

libgnuradio-core.so

libgnuradio-alsa.so



Structuring the Python

• Get the namespace

• Inherit from top_block

• Class constructor

• Call top_block constructor

• Create some GNU Radio blocks

• Connect blocks

from gnuradio import gr

class myblock(gr.top_block):

def __init__(self):

gr.top_block.__init__(self)

self.block1 = gr.<block>

self.block2 = gr.<block>

self.connect(self.block1, 
self.block2)



Using the Python class

• Some function to use the block

• Instantiate a myblock object

• Start the flowgraph

• Block until it finishes

def main():
tb = myblock()

tb.start()

tb.wait()



FM EXAMPLE WALKTHROUGH



ANALYSIS TOOLS



Visualization is an important part of 
analysis and debugging

On-line tools:
wxPython GUI: www.wxpython.org
QT GUI: qt.nokia.com/products

www.riverbankcomputing.co.uk
qwt.sourceforge.net

Off-line tools:
Scipy: www.scipy.org
Matplotlib: matplotlib.sourceforge.net

http://www.wxpython.org/
http://qt.nokia.com/products/
http://www.riverbankcomputing.co.uk/
http://qwt.sourceforge.net/
http://www.scipy.org/
http://matplotlib.sourceforge.net/


Basic Matplotlib Plotting

import scipy, pylab

t = scipy.arange(0, 1, 0.001)

x = scipy.cos(2*scipy.pi*(100)*t)

y = scipy.sin(2*scipy.pi*(100)*t)

fig = pylab.figure(1)

sp = fig.add_subplot(1,1,1)

p1 = sp.plot(t, x, “b-”, linewidth=2, label=“func1”)

p2 = sp.plot(t, y, “r-o”, linewidth=2, label=“func2”)

sp.legend()

pylab.show()



Using Matplotlib with GNU Radio

• Use gr.head to stop graph after N items

– gr.head(gr.sizeof_gr_complex, N)

• Use gr.vector_sink_c to store data

– self.vsink = gr.vector_sink_c()

– After graph has run:

• self.vsink.data() returns the data as a Python list

• We can now plot all N items of vsink



Matplotlib Output Examples:
Plotting filter impulse responses



Matplotlib Output Examples:
Filtering noise



USING MATPLOTLIB WITH FM 
EXAMPLE



The wx and QT GUI’s add on-line support 
for visualization.

from gnuradio.qtgui import qtgui

Set up with an initial FFT size, window function, center 
frequency, sample rate, and window title.

Remaining arguments turn on/off the different plots

Can also set a parent to work in with other QT apps

self.qtsink = qtgui.sink_c(fftsize, window, fc, Rs, title,
fft, waterfall, waterfall3D, time, const, parent)



The QT GUI output offers multiple views:
FFT (or PSD)



The QT GUI output offers multiple views:
Waterfall (or spectrogram)



The QT GUI output offers multiple views:
Time (with real and imaginary parts)



USING QT GUI WITH FM EXAMPLE



THINKING ABOUT SOFTWARE



SOFTWARE Radio

• More than just signal processing algorithms

• We worry about implementation as well

• OSS project has many objectives:

– High quality, efficiency, and speed

– Readable (and therefore editable)

– Robust and reliable



Things we think about

Profiling and performance testing

Unit testing

Installation and operation on multiple OSes



Autotools: The worst build system aside 
from all the others…

• GNU’s Automake and Autconf

– Well-understood build system in GNU community

• Test operating system support

• Ensure dependencies are met

• make check and make distcheck to test full 
build system



Unit Testing: make sure your code works 
and continues to work.

• For C++ code, we use the CppUnit test suite

• For blocks wrapped to Python, we use 
python.unittest

• Using Hudson Continuous Integration tool to 
monitor builds and tests

– hudson-ci.org

http://hudson-ci.org/
http://hudson-ci.org/
http://hudson-ci.org/


Profiling Code

• First rule: “premature optimization is the root 
of all evil.”

• Code, test, get it right. Then optimize.

• Use profiling tools to find where your code 
needs work.

• Focus on measured performance problems 
and optimize.

• Things you think you know that just ain’t so…



Designing a FIR filter

c0 c1 c2 c3

0 0 0 0 0 0 0 0

e g f e d c b ainput

taps (len = 4)

buffer (2xlen)

Update:
1. Write next input to buffer at idx
2. Write same input to buffer at idx+len
3. increment len = len + 1
4. Perform filter calculation

idx = 0

i = 0

yi = xic0 + xic1 + xic2 + xic3



c0 c1 c2 c3

a 0 0 0 a 0 0 0

e g f e d c b ainput

Update:
1. Write next input to buffer at idx
2. Write same input to buffer at idx+len
3. increment len = len + 1
4. Perform filter calculation

idx = 0

Designing a FIR filter

i = 0



c0 c1 c2 c3

a 0 0 0 a 0 0 0

e g f e d c b ainput

Update:
1. Write next input to buffer at idx
2. Write same input to buffer at idx+len
3. increment len = len + 1
4. Perform filter calculation

idx = 1

yi = 0 + 0 + 0 + ac3

Designing a FIR filter

i = 0



c0 c1 c2 c3

a b 0 0 a b 0 0

e g f e d c b ainput

Update:
1. Write next input to buffer at idx
2. Write same input to buffer at idx+len
3. increment len = len + 1
4. Perform filter calculation

idx = 1

Designing a FIR filter

i = 1



c0 c1 c2 c3

a b 0 0 a b 0 0

e g f e d c b ainput

Update:
1. Write next input to buffer at idx
2. Write same input to buffer at idx+len
3. increment len = len + 1
4. Perform filter calculation

idx = 2

yi = 0 + 0 + ac2 + bc3

Designing a FIR filter

i = 1



c0 c1 c2 c3

a b c 0 a b c 0

e g f e d c b ainput

Update:
1. Write next input to buffer at idx
2. Write same input to buffer at idx+len
3. increment len = len + 1
4. Perform filter calculation

idx = 2

Designing a FIR filter

i = 2



c0 c1 c2 c3

a b c 0 a b c 0

e g f e d c b ainput

Update:
1. Write next input to buffer at idx
2. Write same input to buffer at idx+len
3. increment len = len + 1
4. Perform filter calculation

idx = 3

yi = 0 + ac1 + bc2 + cc3

Designing a FIR filter

i = 2



c0 c1 c2 c3

a b c d a b c d

e g f e d c b ainput

Update:
1. Write next input to buffer at idx
2. Write same input to buffer at idx+len
3. increment len = len + 1
4. Perform filter calculation

idx = 3

Designing a FIR filter

i = 3



c0 c1 c2 c3

a b c d a b c d

e g f e d c b ainput

Update:
1. Write next input to buffer at idx
2. Write same input to buffer at idx+len
3. increment len = len + 1
4. Perform filter calculation

idx = 4

yi = ac0 + bc1 + cc2 + dc3

Designing a FIR filter

i = 3



c0 c1 c2 c3

e b c d e b c d

e g f e d c b ainput

Update:
1. When idx == len, wrap around to 0

idx = 0

Designing a FIR filter

i = 4



c0 c1 c2 c3

e b c d e b c d

e g f e d c b ainput

Update:
1. When idx == len, wrap around to 0

idx = 1

yi = bc0 + cc1 + dc2 + ec3

Designing a FIR filter

i = 4



c0 c1 c2 c3

e f c d e f c d

e g f e d c b ainput

Continue with this algorithm for all input items.

idx = 1

Designing a FIR filter

i = 5



c0 c1 c2 c3

e f c d e f c d

e g f e d c b ainput

Continue with this algorithm for all input items.

idx = 2

yi = cc0 + dc1 + ec2 + fc3

Designing a FIR filter

i = 5



• The only logic in this algorithm is to check 
when idx == len in order to reset idx = 0.

• How?

If statement modulo len

• Which is faster? Does it matter?

idx = idx + 1;
if(idx == len)

idx = 0;
idx = (idx+1) % len;

Designing a FIR filter



Profiling tools

• Walk through an example using:

– Valgrind (http://valgrind.org)

– Cachegrind (http://valgrind.org/info/tools.html)

– KCachegrind (http://kcachegrind.sourceforge.net)

http://valgrind.org/
http://valgrind.org/
http://valgrind.org/info/tools.html
http://valgrind.org/info/tools.html
http://kcachegrind.sourceforge.net/
http://kcachegrind.sourceforge.net/


PROFILING EXAMPLE



PROGRAMMING MODEL



We started off with this concept:

Python Interface C++ Libraries

USRP 
Source

Filter

FM 
Demod

Audio
Sink

libusrp.so

libgnuradio-core.so

libgnuradio-alsa.so



Behind the scenes:

gr_buffer_reader

USRP 
Source

Filter
FM 

Demod

gr_buffer

gr_buffer_reader

gr_buffer

• Scheduler calls a block’s work function and tells it how many 
items it can produce based on the number of items in the 
gr_buffer.

• Blocks read from their input buffer and write to an output 
buffer.

• Scheduler is optimized for throughput.



GNU Radio block work function

• There are N input streams
– input_items[n] has ninput_items[n] items

• Can produce at most noutput_items number of 
items in any output_items output stream

• Tells scheduler 
– how many consumed from each input

– how many produced (<= noutput_items)

int general_work(int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)



Example:
multiply_const_ff

int general_work ( <see last slide> )
{

const float *in = (const float*)input_items[0];
float *out = (float*)ouput_items[0];

for(int i = 0; i < noutput_items; i++) {
out[i] = k * in[i];

}

// an equal number of items consumed and produced
consume_each(noutput_items);
return noutput_items;

}

gr_multiply_const_ff( k )



Four basic types of blocks

• Sync blocks

– number of items in equals the number of items out 

– like the multiply constant example

• Decimation blocks

– number of items IN is D times the number of items OUT

• Interpolation blocks

– number of items OUT is I times the number of items IN

• Blocks: 

– relationship between input and output items is not 
straight-forward



• Simple Wrapper Interface Generator (SWIG)
• http://www.swig.org

SWIG wrapper

SWIG allows us to talk between the 
Python and C++ layers.

GNU Radio 
Python block

libgnuradio-core.so
GNU Radio Core 

shared library

http://www.swig.org/
http://www.swig.org/


• SWIG produces Python modules out of the 
C++ blocks

• Builds an interface based on an interface 
description file (.i)

– The interface description file describes the API for 
talking between the two languages

– Its content is very similar to the C++ .h header file

Program GNU Radio in Python; 
computation handled in C++



Advice:

If you want to write a new block, 
find a block that has similar 
properties and copy it.



CONSIDERING ALGORITHMS



Understanding GNU Radio’s quantization

• What is the proper scope of a block?

• Try to use good software principles:

– Increase usability

– Reduce duplication

• Find the smallest level the algorithm can run

• Expand the scope only as needed

– Only when the combination of other blocks 
cannot properly solve the problem



Programming the algorithm

• Follow good programming practices that we 
discussed earlier

• Make as much gain from the algorithm as 
possible

– don’t just rely on super programming skills to 
overcome an inherently bad algorithm

• Takes a lot of multidisciplinary thinking



Example:
The FIR filter

• We know that filtering is convolution in time:

• Which means, its multiplication in frequency:

• With the efficiency of the FFT, convolution is 
faster in the frequency domain
– “fast convolution”
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GNU Radio implements both kinds of FIR filters

• FIR done as time convolution

– gr_fir_filter_XXX

• FIR done in frequency domain

– gr_fft_filter_XXX

• The time domain has been SIMD optimized

• How do they compare in speed?



Comparing the SIMD and non-SIMD time 
domain filters



Comparing the time domain to frequency 
domain filters



For all of our cleverness in the time domain

• Using the right algorithm produces a more 
efficient filter.

• FFT filter slower for small number of taps
– around 22

• Not much slower at this point

• Some gains left to be made
– SIMD optimize the multiplication loop

– Some FFT sizes are faster than others; use them 
and pad with zeros



FFTW capabilities
(http://www.fftw.org/speed/CoreDuo-3.0GHz-icc64/ )

Intell IPPS
Intel MKL in-place
Intel MKL out-of-place
FFTW3 out-of-place
FFTW3 in-place

Other lines are from other FFT 
programs and are not 
important for this comparison

61



THE GNU RADIO COMPANION



Graphical tool for building GNU Radio 
flowgraphs

• Makes it easier to:

– Visualize the data flow

– Tie in with graphical sinks

– Browse available library of blocks

– Add live interactive capabilities through block 
callbacks

• gnuradio-companion is distributed with GNU 
Radio



GNU Radio Companion features:

• Variables
– Set values of blocks

– Dynamic variables add features such as sliders or edit 
boxes for on-line altering of parameters

• Python programming level:
– many things can be altered by using Python 

programming such as calling other modules, 
functions, or creating lambda functions

– Can even import new modules

• GUI interface is interactive and configurable
– Add Notebooks for better on-screen organization



EXAMPLES OF USING THE 
GNU RADIO COMPANION



FIN


