
GNU Radio

Introduction and Computational Capabilities
of the Open Source GNU Radio Project

Thomas W. Rondeau
GNU Radio maintainer

SDR Technical Conference, 2010

Tutorial Scope

• An overview of GNU Radio and its purpose and
capabilities

• A look inside to see how it works

• Understanding of the computational models,
methods, and processes behind the software

• An appreciation for its multidisciplinary nature

Tutorial Outline

boring
stuff fun stuff more fun

stuff back to
boring stuff

preachy
stuff

interesting
stufftechnical

stuff
useful
stuff

introduction examples
GUIs

software

programming

profiling/design

computational
model

gnuradio
companion

OPENING INTRODUCTION

GNU Radio
gnuradio.org

• Open source software radio

• Provides the scheduler for real-time operation

• Includes:
– Many signal processing blocks

– Interfaces to a few radio front ends

– Graphical user interfaces (GUI)

– Examples

• A platform to build and explore radios (or any
other communications platform)

Python on top; C++ underneath

Python Interface C++ Libraries

USRP
Source

Filter

FM
Demod

Audio
Sink

libusrp.so

libgnuradio-core.so

libgnuradio-alsa.so

Structuring the Python

• Get the namespace

• Inherit from top_block

• Class constructor

• Call top_block constructor

• Create some GNU Radio blocks

• Connect blocks

from gnuradio import gr

class myblock(gr.top_block):

def __init__(self):

gr.top_block.__init__(self)

self.block1 = gr.<block>

self.block2 = gr.<block>

self.connect(self.block1,
self.block2)

Using the Python class

• Some function to use the block

• Instantiate a myblock object

• Start the flowgraph

• Block until it finishes

def main():
tb = myblock()

tb.start()

tb.wait()

FM EXAMPLE WALKTHROUGH

ANALYSIS TOOLS

Visualization is an important part of
analysis and debugging

On-line tools:
wxPython GUI: www.wxpython.org
QT GUI: qt.nokia.com/products

www.riverbankcomputing.co.uk
qwt.sourceforge.net

Off-line tools:
Scipy: www.scipy.org
Matplotlib: matplotlib.sourceforge.net

http://www.wxpython.org/
http://qt.nokia.com/products/
http://www.riverbankcomputing.co.uk/
http://qwt.sourceforge.net/
http://www.scipy.org/
http://matplotlib.sourceforge.net/

Basic Matplotlib Plotting

import scipy, pylab

t = scipy.arange(0, 1, 0.001)

x = scipy.cos(2*scipy.pi*(100)*t)

y = scipy.sin(2*scipy.pi*(100)*t)

fig = pylab.figure(1)

sp = fig.add_subplot(1,1,1)

p1 = sp.plot(t, x, “b-”, linewidth=2, label=“func1”)

p2 = sp.plot(t, y, “r-o”, linewidth=2, label=“func2”)

sp.legend()

pylab.show()

Using Matplotlib with GNU Radio

• Use gr.head to stop graph after N items

– gr.head(gr.sizeof_gr_complex, N)

• Use gr.vector_sink_c to store data

– self.vsink = gr.vector_sink_c()

– After graph has run:

• self.vsink.data() returns the data as a Python list

• We can now plot all N items of vsink

Matplotlib Output Examples:
Plotting filter impulse responses

Matplotlib Output Examples:
Filtering noise

USING MATPLOTLIB WITH FM
EXAMPLE

The wx and QT GUI’s add on-line support
for visualization.

from gnuradio.qtgui import qtgui

Set up with an initial FFT size, window function, center
frequency, sample rate, and window title.

Remaining arguments turn on/off the different plots

Can also set a parent to work in with other QT apps

self.qtsink = qtgui.sink_c(fftsize, window, fc, Rs, title,
fft, waterfall, waterfall3D, time, const, parent)

The QT GUI output offers multiple views:
FFT (or PSD)

The QT GUI output offers multiple views:
Waterfall (or spectrogram)

The QT GUI output offers multiple views:
Time (with real and imaginary parts)

USING QT GUI WITH FM EXAMPLE

THINKING ABOUT SOFTWARE

SOFTWARE Radio

• More than just signal processing algorithms

• We worry about implementation as well

• OSS project has many objectives:

– High quality, efficiency, and speed

– Readable (and therefore editable)

– Robust and reliable

Things we think about

Profiling and performance testing

Unit testing

Installation and operation on multiple OSes

Autotools: The worst build system aside
from all the others…

• GNU’s Automake and Autconf

– Well-understood build system in GNU community

• Test operating system support

• Ensure dependencies are met

• make check and make distcheck to test full
build system

Unit Testing: make sure your code works
and continues to work.

• For C++ code, we use the CppUnit test suite

• For blocks wrapped to Python, we use
python.unittest

• Using Hudson Continuous Integration tool to
monitor builds and tests

– hudson-ci.org

http://hudson-ci.org/
http://hudson-ci.org/
http://hudson-ci.org/

Profiling Code

• First rule: “premature optimization is the root
of all evil.”

• Code, test, get it right. Then optimize.

• Use profiling tools to find where your code
needs work.

• Focus on measured performance problems
and optimize.

• Things you think you know that just ain’t so…

Designing a FIR filter

c0 c1 c2 c3

0 0 0 0 0 0 0 0

e g f e d c b ainput

taps (len = 4)

buffer (2xlen)

Update:
1. Write next input to buffer at idx
2. Write same input to buffer at idx+len
3. increment len = len + 1
4. Perform filter calculation

idx = 0

i = 0

yi = xic0 + xic1 + xic2 + xic3

c0 c1 c2 c3

a 0 0 0 a 0 0 0

e g f e d c b ainput

Update:
1. Write next input to buffer at idx
2. Write same input to buffer at idx+len
3. increment len = len + 1
4. Perform filter calculation

idx = 0

Designing a FIR filter

i = 0

c0 c1 c2 c3

a 0 0 0 a 0 0 0

e g f e d c b ainput

Update:
1. Write next input to buffer at idx
2. Write same input to buffer at idx+len
3. increment len = len + 1
4. Perform filter calculation

idx = 1

yi = 0 + 0 + 0 + ac3

Designing a FIR filter

i = 0

c0 c1 c2 c3

a b 0 0 a b 0 0

e g f e d c b ainput

Update:
1. Write next input to buffer at idx
2. Write same input to buffer at idx+len
3. increment len = len + 1
4. Perform filter calculation

idx = 1

Designing a FIR filter

i = 1

c0 c1 c2 c3

a b 0 0 a b 0 0

e g f e d c b ainput

Update:
1. Write next input to buffer at idx
2. Write same input to buffer at idx+len
3. increment len = len + 1
4. Perform filter calculation

idx = 2

yi = 0 + 0 + ac2 + bc3

Designing a FIR filter

i = 1

c0 c1 c2 c3

a b c 0 a b c 0

e g f e d c b ainput

Update:
1. Write next input to buffer at idx
2. Write same input to buffer at idx+len
3. increment len = len + 1
4. Perform filter calculation

idx = 2

Designing a FIR filter

i = 2

c0 c1 c2 c3

a b c 0 a b c 0

e g f e d c b ainput

Update:
1. Write next input to buffer at idx
2. Write same input to buffer at idx+len
3. increment len = len + 1
4. Perform filter calculation

idx = 3

yi = 0 + ac1 + bc2 + cc3

Designing a FIR filter

i = 2

c0 c1 c2 c3

a b c d a b c d

e g f e d c b ainput

Update:
1. Write next input to buffer at idx
2. Write same input to buffer at idx+len
3. increment len = len + 1
4. Perform filter calculation

idx = 3

Designing a FIR filter

i = 3

c0 c1 c2 c3

a b c d a b c d

e g f e d c b ainput

Update:
1. Write next input to buffer at idx
2. Write same input to buffer at idx+len
3. increment len = len + 1
4. Perform filter calculation

idx = 4

yi = ac0 + bc1 + cc2 + dc3

Designing a FIR filter

i = 3

c0 c1 c2 c3

e b c d e b c d

e g f e d c b ainput

Update:
1. When idx == len, wrap around to 0

idx = 0

Designing a FIR filter

i = 4

c0 c1 c2 c3

e b c d e b c d

e g f e d c b ainput

Update:
1. When idx == len, wrap around to 0

idx = 1

yi = bc0 + cc1 + dc2 + ec3

Designing a FIR filter

i = 4

c0 c1 c2 c3

e f c d e f c d

e g f e d c b ainput

Continue with this algorithm for all input items.

idx = 1

Designing a FIR filter

i = 5

c0 c1 c2 c3

e f c d e f c d

e g f e d c b ainput

Continue with this algorithm for all input items.

idx = 2

yi = cc0 + dc1 + ec2 + fc3

Designing a FIR filter

i = 5

• The only logic in this algorithm is to check
when idx == len in order to reset idx = 0.

• How?

If statement modulo len

• Which is faster? Does it matter?

idx = idx + 1;
if(idx == len)

idx = 0;
idx = (idx+1) % len;

Designing a FIR filter

Profiling tools

• Walk through an example using:

– Valgrind (http://valgrind.org)

– Cachegrind (http://valgrind.org/info/tools.html)

– KCachegrind (http://kcachegrind.sourceforge.net)

http://valgrind.org/
http://valgrind.org/
http://valgrind.org/info/tools.html
http://valgrind.org/info/tools.html
http://kcachegrind.sourceforge.net/
http://kcachegrind.sourceforge.net/

PROFILING EXAMPLE

PROGRAMMING MODEL

We started off with this concept:

Python Interface C++ Libraries

USRP
Source

Filter

FM
Demod

Audio
Sink

libusrp.so

libgnuradio-core.so

libgnuradio-alsa.so

Behind the scenes:

gr_buffer_reader

USRP
Source

Filter
FM

Demod

gr_buffer

gr_buffer_reader

gr_buffer

• Scheduler calls a block’s work function and tells it how many
items it can produce based on the number of items in the
gr_buffer.

• Blocks read from their input buffer and write to an output
buffer.

• Scheduler is optimized for throughput.

GNU Radio block work function

• There are N input streams
– input_items[n] has ninput_items[n] items

• Can produce at most noutput_items number of
items in any output_items output stream

• Tells scheduler
– how many consumed from each input

– how many produced (<= noutput_items)

int general_work(int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

Example:
multiply_const_ff

int general_work (<see last slide>)
{

const float *in = (const float*)input_items[0];
float *out = (float*)ouput_items[0];

for(int i = 0; i < noutput_items; i++) {
out[i] = k * in[i];

}

// an equal number of items consumed and produced
consume_each(noutput_items);
return noutput_items;

}

gr_multiply_const_ff(k)

Four basic types of blocks

• Sync blocks

– number of items in equals the number of items out

– like the multiply constant example

• Decimation blocks

– number of items IN is D times the number of items OUT

• Interpolation blocks

– number of items OUT is I times the number of items IN

• Blocks:

– relationship between input and output items is not
straight-forward

• Simple Wrapper Interface Generator (SWIG)
• http://www.swig.org

SWIG wrapper

SWIG allows us to talk between the
Python and C++ layers.

GNU Radio
Python block

libgnuradio-core.so
GNU Radio Core

shared library

http://www.swig.org/
http://www.swig.org/

• SWIG produces Python modules out of the
C++ blocks

• Builds an interface based on an interface
description file (.i)

– The interface description file describes the API for
talking between the two languages

– Its content is very similar to the C++ .h header file

Program GNU Radio in Python;
computation handled in C++

Advice:

If you want to write a new block,
find a block that has similar
properties and copy it.

CONSIDERING ALGORITHMS

Understanding GNU Radio’s quantization

• What is the proper scope of a block?

• Try to use good software principles:

– Increase usability

– Reduce duplication

• Find the smallest level the algorithm can run

• Expand the scope only as needed

– Only when the combination of other blocks
cannot properly solve the problem

Programming the algorithm

• Follow good programming practices that we
discussed earlier

• Make as much gain from the algorithm as
possible

– don’t just rely on super programming skills to
overcome an inherently bad algorithm

• Takes a lot of multidisciplinary thinking

Example:
The FIR filter

• We know that filtering is convolution in time:

• Which means, its multiplication in frequency:

• With the efficiency of the FFT, convolution is
faster in the frequency domain
– “fast convolution”

][][nxtny

1

0

][][][
L

i

inXiTnY

GNU Radio implements both kinds of FIR filters

• FIR done as time convolution

– gr_fir_filter_XXX

• FIR done in frequency domain

– gr_fft_filter_XXX

• The time domain has been SIMD optimized

• How do they compare in speed?

Comparing the SIMD and non-SIMD time
domain filters

Comparing the time domain to frequency
domain filters

For all of our cleverness in the time domain

• Using the right algorithm produces a more
efficient filter.

• FFT filter slower for small number of taps
– around 22

• Not much slower at this point

• Some gains left to be made
– SIMD optimize the multiplication loop

– Some FFT sizes are faster than others; use them
and pad with zeros

FFTW capabilities
(http://www.fftw.org/speed/CoreDuo-3.0GHz-icc64/)

Intell IPPS
Intel MKL in-place
Intel MKL out-of-place
FFTW3 out-of-place
FFTW3 in-place

Other lines are from other FFT
programs and are not
important for this comparison

61

THE GNU RADIO COMPANION

Graphical tool for building GNU Radio
flowgraphs

• Makes it easier to:

– Visualize the data flow

– Tie in with graphical sinks

– Browse available library of blocks

– Add live interactive capabilities through block
callbacks

• gnuradio-companion is distributed with GNU
Radio

GNU Radio Companion features:

• Variables
– Set values of blocks

– Dynamic variables add features such as sliders or edit
boxes for on-line altering of parameters

• Python programming level:
– many things can be altered by using Python

programming such as calling other modules,
functions, or creating lambda functions

– Can even import new modules

• GUI interface is interactive and configurable
– Add Notebooks for better on-screen organization

EXAMPLES OF USING THE
GNU RADIO COMPANION

FIN

