
Proceedings of the SDR’10 Technical Conference and product Exposition, Copyright © 2010 SDR Forum, Inc. All Rights Reserved 

DESCRIBING RADIO HARDWARE AND SOFTWARE USING OWL-DL 

FOR SOFTWARE DOWNLOAD AND CERTIFICATION 

 

L. Stanchev  

Dept. of Computer Science, Indiana University Purdue University Fort Wayne, IN, 

USA 

 

T. Cooklev & D. Clendenen 

Dept. of Engineering, Indiana University Purdue University Fort Wayne, IN, USA 
 
 

ABSTRACT 

 

Recently, several researchers have discovered the need for 

radios to use description techniques. Previous research 

describes information such as the current frequency band, 

waveform, and so on.  However, this information is 

presented at a level that is not sufficient to determine 

software/hardware compatibility for over-the-air software 

download. For example, a device should not attempt to 

download a wideband waveform if its radio front-end is only 

narrowband, or if its baseband hardware cannot provide the 

required MIPS for the new waveform. Over-the-air software 

download is one of the most interesting features of software-

defined radios. The compatibility between software and 

hardware prior to software download previously had to be 

verified manually. The approach that is described here 

removes the need for man-in-the-loop. It uses OWL-DL to 

describe the components of a software defined radio and the 

software to be downloaded. As a result, the problem of 

compatibility is reduced to that of checking a subsumption 

constraint in an OWL-DL ontology. We show the variability 

of our approach through examples. 

 

 

1. INTRODUCTION 

 

Figure 1 shows generic computer hardware/software 

architecture.  It is characterized by three “layers”.  The first 

layer is composed of hardware.  The second layer is system 

software, which provides an interface between the hardware 

and the third layer of application software. The purpose of 

the system software is to isolate the hardware from the 

software. Software-defined radio (SDR) systems have a 

similar architecture - see Figure 2. The SDR architecture 

supports multiple baseband standards (a.k.a. waveforms) and 

each baseband standard can have a different controller 

standard.  

There are two main differences between the 

architectures in Figures 1 and 2. The first difference is that 

the hardware in SDR cannot be made fully independent of 

the software by the system software. In other words, the 

hardware may not support all waveforms, which are 

software-defined. The second difference is that the SDR 

architecture has a special architectural component. It is the 

switcher (or the reasoner – see [1]) and it monitors 

functional requests. The switcher provides the control 

functions that must exist outside of the waveforms that are 

supported by the SDR.   

 
Figure 1. Generic Computer Architecture 

 
Figure 2. Generic SDR Architecture 

The switcher decides which waveform will be active at 

any one time and switches between waveforms. In a sense, it 

is the glue that holds the waveform software together. 

Consider the scenario where a user wants to download 

additional baseband software on a SDR device ([2]). This 

software may or may not be compatible with the device. For 

SDR'10   Session 5C- 3

464



Proceedings of the SDR’10 Technical Conference and product Exposition, Copyright © 2010 SDR Forum, Inc. All Rights Reserved 

example, if the device supports only the Bluetooth air 

interface standard (AIS), then it will not be able to operate 

software that requires Wi-Fi capabilities. The general 

problem is that of determining whether the communication 

capabilities of a SDR device are compatible with the 

requirements of the software that can be potentially 

downloaded on the device. Solving this problem will allow 

the user to automatically determine whether the software that 

they want to download can be used on their SDR device.  It 

may be the case that the user has access to a plethora of 

software products and knowing which ones are compatible 

with their device is critical.   

The problem of deciding whether the capabilities of the 

software that is candidate for downloading match with the 

capabilities of a SDR devise is not trivial. The reason is that 

the capabilities of different SDR devices and communication 

software are very diverse. Different vendors produce 

products with distinct characteristics and capabilities and 

therefore it is difficult to describe all products in a 

standardized way. For example, it is not enough to denote 

that a SDR device has two antennas and two RF chains; we 

also need to describe the type and properties of the antennas 

and the properties of the RF chains.  For example, relational 

database is not rich enough to store such information.   

Existing solutions list the minimal requirements for the 

software that is available for download. The user needs to 

manually check whether their SDR device meets these 

requirements before downloading it. However, if the number 

of potential software products to download is big, then doing 

this check manually will be unfeasible. Moreover, a list of 

the minimal requirements presents a very coarse-grained 

picture of the software.  

In the paper we propose that both the SDR devices and 

the communication software for them be described as OWL-

DL knowledgebases ([3]) over the same ontology. Then the 

problem of deciding whether the communication capabilities 

of a software product are compatible with those of a SDR 

device will be reduced to checking for satisfiability in an 

OWL-DL knowledgebase. Although the later problem has 

higher than polynomial complexity, there exist commercial 

implantations (e.g., Racer [4] and FaCT++ [5]) that perform 

the satisfiability check in satisfactory time.   

The organization of this paper is as described next. In 

Section 2 we present related research and provide 

justification for pursuing an ontology-based solution to the 

problem of matching SDR devices with compatible 

software. In Section 3 we describe the software download 

and certification problem in greater details. Sections 4 and 5 

present review of the radio architecture and the Manchester 

OWL Syntax, respectively. Section 6 shows an example of 

how an OWL-DL reasoner can be used to determine if there 

are conflicts between the hardware of a SDR device and the 

software that is candidate for downloading. Chapter 7 

summarizes our approach and outlines its limitations. 

   
2. MOTIVATION AND RELATED RESEARCH   

 

OWL, which stands for Web Ontology Language, is 

powerful enough to describe a domain, where a domain 

consists of individuals that belong to classes. OWL can be 

used to describe the data and object properties of the 

individuals and the relationship between the individuals and 

classes in the domain. There are three dialects of OWL: 

OWL-Lite, OWL-DL, and OWL-Full. OWL-DL is the most 

popular dialect because it provides significant expressive 

power and supports practical reasoning algorithms.  

In the radio world, the individuals in the 

knowledgebase are devices and components, such as RF 

sections, analog-to-digital and digital-to-analog converters 

(ADC and DAC, respectively), digital hardware, filters, and 

mixers. The constraints of the components and 

subcomponents will include the capabilities of antennas, 

filters, ADC/DAC, and digital hardware, to name a few. 

Such descriptions are extensible and allow all components 

and subcomponents to be described in sufficient depth. 

Furthermore, the technique can be applied beyond devices to 

network and service capabilities.    

 An ontology is useful when there are complex 

interactions between the individuals in a domain. In such 

cases database technology is inadequate. In a world with low 

levels of volatility with a small numbers of radio types, 

modes of operation, end-user services, and simple, fixed 

economic relationships among service providers, the 

construction of formal descriptions is not required. In this 

case the necessary information can be stored in centralized 

databases. This was the world of yesterday and, to a large 

extent, today. However, the wireless universe is fast 

becoming as complex as the Internet, with countless 

waveforms, implementations, and capabilities. In the future, 

as radio devices switch between air interface standards, 

services, networks, and operators, they will need to change 

their configuration on the fly. A data model that can 

represent complex relationships between individuals, such as 

an OWL-DL ontology, is best suited for describing such a 

complex system.  

The OWL-DL language can be used to describe the 

current configuration of a radio, its potential configuration 

and functionality, the characteristics of waveforms and air 

interface standards (AIS), the type of information being 

handled, the environment (spectral,  physical/geographic, 

and in some cases situational, such as whether special 

emergency conditions exist) and the type of end users 

involved.  

The need for description techniques for identifying the 

various objects in the wireless universe, their configurations 

and capabilities, and the services that the users are 

requesting has been noted in several publications [6-10]. 

465



Proceedings of the SDR’10 Technical Conference and product Exposition, Copyright © 2010 SDR Forum, Inc. All Rights Reserved 

These techniques are collectively called Networking 

Description Language (NDL), Metalanguage, or Modeling 

Language for Mobility (MLM). We use the term 

metalanguage for all of these description techniques. The 

paper [9] introduces an ontology that describes waveforms 

and digital modulation parameters, such as bits and symbols. 

The ontology described here is at a different level of 

granularity. Furthermore the work in [9] does not capture the 

hardware architecture of a radio device.  

The research that is presented is related to the Software 

Communications Architecture (SCA) of JPEO (Joint 

Program Executive Office). The SCA can be considered as 

one particular implementation of the architecture in Figure 

2. It includes an operating environment (OE).  The OE 

consists of an operating system (OS), CORBA middleware 

(including the OMG-defined Event and Naming Services), 

and the elements defined by the Framework Control and 

Service Interfaces. In SDR, the role of the SCA is to provide 

a common infrastructure for managing the software and 

hardware elements and ensuring that their requirements and 

capabilities are commensurate. Additionally, the SCA 

ensures that once software components are deployed on a 

system, they are able to execute and communicate with the 

other hardware and software elements present in the system. 

The SCA accomplishes these tasks by defining a set of 

interfaces that isolate the applications from the hardware. 

All SCA compliant systems require certain software 

components to be present in order to provide for component 

deployment, management, and interconnection. These 

components include the DomainManager (including support 

for the ApplicationFactory and Application interfaces), 

DeviceManager, FileManager, and FileSystem interfaces. 

The SCA defines a set of files that are referred to as the 

Domain Profile. The SCA Domain Profile elements identify 

the capabilities, properties, inter-dependencies, and location 

of the hardware devices and software components that make 

up an SCA-compliant system. 

The Domain Profile is a hierarchical collection of 

eXtensible Markup Language (XML) files that define the 

properties of all software components in the system. XML is 

a description language that provides explicit structure for the 

description of information. In the SCA, XML files describe 

the layout of the system and the waveform applications, their 

location, names, and so on. 

This work extends previous research by developing 

ontology-based descriptions to support software download 

and certification. In previous research, solutions to the 

problem of checking for conflicts between hardware 

capabilities and software specifications have not been 

proposed. 

 
3. SOFTWARE DOWNLOAD AND 

CERTIFICATION FOR SDR DEVICES 

 

The need for software download in a SDR device arises 

naturally, just as the need for software download in a 

computer. Consider a scenario where a user requests a 

service from a device.  Service requests can come from the 

infrastructure or from the radio itself in response to changes 

in environmental conditions. If the requested service is 

within the handset’s currently configured capabilities, the 

service is initiated.  If not, the switcher searches its local 

repository for software code modules that will allow 

satisfaction of the request.  If such software is found within 

the device, then the switcher installs it.  If not, the switcher 

asks the wireless network infrastructure if it can provide the 

software for the requested service. Assuming that the answer 

is yes, the network can provide the code. Then one must 

determine that there is no conflict and that the software can 

actually be run on the hardware.  

Previously, the assumption was that this step could be 

done manually. Clearly, this is inadequate. In this paper we 

describe one implementation where this can be done 

automatically. If the software is compatible with the 

hardware, then the switcher can check the software to 

determine that the software is from a trusted source before 

the device can finally proceed to actually perform the 

software download. Before the software is actually run on 

the device, additional operations must take place. These 

additional operations ensure that all resources required by 

the waveform software are available. In tactical radios these 

tasks are done by the SCA.   

SDR technology presents many challenges, such as 

technical, regulatory, and business. The regulatory and 

certification problems are some of the most significant since 

it is not possible to test every software module on every 

hardware platform. Considering this, it is very difficult to 

ensure that every software module will behave appropriately 

on every hardware module. If this problem is solved, it is 

likely that a very significant industry of third-party software 

vendors will appear. In other words, users will be able to 

download software onto their wireless devices from any 

software vendor, similar to the computer software industry 

today. Therefore the problem is of very high significance 

and no satisfactory solution exists at present.  

The paper proposes that a third-party software vendor 

can create metalanguage description for software. Then, it 

can present the software together with the description to a 

known certification lab. The certification lab checks the 

software to determine if the description is accurate and 

adequate considering the possible descriptions of radio 

hardware. The lab may suggest modifications to the 

metalanguage description to ensure that the software will be 

run only on hardware devices with which all relevant 

government regulations are satisfied. If the lab finds that the 

vendor’s description is accurate and adequate, it certifies, or 

approves, the metalanguage description. It can be noted that 

the certification of the software will almost certainly include 

466



Proceedings of the SDR’10 Technical Conference and product Exposition, Copyright © 2010 SDR Forum, Inc. All Rights Reserved 

other steps, such as verifying conformance with a standard. 

These steps are well known and are not examined in detail 

here. We propose using OWL-DL for describing radio 

software and radio hardware. The intent of this work is to 

ensure that the behavior of the software/hardware 

combinations is predictable as long as the descriptions 

match.  

4. DESCRIPTION OF RADIO HARDWARE  

 

Since we will be describing radio hardware, it is important 

to review radio architecture. Most wireless communication 

systems employ architecture with analog components, digital 

components, and ADC/DAC between. The analog 

components include an antenna system and associated front-

end amplifiers, switches, filters, down-converters and up-

converters. The baseband digital signal processing algorithm 

as implemented on digital hardware is shown in Figure 3.   

 

 
Antenna

System

Amplify

Filter

Convert

ADC/DAC

Baseband

digital

signal

processing

RF signal Baseband

signal  

Figure 3. Wireless Transceiver Architecture 

 

The basic functions of the transceiver are down/up 

conversion, channel selection, interference rejection and 

amplification. 

Down conversion is required for receivers.  A receiver 

subsystem takes the weak signal from the antenna, converts 

the signal from the transmission radio frequency (high - RF) 

to baseband frequency (low – typically low end of the 

desired signal will approach zero Hertz), filters out the noise 

(from external sources out of band / in band, and internally 

generated sources) and unwanted channels, amplifies the 

signal to a level that can be used efficiently by the rest of the 

system and delivers the signal to the baseband subsystems.   

Up conversion is required for transmitters.  A 

transmitter subsystem takes the signal (much stronger than 

the received signal at the antenna, but much lower power 

than the signal to be transmitted) from the baseband 

subsystem, converts the signal up from baseband frequency 

to the desired transmission radio frequency, amplifies the 

signal to the desired transmission level, filters out any noise 

introduced in the process (sometimes referred to as spurious 

emissions) and delivers the signal to the antenna. 

In this work we focus on the main parameters of radio 

hardware. These main parameters include the following: 

 

 Number of antennas, center frequency, and bandwidth 

of the antenna. Both the center frequency and the 

bandwidth can be specified in terms of the ranges in 

which they can be tuned.  

 The number of antennas may be different from the 

number of down/up conversion chains. The antenna(s) 

may be connected to a switch or an analog front-end 

block; in general there might be 0 or more switches.   

 One or more receiver analog down-conversion blocks 

are specified by bandwidth and receiver sensitivity.  

 One or more transmit analog front-end blocks with 

parameters that include bandwidth, center frequency, 

and third-order intercept point.   

 One or more ADC with parameters including SNR and 

sampling frequency. The ADC could be placed at IF or 

at baseband level. If the ADC is placed at the IF level, 

there usually will be a digital down-conversion block.   

 The transmitter will include one or more DACs, 

specified in terms of the spurious-free dynamic range 

(SFRD).  

 One or more digital hardware modules each described 

using MIPS and memory. Both MIPS and memory are 

usually specified in terms of upper limit.   

 

5. THE MANCHESTER OWL SYNTAX 

 

This section presents a few examples of the Manchester 

OWL syntax, where the reader should refer to [11] for 

complete overview. Our later examples will use this syntax. 

The objects in the domain are referred to as 

individuals. An example individual antenna1 can be 

defined as shown below. 

 

Antenna and center_frequency_tuning_range value 

[>=50, <=6000] and current_center_frequency value 2400 

and ((connected_to value rx_1) or (connected_to value 

rx_2) or (connected_to value tx_1) or (connected_to 

value tx_2)) and connected_to exactly 1 Transceiver 

 

It describes an antenna with center frequency tuning 

range between 50 MHz and 6000 MHz and current center 

frequency of 2400 MHz that is connected to exactly one of 

four transceivers (rx_1 and rx_2 are receivers, while tx_1 

and tx_2 are transmitters). At any point, a switch will 

connect exactly one of the transceivers to the antenna.  Note 

that rx_1, rx_2, tx_1 and tx_2 are also example of 

individuals (all individuals will start with a small letter in the 

paper). 

Every individual can have both data properties and 

object properties.  A data property has a value that is a 

primitive type (e.g. integer, float, date, etc.), while an object 

property has a value that is another individual. In our 

example, current_center_frequency is a data property, while 

connected_to is an object property.  

467



Proceedings of the SDR’10 Technical Conference and product Exposition, Copyright © 2010 SDR Forum, Inc. All Rights Reserved 

Every individual is of a certain type, which 

corresponds to the class it belongs to. For example, all 

receivers belong to the class Receiver.  A class can be 

defined using other classes.  For example, the class 

Transceiver is defined as “Receiver or 

Transmitter”.  A restriction can be specified on a class. 

For example, we can define that the class Receiver is 

subsumed by the class with description “connected_to 

exactly 1 Analog_Digital_Converter”.  We will 

denote this subsumption as follows. 

 

Receiver SubClassOf connected_to exactly 1 
Analog_Digital_Converter 

 

Another example of a subsumption is shown below.  

 

IEEE_802.11a SubClassOf contains min 1 

(Antenna_System and connected_to min 1 (Receiver and 

(connected_to min 1 (Analog_Digital_Converter and 

number_of_bits some int [>=6])))) 

 

It denotes that the software standard 802.11a requires 

the devices that support this standard to contain at least one 

antenna systems that is connected to at least one receiver 

that is connected to at least one ADC with number of bits 

greater or equal to 6.  

 

6. EXAMPLE DESCRIPTION OF SDR DEVICE 

AND CHECKING FOR CONFLICTS 

 

6.1. Example Description of SDR device 

 

Switch

Rx 1

Rx N

Tx 1

Tx N

control
 

Figure 4. Example SDR Architecture 

Consider a device that has the architecture shown in 

Figure 4.   From this device, we will create the individuals 

shown in Figure 5. We will denote that the device device1 

contains the antenna antenna1, the receivers rx_1 and 

rx_2, the transmitters tx_1 and tx_2, the digital analog 

converters DAC1 and DAC2, and analog digital converters 

ADC1 and ADC2 and the digital signal processing module 

DSPM1 as shown below. 

 

device1 SubClassOf (contains antenna1) and (contains 

ADC1) and (contains ADC2) and (contains DAC1) and 

(contains DAC2) and (contains rx_1) and (contains rx_2) 

 

The fact that an antenna can be connected to exactly 

one of the four transceivers will be denoted as follows.  
 

Antenna_System SubClassOf (connected_to value rx_1) 

or (connected_to value rx_2) or (connected_to value 

tx_1) or (connected_to value tx_2) 

 

 

Figure 5. Individuals for the Example Architecture 

6.2. Checking for Conflicts  

 

As an example, consider the description of the air 

interface standard IEEE 802.11a ([12-13]). IEEE 802.11a 

operates in the so-called UNII frequency bands over 5 GHz 

and one channel occupies 20 MHz. It requires one antenna 

and one RF chain. 802.11a is a time-division duplexing 

(TDD) system – a device cannot transmit and receive at the 

same time. Devices transmit and receive at the same 

frequency at different time instants. The center frequency 

must be greater than 5.15 GHz and smaller than 5.825 GHz. 

The standard requires receiver sensitivity of at most -82 

dBm, and SNR of at least 18 dB. It achieves data rates 

between 6 Mb/s and 54 Mb/s. The lowest data rate should be 

achieved for SNR values of 18 dB or less and the highest 

data rate should be achieved for SNR values of 35 dB or 

less. Since the SNR of a converter is about 6 dB per bit, we 

assume that at least 6 bits of resolution are required from the 

ADC to achieve the required SNR. We assume that the 

digital hardware generally must provide at least 9000 MIPS 

to implement the standard. The implementation of 802.11a 

will require the device to able to perform 64-point FFTs and 

decoding of a convolutional code with constraint length 7 

within a certain period of time. Here, it is assumed that any 

digital hardware offering 9000 MIPS can do this, otherwise 

a more detailed description may be required. In general, this 

depends on the software implementation.   

Part of the description of the IEEE 802.11a standard is 

shown below. 

 

IEEE802.11a SubClassOf contains min 1 

(Antenna_System and (current_bandwidth some 

int[>=20]) and connected_to min 1 (Receiver and 

(connected_to min 1 (Analog_Digital_Converter  and 

468



Proceedings of the SDR’10 Technical Conference and product Exposition, Copyright © 2010 SDR Forum, Inc. All Rights Reserved 

(number_of_bits some int[>=6]) and connected_to min 1 

(Digital_Signal_Processing_Module and MIPS some 

int[>=9000]))))) 

 

This describes that the device must contain minimum 

one antenna, the bandwidth of the antenna must be at least 

20 MHz, the antenna must be connected to at least one 

receiver, which in turn must be connected to at least one 

ADC with number of bits at least 6 and connected DSPM 

with MIPS at least 9000. Note that measurement units are 

not part of the current OWL-DL syntax. 

We can check if our device device1 belongs to the 

class IEEE802.11. If this is the case, then our device 

supports the protocol. If this is not the case, then either our 

device does not support the protocol or we do not have 

enough evidence to conclude that the device supports the 

protocol. 

Another example is the latest IEEE 802.11n standard. 

This standard defines operation for up to 4 antennas. 

However, operation with two antennas is mandatory; 

operation with four antennas is optional. Operation with 

20/40 MHz channels is similar: support for 20 MHz 

channels is mandatory and support for 40 MHz channels is 

optional. Note that the transmission spectral masks for 20 

MHz and 40 MHz operation are different.  

Having mandatory and optional features is typical for 

waveforms. Transmit beamforming and space-time block 

coding (STBC) are other optional features. As far as the 

ability to download some software onto a certain radio 

hardware platform, the mandatory features are more 

important. For example, a device that supports two spatial 

streams in 20 MHz channels should be considered 

compatible with 802.11n and should be allowed to 

download those portions of the 802.11n software that it can 

run. This means that the code may have to be structured so 

that devices can download only those parts with which they 

are compatible. No other description technique allows this at 

present.  

Another important parameter that determines which 

software can be run on a given devices is the processing 

power of the digital hardware. A minimum MIPS is required 

to implement the mandatory portions of the software and 

even more MIPS are requires for the optional features.  

 

7. CONCLUSIONS 

 

We propose using OWL-DL to describe radio software and 

hardware. We presented an ontology that can be used prior 

to over-the-air software downloads onto radio hardware 

platforms to check for compatibility. While we consider 

software download of waveform software, the technique can 

be applied for all types of software that radio devices can 

download.  

One characteristic of our approach is that both the 

capabilities of the SDR device and the communication 

software need to be described by a domain expert. Although 

this task is time-consuming, it needs to be performed only 

once. We believe that this work is significantly less than 

manually checking for the compatibility of every possible 

SDR device – communication software pair.  

Another limitation of our approach is that both the 

capabilities of the SDR device and the communication 

software need to be described using concept descriptions 

over the same ontology.  In other words, in order for the 

compatibility test to be reliable, all SDR devices and 

communication software must reference the same 

standardized ontology.  

The running example ontology of this paper can be 

downloaded from: http://stanchev.ipfw.edu/~lubo/ 

SDROntologyv4.3.owl 

 

8. REFERENCES 
[1] B. Fette (Ed.), “Cognitive radio technology,” Newnes 

Publication, August 2006. 
[2] J. Polson, E. Christensen, B. Tarver, S. Gifford, “Common 

software download requirements for software-defined radios,” 
SDR Forum Technical Conference, 2002.   

[3] Web Ontology Language (OWL), 
http://www.w3.org/2004/OWL 

[4] Volker Haarslev and Ralf Moller, Racer: A Core Inference 
Engine for the Semantic Web, Second International 
Workshop on Evaluation of Ontology-based Tools, 2003 

[5] D. Tsarkov and I. Horrocks, FaCT++ Description Logic 
Reasoner: System Description, Lecture Notes in Computer 
Science, volume 4130, pages 292-297, 2006 

[6] T. Cooklev, M. Cummings, “Networking Description 
Language for Ubiquitous Cognitive Networking”, SDR 
Forum Technical Conference, Washington, DC, 2008.   

[7] Mark Cummings; Todor Cooklev; Bryan Lyles; P. A, 
Subrahmanyam; "Commercial Wireless Metalanguage 
Scenario", SDR Technical Conference, Denver, Co. Nov. 
2007. 

[8] Mieczyslaw M. Kokar, Donald Hillman, Shujun Li, Bruce 
Fette, Preston Marshall, Mark Cummings, Todd Martin, John 
Strassner, “Towards a Unified Policy Language for Future 
Communication Networks: A Process,”  

[9] S. Li, M. Kokar, “Developing an ontology for the cognitive 
radio, SDR Forum Technical Conf., Washington, DC, 2009.  

[10] M. Kokar, L. Lechowicz, “Language Issues for Cognitive 
Radio,” Proceedings of the IEEE, vol. 97, April 2009. 

[11] Matthew Horridge, Nicholas Drummond, John Goodwin, 
Alan Rector, Robert Stevens and Hai Wang, The Manchester 
OWL syntax, OWL: Experiences and Directions, 2006 

[12] Michael J. Meeuwsen, Omar Sattari, Bevan M. Baas, A 
Full-rate software implementation of an IEEE 802.11A 
compliant digital baseband transmitter, Proceedings of the 
IEEE Workshop on Signal Processing Systems, 2004.  

[13] Byung Wook Lee, Sung Ho Cho, “An implementation of the 
SDR baseband platform for OFDM communication systems,” 
SDR Forum Tech. Conf., 2005.  

 

  

469

http://www.w3.org/2004/OWL

