SDR10 - -
Wireless Innovation Conference S I g_m_aI I X

and Product Expc:siti::-n

t

"Open Vector Radio"
A C++ Methodology Standard Proposal for High
Performance Software Baseband Coding

Phil Moorby
Yuan Lin
Sigmatix, Inc.

Trials and Tribulations of SDR Programming

e Hard to achieve performance
requirements with general
purpose C code

e Assembly code must be
rewritten for new or upgraded
processor, and is hard to write
and maintain

e We need a portable, easy to use
solution that fully leverages
processor architecture to
maximize performance

Sigmatix

Performance
Low High
:

o Compiled Where we
> C/C++ need to be
23
g%

g Y Hand Coded

i Assembly

Low

Code

Gap

Programming

siyimaux wunfidential

Vector Processing - Enabling SDR Performance

Data Ievel parallelism
(SIMD)

Heterogeneous Homogeneous
multicore parallelism Processor Pipeline multi-core
parallelism
Instruction
level
parallelism
(VLIW)

New, low power processors with multi-parallel architectures,
specialized instructions, rapid load store options, etc drive
order of magnitude throughput/power improvements

I only they can be programmed effectively

Sigmatix Sigmatix Confidential

OpenCL and OpenGL

e Open Computing Language (OpenCL)
— Portable framework for programming heterogeneous platforms of
CPUs, GPUs and other processor types

— Based on C, includes APls to control platform
— Allows access to GPUs for non graphics applications

e Open Graphics Language (OpenGL)
— Cross platform, cross language portable API for graphics applications
— Simplifies graphics coding regardless of language

e Both language offer:
— Portability

— Simplified and efficient coding of applications
— Performance through constrained programming

Sigmatix Sigmatix Confidential

Open Vector Radio - A Proposal

e A new programming methodology for baseband coding
— Solve performance to portability/ease of use trade-off
— SDR market potential enough to justify standardization effort

e Requirements:

— Simplifies use of complex parallel structures
e Possibly with the use of specific compilation technology
— Provides API for common baseband functions
— Based on C++ to appeal to baseband designers
— Portable across range of processors
— Performance coding enabler

Sigmatix Sigmatix Confidential

The “Cerberus” approach

e Three major components for enabling high-performance
SDR on vector DSP processors:

1. Virtual SIMD programming for DSP computations
2. Memory management libraries and APIs

3. High-performance cross-platform software IPs

Sigmatix Sigmatix Confidential

SIMD Programming Challenges

_ _ Performance
e QObjective Low High

— High performance DSP code <

— Portable to multiple SIMD-based >§I
processors s
g%
$ g
&

e Challenge: Different SIMD-
based processors have
different
— SIMD-width
— data element precisions

— different SIMD operations
(instruction set)

Low

Sigmatix

1. Virtual SIMD Language

e Solution: Program for a virtual SIMD
processor

— The virtual SIMD processor has “vlanes”
number of SIMD lanes

-

vlanes

— “vlanes” will translate into the number of
actual SIMD lanes on the target DSP
processor during compile-time

:

— Define a common set of arithmetic
operations that are supported by all DSP
extensions

Sigmatix

Virtual SIMD Variables

Program with this Translate into these during compile-time
@ /3 . —\ /3 . — /= I
O O] O
O B)8 O
0 N / 0 8 |oo0| e
o |) :
4 vlanes . 0
O - — N = 2n
O N —/ O
C B
n > —
4 <= vlanes <= 128 .
vlanes must be a power of 2
N Sy

Sigmatix

Virtual SIMD Data Precision

SIMD-char/short/int/long

vchar, vshort, vint, viong
Constant total number of virtual SIMD bits = vlanes * sizeof(char)
Different number of “vlanes” for each variable

shortl
l int
°
°

1

char

vlanes vlanes/2 vlanes/4

°
sizeof(char)* numlanes(vchar) = sizeof(short) * numlanes(vshort)
= sizeof(int) * numlanes(vint)

:

Sigmatix

Key Language Concepts

e Programming on a virtual SIMD processor with “vlanes”
number of SIMD elements

e Programmer must guarantee that his/her program is
functionally correct with respect to all possible values of
“vlanes” or specify which “vlanes” values don’'t work

e Programmer is responsible for algorithm parallelization

e Language will guarantee portability and performance

Sigmatix

Virtual SIMD Saturating Arithmetic

vchar t vbl = vbml[t] + vlLa;

Intel SSE intrinsics:
~_m1281 vbl = mm_adds_epi8(vbml[t], vLa);

Cognovo VSP intrinsics:
vint8 t vbl = vadds s8(vbml[t], vLa);

Sigmatix

Virtual SIMD Predicate Operations

vres = if else(vbO > vbl, vbO, vbl);

vres = mm_max_epi8(vb0O, vbl);

[Intel SSE intrinsics:]

vres = vmax_s8(vb0, vbl);

[Cognovo VSP intrinsics: J

Sigmatix

SIMD Shuffle Operations

typedef typename / 7
Arch: :SimdVar<vchar_t: :Larger<vchar_t::VarType,NW>, 7 —> 7
vchar_t::Lanes/NW > vcharX8 t;
unzip<vcharx8 t>(vb0, vbl, vb0, vbl); 6 5
6 5
[Intel SSE intrinsics: A 5 3
shuf _pat = mm_load si1128(& shufpats.vuzpO[1l]); 5 3
vres.v0 = _mm_shuffle_epi8(vb0, shuf pat);
vtemp.vO = mm_shuffle_epi8(vbl, shuf pat); 4 1
shuf _pat = mm_load si1128(& shufpats.vuzpl[l]); 4 1
vres.vl = mm_shuffle epi8(vb0, shuf pat);
vtemp.vl = mm_shuffle epi8(vbl, shuf pat); 3 6
mask = mm_load sil1l28(& shufpats.vuzpmask[1]): 3 6
vbO = mm_blendv_epi8(vres.v0, vtemp.v0, mask); 5 4
vbl = mm_blendv_epi8(vres.vl, vtemp.vl, mask); 5 4
N 4/
—— 1 2
(Cognovo VSP intrinsics: 1 5
vbO 1 = vuzp m s8(vbO,vbl,3);
vb0 = vb0_1.a0; 0 0
&ybl = vb0O 1.al; 0 0

Sigmatix

Virtual SIMD Summary

e Supports all vector operations

e Pure C++ code
— No special keywords or language extensions
— No special compiler required
— Portable to any processor platform
e Compile-time translation
— using C++ expression templates
— Using boost.proto for compile-time optimizations

e High-performance output code using native
processor SIMD Intrinsic

Sigmatix Sigmatix Confidential

2. Memory Support

Memory management challenges

e Portable code across multiple processor platforms
— Cache hierarchy versus scratchpad memories

e Multi-processor support
— Data consistency issues
— DMA transfers and control

e Different memory usage patterns
— Stream versus random access

e Algorithm-driven optimizations
— Algorithm memory access patterns and usage requirements

Sigmatix Sigmatix Confidential

2. Memory Support

e Provide a library for supporting memory operations

— For different memory usages:
e FIFO memories (one reader and one writer)

» Shared variables (one writer, multiple readers)

» Lookup tables (no writer (initialized during load time), multiple
readers)

— Standardized library API
— Implemented in pure C++

— Software and hardware constraints are expressed as a part
of API

e DSP algorithms’ memory access patterns
e SoC memory organization and size constraints
e Etc.

— Compile-time memory optimization give constraints

Sigmatix Sigmatix Confidential

3. High-performance Software IPs

e High-performance DSP algorithm design challenges
— Variations in instruction set support

— Variations in processor architectures and systems
e i.e. the number of cores, SIMD width

— Memory constraints
— Software system constraints and requirements

— Algorithm configurations
e i.e. FFT size

e There is no single “best” algorithm implementation

e There are “optimal” algorithm implementations under the
design constraints

Sigmatix Sigmatix Confidential

3. High-performance Portable Software IPs

e Provide a set of DSP algorithm libraries
— Constraint parameters are expressed as inputs
— Realizable through C++ templates

e Standardize library API
— portable across multiple platforms
— Allow system-wide software design and optimization

e Compile-time design space exploration and
optimization

Sigmatix Sigmatix Confidential

Moving Forward

e \Work already proposed by Wireless
Innovation Forum

e Sigmatix can make significant donation to
this effort

e Tier 1 players ready to join this discussion

Sigmatix Sigmatix Confidential

	"Open Vector Radio" �A C++ Methodology Standard Proposal for High Performance Software Baseband Coding
	Trials and Tribulations of SDR Programming
	Vector Processing – Enabling SDR Performance
	OpenCL and OpenGL
	Open Vector Radio – A Proposal
	The “Cerberus” approach
	SIMD Programming Challenges
	1. Virtual SIMD Language
	Virtual SIMD Variables
	Virtual SIMD Data Precision
	Key Language Concepts
	Virtual SIMD Saturating Arithmetic
	Virtual SIMD Predicate Operations
	SIMD Shuffle Operations
	Virtual SIMD Summary
	2. Memory Support
	2. Memory Support
	3. High-performance Software IPs
	3. High-performance Portable Software IPs
	Moving Forward

