
Sigmatix

"Open Vector Radio"
A C++ Methodology Standard Proposal for High

Performance Software Baseband Coding

Phil Moorby
Yuan Lin

Sigmatix, Inc.

Sigmatix

Trials and Tribulations of SDR Programming

Sigmatix Confidential

Compiled
C/C++

Hand Coded
Assembly

Code

Performance
Low High

Po
rt

ab
ili

ty
Ea

se
 o

f
Co

di
ng

Lo
w

 H
ig

h

Where we
need to be

•• Hard to achieve performance Hard to achieve performance
requirements with general requirements with general
purpose C codepurpose C code

•• Assembly code must be Assembly code must be
rewritten for new or upgraded rewritten for new or upgraded
processor, and is hard to write processor, and is hard to write
and maintainand maintain

•• We need a portable, easy to use We need a portable, easy to use
solution that fully leverages solution that fully leverages
processor architecture to processor architecture to
maximize performancemaximize performance

Processor Complexity

Performance Requirement Pr
og

ra
m

m
in

g
G

apSituation Getting Worse

Sigmatix

Vector Processing –

Enabling SDR Performance

Sigmatix Confidential

Scalar
processing core

Vector
processing core

Optional
Co-Processor

…

Heterogeneous
multicore parallelism

Instruction
level
parallelism
(VLIW)

Data level parallelism
(SIMD)

Homogeneous
multi-core

parallelism

Processor Pipeline

New, low power processors with multi-parallel architectures,
specialized instructions, rapid load store options, etc drive

order of magnitude throughput/power improvements

If only they can be programmed effectively

Sigmatix

OpenCL

and OpenGL

•• Open Computing Language (Open Computing Language (OpenCLOpenCL))
–– Portable framework for programming heterogeneous platforms of Portable framework for programming heterogeneous platforms of

CPUs, CPUs, GPUsGPUs and other processor typesand other processor types
–– Based on C, includes APIs to control platformBased on C, includes APIs to control platform
–– Allows access to Allows access to GPUsGPUs for non graphics applicationsfor non graphics applications

•• Open Graphics Language (OpenGL)Open Graphics Language (OpenGL)
–– Cross platform, cross language portable API for graphics applicaCross platform, cross language portable API for graphics applicationstions
–– Simplifies graphics coding regardless of languageSimplifies graphics coding regardless of language

•• Both language offer:Both language offer:
–– PortabilityPortability
–– Simplified and efficient coding of applicationsSimplified and efficient coding of applications
–– Performance through constrained programmingPerformance through constrained programming

Sigmatix Confidential

Sigmatix

Open Vector Radio –

A Proposal

•• A new programming methodology for baseband codingA new programming methodology for baseband coding
–– Solve performance to portability/ease of use tradeSolve performance to portability/ease of use trade--offoff
–– SDR market potential enough to justify standardization effortSDR market potential enough to justify standardization effort

•• Requirements:Requirements:
–– Simplifies use of complex parallel structuresSimplifies use of complex parallel structures

•• Possibly with the use of specific compilation technologyPossibly with the use of specific compilation technology

–– Provides API for common baseband functionsProvides API for common baseband functions
–– Based on C++ to appeal to baseband designersBased on C++ to appeal to baseband designers
–– Portable across range of processorsPortable across range of processors
–– Performance coding enablerPerformance coding enabler

Sigmatix Confidential

Sigmatix Sigmatix Confidential

The “Cerberus”

approach

•• Three major components for enabling highThree major components for enabling high--performance performance
SDR on vector DSP processors:SDR on vector DSP processors:

1.1. Virtual SIMD programming for DSP computationsVirtual SIMD programming for DSP computations

2.2. Memory management libraries and APIsMemory management libraries and APIs

3.3. HighHigh--performance crossperformance cross--platform software platform software IPsIPs

Sigmatix

SIMD Programming Challenges

•• ObjectiveObjective
–– High performance DSP codeHigh performance DSP code
–– Portable to multiple SIMDPortable to multiple SIMD--based based

processorsprocessors

•• Challenge: Different SIMDChallenge: Different SIMD--
based processors have based processors have
differentdifferent
–– SIMDSIMD--widthwidth
–– data element precisionsdata element precisions
–– different SIMD operations different SIMD operations

(instruction set)(instruction set)

C/C++
Compiler

Hand
Assembly
Coding

Performance
Low High

Po
rt

ab
ili

ty
Ea

se
 o

f
Co

di
ng

Lo
w

 H

ig
h

Virtual
SIMD

Sigmatix

1. Virtual SIMD Language

•• Solution: Program for a virtual SIMD Solution: Program for a virtual SIMD
processorprocessor
–– The virtual SIMD processor has The virtual SIMD processor has ““vlanesvlanes””

number of SIMD lanesnumber of SIMD lanes

–– ““vlanesvlanes”” will translate into the number of will translate into the number of
actual SIMD lanes on the target DSP actual SIMD lanes on the target DSP
processor during compileprocessor during compile--timetime

–– Define a common set of arithmetic Define a common set of arithmetic
operations that are supported by all DSP operations that are supported by all DSP
extensionsextensions

vlanes

Sigmatix

Virtual SIMD Variables

N = 2n

4 <= vlanes <= 128
vlanes must be a power of 2

vlanes

Program with this Translate into these during compile-time

Sigmatix

Virtual SIMD Data Precision

vlanes

sizeof(char)* numlanes(vchar) = sizeof(short) * numlanes(vshort)
= sizeof(int) * numlanes(vint)

vlanes/2

short

vlanes/4

int

char

SIMD-char/short/int/long
vchar, vshort, vint, vlong

Constant total number of virtual SIMD bits = vlanes * sizeof(char)
Different number of “vlanes” for each variable

Sigmatix

Key Language Concepts

•• Programming on a virtual SIMD processor with Programming on a virtual SIMD processor with ““vlanesvlanes””
number of SIMD elementsnumber of SIMD elements

•• Programmer must guarantee that his/her program is Programmer must guarantee that his/her program is
functionally correct with respect to all possible values of functionally correct with respect to all possible values of
““vlanesvlanes”” or specify which or specify which ““vlanesvlanes”” values donvalues don’’t workt work

•• Programmer is responsible for algorithm parallelizationProgrammer is responsible for algorithm parallelization

•• Language will guarantee portability and performanceLanguage will guarantee portability and performance

Sigmatix

vchar_t vb1 = vbm1[t] + vLa;

Virtual SIMD Saturating Arithmetic

Intel SSE intrinsics:
__m128i vb1 = _mm_adds_epi8(vbm1[t], vLa);

Cognovo

VSP intrinsics:
vint8_t vb1 = vadds_s8(vbm1[t], vLa);

Sigmatix

vres = if_else(vb0 > vb1, vb0, vb1);

Virtual SIMD Predicate Operations

Intel SSE intrinsics:
vres = _mm_max_epi8(vb0, vb1);

Cognovo

VSP intrinsics:
vres = vmax_s8(vb0, vb1);

Sigmatix

SIMD Shuffle Operations

Intel SSE intrinsics:
shuf_pat = _mm_load_si128(&__shufpats.vuzp0[1]);
vres.v0 = _mm_shuffle_epi8(vb0, shuf_pat);
vtemp.v0 = _mm_shuffle_epi8(vb1, shuf_pat);
shuf_pat = _mm_load_si128(&__shufpats.vuzp1[1]);
vres.v1 = _mm_shuffle_epi8(vb0, shuf_pat);
vtemp.v1 = _mm_shuffle_epi8(vb1, shuf_pat);
mask = _mm_load_si128(&__shufpats.vuzpmask[1]);
vb0 = _mm_blendv_epi8(vres.v0, vtemp.v0, mask);
vb1 = _mm_blendv_epi8(vres.v1, vtemp.v1, mask);

Cognovo

VSP intrinsics:
vb0_1 = vuzp_m_s8(vb0,vb1,3);
vb0 = vb0_1.a0;
vb1 = vb0_1.a1;

typedef typename
Arch::SimdVar<vchar_t::Larger<vchar_t::VarType,NW>,

vchar_t::Lanes/NW > vcharX8_t;
unzip<vcharX8_t>(vb0, vb1, vb0, vb1);

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

7

5

3

1

6

4

2

0

7

5

3

1

6

4

2

0

Sigmatix

Virtual SIMD Summary

•• Supports all vector operationsSupports all vector operations
•• Pure C++ codePure C++ code

–– No special keywords or language extensionsNo special keywords or language extensions
–– No special compiler requiredNo special compiler required
–– Portable to any processor platformPortable to any processor platform

•• CompileCompile--time translation time translation
–– using C++ expression templatesusing C++ expression templates
–– Using Using boost.protoboost.proto for compilefor compile--time optimizationstime optimizations

•• HighHigh--performance output code using native performance output code using native
processor SIMD intrinsicprocessor SIMD intrinsic

Sigmatix Confidential

Sigmatix

2. Memory Support

Memory management challengesMemory management challenges
•• Portable code across multiple processor platformsPortable code across multiple processor platforms

–– Cache hierarchy versus scratchpad memoriesCache hierarchy versus scratchpad memories

•• MultiMulti--processor supportprocessor support
–– Data consistency issuesData consistency issues
–– DMA transfers and controlDMA transfers and control

•• Different memory usage patternsDifferent memory usage patterns
–– Stream versus random accessStream versus random access

•• AlgorithmAlgorithm--driven optimizationsdriven optimizations
–– Algorithm memory access patterns and usage requirementsAlgorithm memory access patterns and usage requirements

Sigmatix Confidential

Sigmatix

2. Memory Support

•• Provide a library for supporting memory operationsProvide a library for supporting memory operations
–– For different memory usages:For different memory usages:

•• FIFO memories (FIFO memories (one reader and one writer)one reader and one writer)

•• Shared variables (Shared variables (one writer, multiple readers)one writer, multiple readers)
•• Lookup tables (noLookup tables (no writer (initialized during load time), multiple writer (initialized during load time), multiple

readers)readers)

–– Standardized library APIStandardized library API
–– Implemented in pure C++Implemented in pure C++
–– Software and hardware constraints are expressed as a part Software and hardware constraints are expressed as a part

of APIof API
•• DSP algorithmsDSP algorithms’’ memory access patternsmemory access patterns
•• SoCSoC memory organization and size constraintsmemory organization and size constraints
•• Etc.Etc.

–– CompileCompile--time memory optimization give constraintstime memory optimization give constraints

Sigmatix Confidential

Sigmatix

3. High-performance Software IPs

•• HighHigh--performance DSP algorithm design challengesperformance DSP algorithm design challenges
–– Variations in instruction set supportVariations in instruction set support
–– Variations in processor architectures and systemsVariations in processor architectures and systems

•• i.e. the number of cores, SIMD widthi.e. the number of cores, SIMD width

–– Memory constraints Memory constraints
–– Software system constraints and requirementsSoftware system constraints and requirements
–– Algorithm configurationsAlgorithm configurations

•• i.e. FFT size i.e. FFT size

•• There is no single There is no single ““bestbest”” algorithm implementation algorithm implementation
•• There are There are ““optimaloptimal”” algorithm implementations under the algorithm implementations under the

design constraintsdesign constraints

Sigmatix Confidential

Sigmatix

3. High-performance Portable Software IPs

•• Provide a set of DSP algorithm librariesProvide a set of DSP algorithm libraries
–– Constraint parameters are expressed as inputsConstraint parameters are expressed as inputs
–– Realizable through C++ templatesRealizable through C++ templates

•• Standardize library APIStandardize library API
–– portable across multiple platformsportable across multiple platforms
–– Allow systemAllow system--wide software design and optimizationwide software design and optimization

•• CompileCompile--time design space exploration and time design space exploration and
optimizationoptimization

Sigmatix Confidential

Sigmatix

Moving Forward

•• Work already Work already proposedproposed by Wireless by Wireless
Innovation ForumInnovation Forum

•• SigmatixSigmatix can make significant donation to can make significant donation to
this effortthis effort

•• Tier 1 players ready to join this discussionTier 1 players ready to join this discussion

Sigmatix Confidential

	"Open Vector Radio" �A C++ Methodology Standard Proposal for High Performance Software Baseband Coding
	Trials and Tribulations of SDR Programming
	Vector Processing – Enabling SDR Performance
	OpenCL and OpenGL
	Open Vector Radio – A Proposal
	The “Cerberus” approach
	SIMD Programming Challenges
	1. Virtual SIMD Language
	Virtual SIMD Variables
	Virtual SIMD Data Precision
	Key Language Concepts
	Virtual SIMD Saturating Arithmetic
	Virtual SIMD Predicate Operations
	SIMD Shuffle Operations
	Virtual SIMD Summary
	2. Memory Support
	2. Memory Support
	3. High-performance Software IPs
	3. High-performance Portable Software IPs
	Moving Forward

