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Trials and Tribulations of SDR Programming

e Hard to achieve performance
requirements with general
purpose C code

e Assembly code must be
rewritten for new or upgraded
processor, and is hard to write
and maintain

e We need a portable, easy to use
solution that fully leverages
processor architecture to
maximize performance
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Vector Processing - Enabling SDR Performance

Data Ievel parallelism
(SIMD)

Heterogeneous Homogeneous
multicore parallelism Processor Pipeline multi-core
parallelism
Instruction
level
parallelism
(VLIW)

New, low power processors with multi-parallel architectures,
specialized instructions, rapid load store options, etc drive
order of magnitude throughput/power improvements

I only they can be programmed effectively
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OpenCL and OpenGL

e Open Computing Language (OpenCL)
— Portable framework for programming heterogeneous platforms of
CPUs, GPUs and other processor types

— Based on C, includes APls to control platform
— Allows access to GPUs for non graphics applications

e Open Graphics Language (OpenGL)
— Cross platform, cross language portable API for graphics applications
— Simplifies graphics coding regardless of language

e Both language offer:
— Portability

— Simplified and efficient coding of applications
— Performance through constrained programming
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Open Vector Radio - A Proposal

e A new programming methodology for baseband coding
— Solve performance to portability/ease of use trade-off
— SDR market potential enough to justify standardization effort

e Requirements:

— Simplifies use of complex parallel structures
e Possibly with the use of specific compilation technology
— Provides API for common baseband functions
— Based on C++ to appeal to baseband designers
— Portable across range of processors
— Performance coding enabler
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The “Cerberus” approach

e Three major components for enabling high-performance
SDR on vector DSP processors:

1. Virtual SIMD programming for DSP computations
2. Memory management libraries and APIs

3. High-performance cross-platform software IPs
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SIMD Programming Challenges
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e Challenge: Different SIMD-
based processors have
different
— SIMD-width
— data element precisions

— different SIMD operations
(instruction set)
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1. Virtual SIMD Language

e Solution: Program for a virtual SIMD
processor

— The virtual SIMD processor has “vlanes”
number of SIMD lanes

-

vlanes

— “vlanes” will translate into the number of
actual SIMD lanes on the target DSP
processor during compile-time

:

— Define a common set of arithmetic
operations that are supported by all DSP
extensions
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Virtual SIMD Variables

Program with this Translate into these during compile-time
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Virtual SIMD Data Precision

SIMD-char/short/int/long

vchar, vshort, vint, viong
Constant total number of virtual SIMD bits = vlanes * sizeof(char)
Different number of “vlanes” for each variable

shortl
l int
°
°

1

char

vlanes vlanes/2 vlanes/4

°
sizeof(char)* numlanes(vchar) = sizeof(short) * numlanes(vshort)
= sizeof(int) * numlanes(vint)

:
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Key Language Concepts

e Programming on a virtual SIMD processor with “vlanes”
number of SIMD elements

e Programmer must guarantee that his/her program is
functionally correct with respect to all possible values of
“vlanes” or specify which “vlanes” values don’'t work

e Programmer is responsible for algorithm parallelization

e Language will guarantee portability and performance
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Virtual SIMD Saturating Arithmetic

vchar t vbl = vbml[t] + vlLa;

Intel SSE intrinsics:
~_m1281 vbl = mm_adds_epi8(vbml[t], vLa);

Cognovo VSP intrinsics:
vint8 t vbl = vadds s8(vbml[t], vLa);
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Virtual SIMD Predicate Operations

vres = if else(vbO > vbl, vbO, vbl);

vres = mm_max_epi8(vb0O, vbl);

[Intel SSE intrinsics: ]

vres = vmax_s8(vb0, vbl);

[Cognovo VSP intrinsics: J
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SIMD Shuffle Operations

typedef typename / 7
Arch: :SimdVar<vchar_t: :Larger<vchar_t::VarType,NW>, 7 —> 7
vchar_t::Lanes/NW > vcharX8 t;
unzip<vcharx8 t>(vb0, vbl, vb0, vbl); 6 5
6 5
[ Intel SSE intrinsics: A 5 3
shuf _pat = mm_load si1128(& shufpats.vuzpO[1l]); 5 3
vres.v0 = _mm_shuffle_epi8(vb0, shuf pat);
vtemp.vO = mm_shuffle_epi8(vbl, shuf pat); 4 1
shuf _pat = mm_load si1128(& shufpats.vuzpl[l]); 4 1
vres.vl = mm_shuffle epi8(vb0, shuf pat);
vtemp.vl = mm_shuffle epi8(vbl, shuf pat); 3 6
mask = mm_load sil1l28(& shufpats.vuzpmask[1]): 3 6
vbO = mm_blendv_epi8(vres.v0, vtemp.v0, mask); 5 4
vbl = mm_blendv_epi8(vres.vl, vtemp.vl, mask); 5 4
N 4/
—— 1 2
( Cognovo VSP intrinsics: 1 5
vbO 1 = vuzp m s8(vbO,vbl,3);
vb0 = vb0_1.a0; 0 0
&ybl = vb0O 1.al; 0 0
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Virtual SIMD Summary

e Supports all vector operations

e Pure C++ code
— No special keywords or language extensions
— No special compiler required
— Portable to any processor platform
e Compile-time translation
— using C++ expression templates
— Using boost.proto for compile-time optimizations

e High-performance output code using native
processor SIMD Intrinsic
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2. Memory Support

Memory management challenges

e Portable code across multiple processor platforms
— Cache hierarchy versus scratchpad memories

e Multi-processor support
— Data consistency issues
— DMA transfers and control

e Different memory usage patterns
— Stream versus random access

e Algorithm-driven optimizations
— Algorithm memory access patterns and usage requirements
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2. Memory Support

e Provide a library for supporting memory operations

— For different memory usages:
e FIFO memories (one reader and one writer)

» Shared variables (one writer, multiple readers)

» Lookup tables (no writer (initialized during load time), multiple
readers)

— Standardized library API
— Implemented in pure C++

— Software and hardware constraints are expressed as a part
of API

e DSP algorithms’ memory access patterns
e SoC memory organization and size constraints
e Etc.

— Compile-time memory optimization give constraints
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3. High-performance Software IPs

e High-performance DSP algorithm design challenges
— Variations in instruction set support

— Variations in processor architectures and systems
e i.e. the number of cores, SIMD width

— Memory constraints
— Software system constraints and requirements

— Algorithm configurations
e i.e. FFT size

e There is no single “best” algorithm implementation

e There are “optimal” algorithm implementations under the
design constraints
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3. High-performance Portable Software IPs

e Provide a set of DSP algorithm libraries
— Constraint parameters are expressed as inputs
— Realizable through C++ templates

e Standardize library API
— portable across multiple platforms
— Allow system-wide software design and optimization

e Compile-time design space exploration and
optimization
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Moving Forward

e \Work already proposed by Wireless
Innovation Forum

e Sigmatix can make significant donation to
this effort

e Tier 1 players ready to join this discussion
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