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ABSTRACT 
 
Traditional Software-Defined Radios are limited in 

their ability to share the computational infrastructure 
between different channel flows of different demands. 
Future terminals should move to a shared resource model to 
further improve resource utilization and link availability. 
For this purpose, an accurate characterization and prediction 
of the consumed resources by a new user entering the cell is 
important. At the receiver side, iterative channel decoding 
algorithms, which exhibit the highest contribution of 
processing time and energy consumption, consume 
resources as a function of the signal quality. Therefore, 
power control has an impact on the computing resources of 
the receiver. This paper presents a model to characterize the 
available computing resources of a receiver. This model 
may be useful for utility-based power control algorithms. 

 
1. INTRODUCTION 

 
From the first Software-Defined Radios [1] introduced in 
the late 1990s until today, terminals are being designed for a 
close set of applications. They are also limited in their 
ability to share the computational infrastructure between 
different channel flows. Future devices should therefore 
move to a shared resource model to further improve the 
computing resource utilization and link availability. 
Computing resource managers are capable to decide if a 
new user can be allocated as a function of the available 
computing resources. For this purpose, an accurate 
characterization and prediction of the computing resources 
that are required for serving a new user that enters the cell 
or moves from one scenario to another is important. The 
increasing spectral efficiency of modern radio access 
technologies is obtained at the price of higher computational 

demands. From the network perspective, base stations 
computational resources can be shared by several radio 
operators paying for the infrastructure in a pay-per-use 
fashion. This concept is very popular in general purpose 
computing—Cloud computing [2]. In conjunction with 
platform-independent and component-based designs may 
lead to higher resource utilization enabling low-cost 
infrastructure deployment and operation.  

At the user terminal, computing resource management 
is needed when over-the-air upgrades are enabled. Current 
SDR systems only admit firmware upgrades from the same 
hardware vendor. The provider keeps record of all 
manufactured terminals and their capabilities. The user can 
download only those upgrades that are suitable for his 
particular device. We, though, envisage a scenario where 
users may upgrade their terminals with a new radio access 
technology from other vendors. The sufficiency of 
computational resources for the actual channel conditions 
must be asserted by the resource manager.  

In terms of resource sharing, there are orders of 
magnitude more flows in the network side than in the user 
side. Therefore, resource sharing is only interesting in the 
network. Moreover, the power consumption on the terminal 
is dominated by the transmission rather than the reception. 
However, the objective of this study is to provide a 
framework for link budged calculations for both receiver 
sides. Whereas the network side will try to minimize or 
control the computational utilization, the terminal only 
needs to ensure the sufficiency of resources.  

Channel decoding requires an important amount of 
processing time. On the other hand, iterative decoders, such 
as low-density parity check (LDPC) and Turbo Decoders, 
are capable of adjusting the consumed infrastructure 
resources (proportional to the number of iterations) as a 
function of received signal quality. This quality is a function 
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of the adopted power control policy. Then, the transmitted 
power by each user not only determines the interference 
level at the receiver, but also the amount of demanded 
computational resources. 

Several authors have analyzed early stopping criteria 
for iterative decoders (LDPC, Turbo Decoder, etc.) [3][4]. 
They provide measurements on the average iterations as a 
function of the signal-to-noise ratio. However, we are not 
aware of any model that predicts the average number of 
iterations with only a few parameters. We believe that this is 
the first step to introduce this type of knowledge to radio 
resource management or power control algorithms.  

The following section introduces the cost function 
approach for the link parameter selection. Section 3 presents 
the computational costs model. Section 4 provides some real 
measurements to demonstrate the suitability of our model, 
whereas Section 5 discusses its usefulness for power control 
algorithms. Section 6 concludes the paper. 

 
2. LINK PARAMETER SELECTION: A COST 

FUNCTION APPROACH 
 

Information can be transmitted over a wireless channel with 
different link level parameters, including transmission 
power, spectral efficiency, bandwidth, and coding 
technique. Different parameters introduce different 
problems for the transmitter, receiver and network. 
Therefore, the cost associated to the transmission of a bit 
depends on these properties and not on the data. In modern 
flexible networks, these parameters are negotiated between 
the transmitter and the receiver. Hence, the problem of link 
parameter decision becomes a problem of cost optimization.  

This optimization approach typically maximizes the 
system capacity (minimizes interference), user fairness or 
network revenue. Adaptive modulation and coding (AMC) 
is a technique for dynamically adjusting the spectral 
efficiency while maximizing the overall throughput or 
meeting the user requirements. Another adaptive technique 
is bit loading and power allocation used in OFDM systems 
to assign bits and energy to each sub-carrier. Again, the 
technique is typically used to maximize the system capacity. 

This work focuses on the impact that these parameters 
have on the utilization of computing resources of SDR 
equipment. Consumed resources can be categorized in: 
radio, transmitter and receiver resources. Bandwidth, 
interference and time are the main radio resources 
consumed during a transmission. The transmitter consumes 
as a function of the energy required to transform the raw 
information into symbols (signal processing) and the 
radiated and dissipated energy (RF amplification). The 
receiver consumes as a function of the energy required for 
the estimation of the most likely transmitted bit sequence 
(signal processing) and the energy consumed in the RF 
stage.  

Let us set aside radio and transmitter resources and 
address the receiver at the network and terminal sides.  
Although SDR processors power consumption is much 
greater than classic digital receivers [5], it is still orders of 
magnitude lower than transmission power. However, SDR 
terminals are constrained by the availability of 
computational resources. In the network side, as more flows 
from more users are being processed, the power consumed 
in the SDR processors is of more interest. In general, the 
power consumed in signal processing is proportional to the 
time the processor is performing a task. Sometimes this is 
not strictly true, due to static power consumption. However, 
modern techniques like dynamic voltage-frequency scaling 
(DVFS) can reduce processor power consumption if it is 
underutilized. In the following sections we will center our 
attention on the processor time as computational resource. 

 
3. RECEIVER’S COMPUTATIONAL COSTS MODEL 

 
Traditional receivers present a computational complexity 
proportional to the sample rate and the signal complexity. 
Today’s receiver complexities are also a function of the 
received signal quality and the expected outage quality – the 
class of iterative receivers includes parallel and serially 
concatenated convolutional codes, LDPC coding, and joint 
turbo equalization and detection. More precisely, the 
number of iterations needed to achieve a certain quality (bit 
error rate) is a function of the input signal quality (signal-to-
noise or interference ratio). Since the complexity per 
iteration is constant, we can express the receiver 
computational complexity as an offset plus a variable 
contribution, which is a function of the number of iterations. 
Hence the complexity ( C ) is the time spent by the 
processor expressed in seconds per information bit (s/bit). It 
is a function of the signal-to-noise and interference ratio 
(γ ) and the target bit-error rate ( bP ): 

 
 0( ) ( )

b bP iter PC C C NOIγ γ= + , (1) 
 
The first term of the equation, 0C , is the offset 

computational cost and it depends on the desired user 
quality and throughput, that is, code type, code rate, 
throughtput and modulation. It is either dynamically 
changed with an AMC technique or assigned as a function 
of the user service, voice, video, data, and so forth. The 
second term is the product of the number of decoder 
iterations (NOI) and the cost of processing one iteration, 

iterC  expressed in seconds/bit·iteration. NOI depends on the 
target bit-error rate and the received signal quality, which is 
a function of transmitted power and the channel attenuation. 
The desired throughput and quality can be achieved with a 
wide margin of transmitted power levels. For example, let 
us suppose a signal coded with a turbo coding scheme. For a 
given channel conditions, the transmitter can overcome the 
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channel attenuation by transmitting at high power, letting 
the receiver perform just a few iterations to achieve the 
desired BER (bit error rate).  

Observing the behavior of several iterative decoders, 
we find that the number of iterations performed in the 
decoding of a block of data is a random variable whose 
average is a function inversely proportional to the SNR. The 
following model characterizes the number of iterations 
(NOI): 

 
 ( )max max min( ) ( )

b bP PNOI N N N f zγ γ= − − + , (2) 
 
where maxN  and minN  are the maximum and minimum 
number of iterations respectively, z  is a zero-mean random 
process which depends on the realization (data frame) 
whose probability density function is analyzed in section 
4.2. The function ( )

bPf γ  has to be a decreasing function 
taking values from 0 to 1. From the experience of observing 
several decoders performance, we selected a sigmoid-like 
function since it represents small beginnings that accelerate 
reaching a point of small increments. It is defined as:  

 
 ( )0

1( )( ) 1
bPf e α γ γγ

−− −= + . (3) 
 
The parametersα and 0γ  characterize the performance 

of the receiver. Parameter 0γ  indicates at which SNR 
threshold the decoder starts converging whereas α  relates 
the convergence increases with the received signal quality 
The model is general enough to accommodate several 
decoders’ performances by tuning α  and 0γ  parameters, 
as showed in Section 4.1. The function, moreover, is easily 
derivable:  

 
 

( ) ( )max min
( ) ( ) 1 ( )

b bP P
dNOI N N f f

d
γ α γ γ

γ
= − − .

 (4) 
 
 

4. EXPERIMENTAL MEASUREMENTS 
 

This section provides measurements of the computing 
resource consumption for real cases. First we present the 
average number of iterations, obtained in simulations, for 
some iterative receivers (parameters α , 0γ , maxN , 

minN in (2)). Second, we analyze the statistical nature of the 
number of iterations ( z  in (2)) and, finally, we present 
measurements of the offset parameter 0C  (in equation (1)) 
in real SDR implementations of UMTS and WiMAX 
receivers. 

 
4.1. Average Number of Iterations 
 
We measure the average number of iterations to estimate – 
using nonlinear least squares estimation techniques – the 

parameters α  and 0γ  of our model for several iterative 
decoders. Simulation data (average number of iterations) is 
normalized to take values from 0 to 1 before performing the 
parameter estimation. During this process, the values maxN   
and minN  are extracted. The experiment also allows us to 
validate the fitness of our model with real data. The average 
NOI is obtained using an early stopping criteria, which stops 
the decoding after the estimated BER is below a threshold.  
 Different stopping criteria are used depending on the 
family of the decoder: For concatenated convolutional 
codes, the HLS method estimates the BER as a function of 
the extrinsic log-likelihood ratios (LLR) [6], whereas the 
LDPC decoder stops when the received code word is correct 
(parity check). Different BER targets have been simulated 
for the same decoder in the HLS case. Table 1 and Table 2 
show the results of our simulations. The column 2ε  shows 
the model estimation error. All simulations have been run 
over a total of 10 000 bits for each SNR value. Fig. 2 (at the 
end of the paper) shows graphically the fitness of the 
simulation results with the theoretical model.   

 
Table 1. Turbo Decoder model parameters 

Interl. Mod. HLS maxN  minN  α  0γ  2ε  

10e-3 7.20 2.0 7.41 1.33 0.9964BPSK 
10e-6 12.68 4.0 2.94 1.52 0.9130
10e-3 7.01 2.0 2.09 3.64 0.9992

UMTS 
1000 

QAM16 
10e-6 11.62 3.3 1.33 4.19 0.9762
10e-3 8.26 2.0 2.54 1.57 0.9530BPSK 
10e-6 12.46 7.96 4.50 1.41 0.9791
10e-3 7.50 2.18 1.06 3.96 0.9836

UMTS 100
QAM16 

10e-6 11.94 4.26 1.00 4.13 0.9762
10e-3 7.84 2.0 6.19 1.39 0.9956WiMAX 

8192 BPSK 
10e-6 14.44 3.05 3.99 1.57 0.9649

 
Table 2. LDPC model parameters 

Code Mod maxN minN  α  0γ  2ε  
LDPC 

WIMAX BPSK 1000 2.1 6.75 0.89 0.9997 

LDPC 5000 BPSK 1000 0.15 13.82 1.12 0.9996 

 
4.2. Random Effect on the Number of Iterations 
 
The statistical nature of the NOI has three sources: the BER 
estimation uncertainty, channel fading and the Gaussian 
behaviour of the LLR values. For the purpose of computing 
resource management, however, it is desirable to define an 
upper bound for the resource demands in order not to 
exceed a certain processing latency. maxN  could be used as 
this upper bound, but it is easy to observe that the system is 
over dimensioned since for some SNR values many 
allocated resources will not be used. Moreover, if resources 
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are shared (e.g. the network side), this inefficiency becomes 
more severe.  Therefore, a statistical analysis allows us to 
reserve an amount of computational resource that will be 
required during a statistically significant time. Fig. 1 shows 
the histogram of 10 000 realizations of a WiMAX Turbo 
Decoder.  
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Fig. 1. Histogram of the number of iterations for different SNR 
values 
 
4.3. Constant Computational Costs 
 
In this section we give experimental measurements for the 
offset term 0C  of equation (1). The waveforms have been 
implemented in the ALOE middleware [7], following a 
component-based design approach and are executed on an 
Intel Centrino 2.2 GHz processor. This middleware has an 
integrated tool to measure the execution time of each 
waveform’s component at each invocation.  

Table 3 and Table 4 show the measurements of the 
execution time of the WiMAX and UMTS receivers for 
different data rates. (Detailed UMTS bit-level 
measurements are presented in [8]). The complexity is 
expressed in microseconds per information bit.  
 

Table 3. UMTS bit level receiver computational costs 
 64 kbps 144 kbps 384 kbps 

0C (μs/bit) 0.25 0.28 0.39 

 
 

Table 4. WiMAX bit and symbol level receiver costs 
 BPSK QPSK 16QAM 

½ 
16QAM 
¾ 

64 
QAM 
¼ 

64 
QAM 
¾ 

0C  

(μs/bit) 

10.3 17.6 25.8 27.6 28.0 44.2 

 

 
5. POWER CONTROL AND RECEIVER 

COMPLEXITY 
 

The aim of power control algorithms is to provide an 
acceptable connection to each user while minimizing the 
interference to others and, thus, maximizing the channel 
capacity. Other objectives are reducing the radiation or 
increasing the terminal’s battery life, which is not very 
significant due to the power amplifier inefficiency. Each 
user demands a quality of service (QoS) target, which can 
be expressed as the minimum signal to interference ratio 
(SIR) or BER. A power control algorithms finds a vector of 
transmitter powers such that all signals overcome the 
interference produced by the rest of user’s signals [9]. 

This approach is, however, not optimum for data 
transmission, characterized to tolerate fewer errors and 
allowing higher delays and throughput variations. Several 
authors observed that hard-SIR based algorithms tend to 
transmit at too high power levels. For the purpose of power 
control in data communications, a class of algorithms use 
microeconomics and game theory approaches to find a 
solution [10]. These algorithms, called Utility Based Power 
Control (UBPC) algorithms, replace the QoS target by a net 
utility function. Each terminal expresses its QoS demands 
with a utility function. A pricing function limits the 
transmitting power as a function of the number of users in 
the cell [11]. The terminal optimizes the net utility function 
and finds its optimal transmission power. In noise-limited 
channels the cost of a transmitted watt is not a function of 
the rest of the users’ transmissions. In these networks, the 
optimum point is a tradeoff between the cost of the 
transmitted energy and the cost of the signal processing 
complexity at the receiver.  

Our model can be used as an additional term in the 
pricing function, hence accounting not only for radio or 
transmitter costs but also for receiver costs. In [3], for 
instance, the authors consider a situation where a mobile 
terminal is lost in the mountains with limited battery. If we 
desire to send them data, we would set the cost per 
transmitted watt to the lowest possible value (0) so that a 
high SNR reaches the receiver. The mobile would then need 
only a few iterations for decoding the message. On the 
contrary, the terminal would set its cost per transmitted watt 
to a very high value to consume as little energy as possible 
and let the rescue team’s terminal perform a high number of 
iterations. We can say that both terminals exchange 
computational resources against radio resources [12].  

  
6. CONCLUSIONS 

 
This work presented a framework for including the 

computational costs in the link parameter selection process. 
We have presented a model for characterizing 
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computational resources at the receiver as a function of the 
received signal quality. This model can be easily integrated 
in utility-based power control algorithms as an additional 
term of the pricing function.  

Future work will extend the model to joint iterative 
detection and equalization and study the behavior of net 
utility functions including the receiver computing cost 
considerations. The transmitter complexity when using 
spatial diversity techniques will also be characterized. The 
final target is to provide a general tool for exchanging 
computational and radio resource utilization, embracing the 
transmitter, the network and the receiver.  
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Fig. 2. Model estimations for different decoders  
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