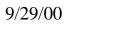
Multipath Interference Characterization in Wireless Communication Systems

Michael Rice

BYU Wireless Communications Lab

1

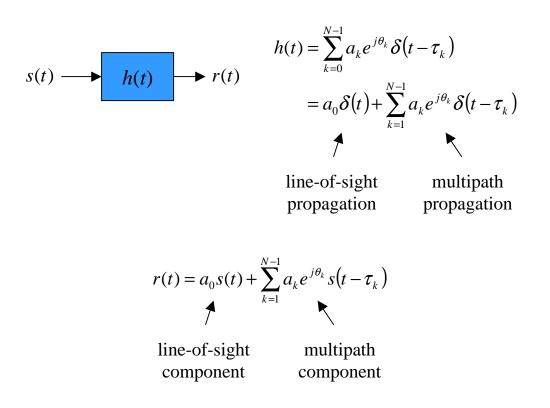


BYU Wireless Communications

Multipath Propagation

- Multiple paths between transmitter and receiver
- Constructive/destructive interference
- Dramatic changes in received signal amplitude and phase as a result of small changes (λ/2) in the spatial separation between a receiver and transmitter.
- For Mobile radio (cellular, PCS, etc) the channel is time-variant because motion between the transmitter and receiver results in propagation path changes.
- Terms: Rayleigh Fading, Rice Fading, Flat Fading, Frequency Selective Fading, Slow Fading, Fast Fading
- What do all these mean?

LTI System Model



Some Important Special Cases

All the delays are so small and we approximate $\tau_k \approx 0$ for all k

$$r(t) = a_0 s(t) + \sum_{k=1}^{N-1} a_k e^{j\theta_k} s(t - \tau_k)$$

$$\approx a_0 s(t) + \sum_{k=1}^{N-1} a_k e^{j\theta_k} s(t)$$

$$= \left[a_0 + \sum_{k=1}^{N-1} a_k e^{j\theta_k} \right] s(t)$$

$$\mathbf{\alpha}$$

sum of complex random numbers (random amplitudes and phases)

• if N is large enough, this sum is well approximated by complex Gaussian pdf

$$\alpha = \alpha_{R} + j\alpha_{I} \qquad m_{a} = E\{\alpha\} = E\{\sum_{k=1}^{N-1} a_{k}e^{j\theta_{k}}\}$$
$$\alpha_{R} \sim N(m_{a}, \sigma_{a}^{2}) \qquad = \sum_{k=1}^{N-1} E\{a_{k}\}E\{e^{j\theta_{k}}\}$$
$$= 0 \text{ when } \theta_{k} \sim U[-\pi, \pi]$$

Some Important Special Cases

All the delays are so small and we approximate $\tau_k \approx 0$ for all k

$$r(t) = a_0 s(t) + \sum_{k=1}^{N-1} a_k e^{j\theta_k} s(t - \tau_k)$$

$$\approx a_0 s(t) + \sum_{k=1}^{N-1} a_k e^{j\theta_k} s(t)$$

$$= \begin{bmatrix} a_0 + \sum_{k=1}^{N-1} a_k e^{j\theta_k} \end{bmatrix} s(t)$$

$$= \begin{bmatrix} a_0 + \alpha_R + j\alpha_I \end{bmatrix} s(t)$$

$$= \sqrt{(a_0 + \alpha_R)^2 + (\alpha_I)^2} e^{j\phi} s(t)$$

$$r(t) = \sqrt{(a_0 + \alpha_R)^2 + (\alpha_I)^2} e^{j\phi} s(t)$$

$$r(t) = \sqrt{(a_0 + \alpha_R)^2 + (\alpha_I)^2} e^{j\phi} s(t)$$

$$r(t) = \sqrt{(a_0 + \alpha_R)^2 + (\alpha_I)^2} e^{j\phi} s(t)$$

$$r(t) = \sqrt{(a_0 + \alpha_R)^2 + (\alpha_I)^2} e^{j\phi} s(t)$$

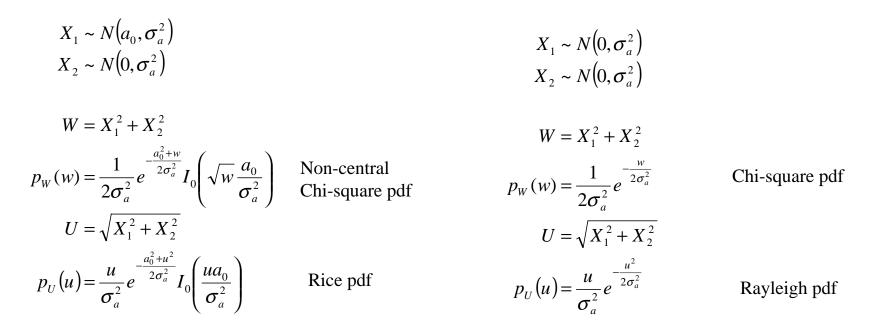
$$r(t) = \sqrt{(a_0 + \alpha_R)^2 + (\alpha_I)^2} e^{j\phi} s(t)$$

$$r(t) = \sqrt{(a_0 + \alpha_R)^2 + (\alpha_I)^2} e^{j\phi} s(t)$$

$$r(t) = \sqrt{(a_0 + \alpha_R)^2 + (\alpha_I)^2} e^{j\phi} s(t)$$

$$r(t) = \sqrt{(a_0 + \alpha_R)^2 + (\alpha_I)^2} e^{j\phi} s(t)$$

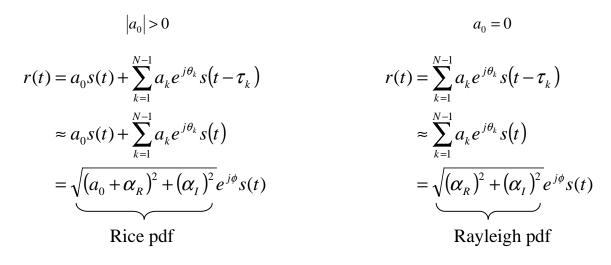
Important PDF's



BTU V

Back to Some Important Special Cases

All the delays are so small and we approximate $\tau_k \approx 0$ for all k



"Rayleigh fading"

"Ricean fading"

Some Important Special Cases

All the delays are small and we approximate $\tau_k \approx \overline{\tau}$ for all k

"Line-of-sight with Rayleigh Fading"

"Rayleigh fading"

Multiplicative Fading

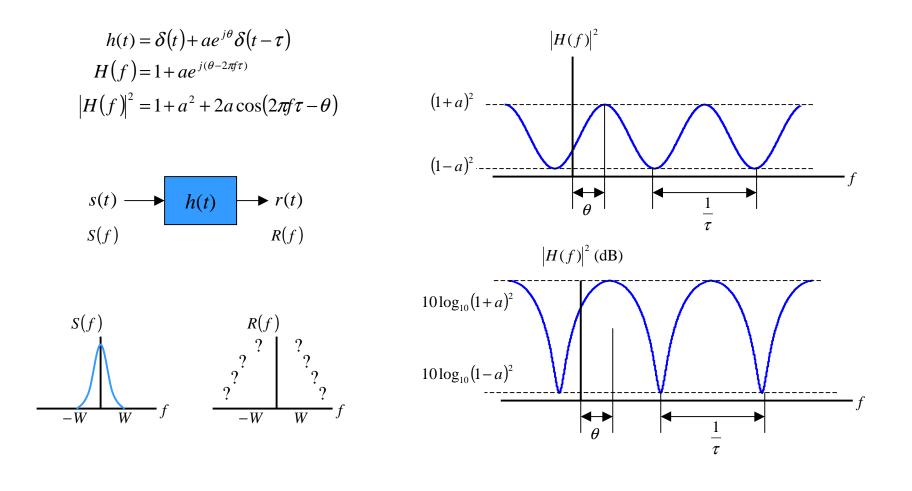
In the past two examples, the received signal was of the form

 $r(t) = F e^{j\phi} s(t)$

The fading takes the form of a random attenuation: the transmitted signal is *multiplied* by a random value whose envelope is described by the Rice or Rayleigh pdf.

This is sometimes called multiplicative fading for the obvious reason. It is also called *flat fading* since all spectral components in s(t) are attenuated by the same value.

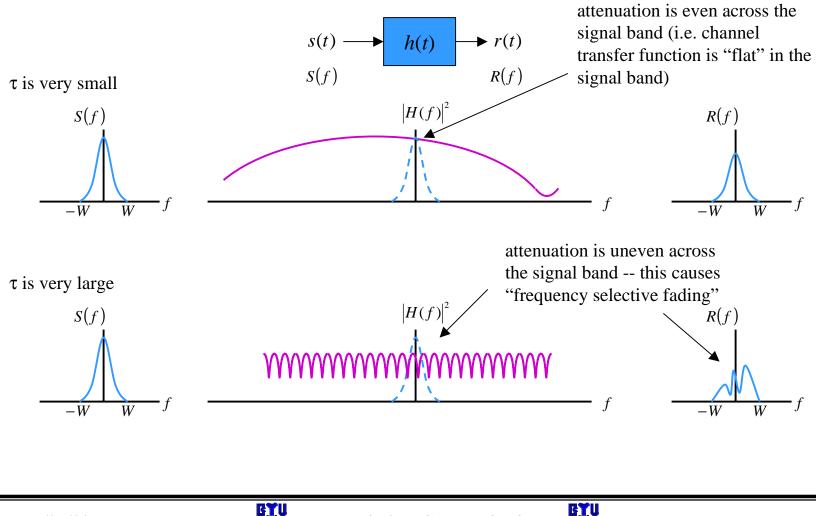
An Example

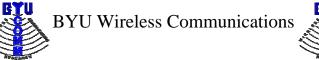


9/29/00

175

Example (continued)





Another important special case

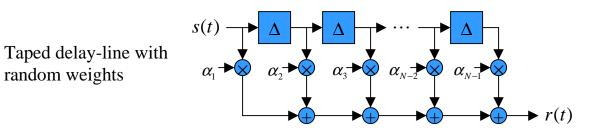
The delays are all different: $\tau_1 < \tau_2 < \cdots < \tau_{N-1}$



intersymbol interference

if the delays are "long enough", the multipath reflections are resolvable.

Two common models for non-multiplicative fading



central limit theorem: approximately a Gaussian RP

Additive complex Gaussian random process

$$r(t) = a_0 s(t) + \sum_{k=1}^{N-1} a_k e^{j\theta_k} s(t - \tau_k)$$

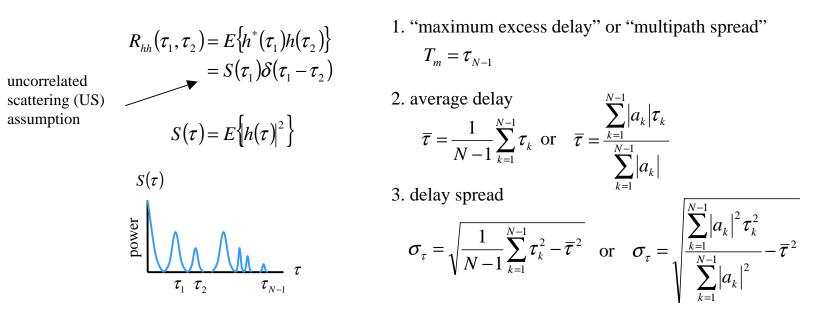
$$\approx a_0 s(t) + \xi(t)$$

Multipath Intensity Profile

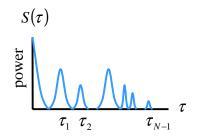
The characterization of multipath fading as either flat (multiplicative) or frequency selective (non-multiplicative) is governed by the delays:

small delays \Rightarrow flat fading (multiplicative fading) large delays \Rightarrow frequency selective fading (non-multiplicative fading)

The values of the delay are quantified by the multipath intensity profile $S(\tau)$



Characterization using the multipath intensity profile



1. "maximum excess delay" or "multipath spread" $T_m = \tau_{N-1}$

2. average delay

verage delay

$$\overline{\tau} = \frac{1}{N-1} \sum_{k=1}^{N-1} \tau_k \text{ or } \overline{\tau} = \frac{\sum_{k=1}^{N-1} |a_k| \tau}{\sum_{k=1}^{N-1} |a_k|}$$

3. delay spread

$$\sigma_{\tau} = \sqrt{\frac{1}{N-1} \sum_{k=1}^{N-1} \tau_{k}^{2} - \overline{\tau}^{2}} \quad \text{or} \quad \sigma_{\tau} = \sqrt{\frac{\left|\sum_{k=1}^{N-1} |a_{k}|^{2} \tau_{k}^{2}\right|}{\sum_{k=1}^{N-1} |a_{k}|^{2}}} - \overline{\tau}^{2}$$

 $\overline{k=1}$

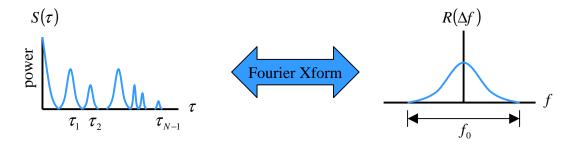
N-1

15

Compare multipath spread T_m with symbol time T_s :

- $T_m < T_s \Rightarrow$ flat fading (frequency nonselective fading)
- $T_m > T_s \Rightarrow$ frequency selective fading

Spaced Frequency Correlation Function



Compare coherence bandwidth f_0 with transmitted signal bandwidth W:

 $f_0 > W \Rightarrow$ flat fading (frequency nonselective fading)

 $f_0 < W \Rightarrow$ frequency selective fading

 $R(\Delta f)$ is the "correlation between the channel response to two signals as a function of the frequency difference between the two signals."

"What is the correlation between received signals that are spaced in frequency $\Delta f = f_1 - f_2$?"

<u>Coherence bandwidth</u> f_0 = a statistical measure of the range of frequencies over which the channel passes all spectral components with approximately equal gain and linear phase.

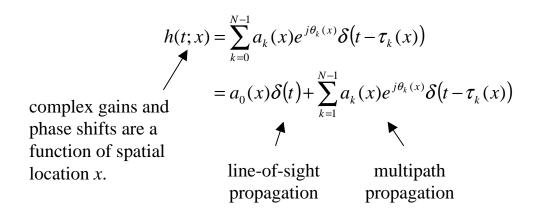
16

equations (8) - (13) are commonly used relationships between delay spread and coherence bandwidth

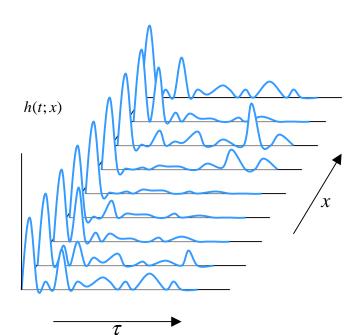
Time Variations

Important Assumption

Multipath interference is spatial phenomenon. Spatial geometry is assumed fixed. All scatterers making up the channel are stationary -- whenever motion ceases, the amplitude and phase of the receive signal remains constant (the channel appears to be time-invariant). Changes in multipath propagation occur due to changes in the spatial location x of the transmitter and/or receiver. The faster the transmitter and/or receiver change spatial location, the faster the time variations in the multipath propagation properties.



Spatially Varying Channel Impulse Response



- channel impulse response changes with spatial location *x*
- generalize impulse response to include spatial information

 $h(t) \rightarrow h(t; x)$

- Transmitter/receiver motion cause change in spatial location *x*
- The larger \dot{x} , the faster the rate of change in the channel.
- Assuming a constant velocity v, the position axis x could be changed to a *time* axis t using t = x/v.

Generalize the Multipath Intensity Profile

From before...

The generalization ...

$$R_{hh}(\tau_{1},\tau_{2}) = E\{h^{*}(\tau_{1})h(\tau_{2})\} \qquad US$$

$$= S(\tau_{1})\delta(\tau_{1}-\tau_{2}) \qquad \text{assumption} \qquad R_{hh}(\tau_{1},\tau_{2};x_{1},x_{2}) = E\{h^{*}(\tau_{1};x_{1})h(\tau_{2};x_{2})\} \qquad \text{US}$$

$$= S(\tau_{1};x_{1},x_{2})\delta(\tau_{1}-\tau_{2}) \qquad \text{assumption} \qquad S(\tau) = E\{h(\tau)\}^{2}\} \qquad S(\tau;x_{1},x_{2}) = E\{h^{*}(\tau;x_{1})h(\tau;x_{2})\} \qquad t = x/v$$

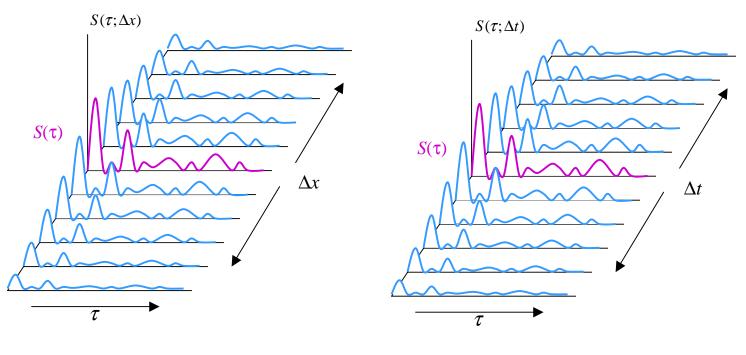
$$S(\tau;t_{1},t_{2}) = E\{h^{*}(\tau;t_{1})h(\tau;t_{2})\} \qquad \text{WSS}$$

$$S(\tau;\Delta t) = E\{h^{*}(\tau;t_{1})h(\tau;t+\Delta t)\} \qquad \text{WSS}$$

$$S(\tau;\Delta t) = E\{h^{*}(\tau;t_{1})h(\tau;t+\Delta t)\} \qquad \text{WSS}$$

this function is the key to the WSSUS channel

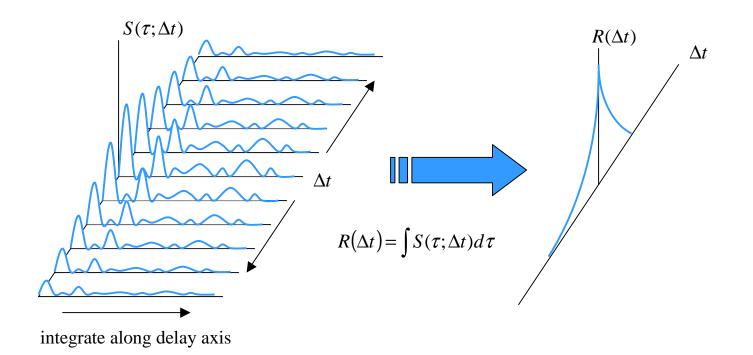
A look at $S(\tau;\Delta t)$

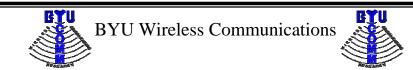


 $S(\tau) = S(\tau;0)$

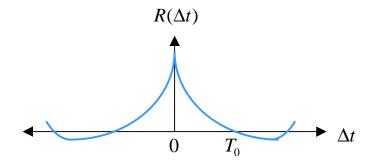
GTU

Time Variations of the Channel: The Spaced-Time Correlation Function





Time Variations of the Channel: The Spaced-Time Correlation Function



 $R(\Delta t)$ specifies the extent to which there is correlation between the channel response to a sinusoid sent at time *t* and the response to a similar sinusoid at time *t*+ Δt .

<u>Coherence Time</u> T_0 is a measure of the expected time duration over which the channel response is essentially invariant. Slowly varying channels have a large T_0 and rapidly varying channels have a small T_0 .

Re-examination of special cases

From before...

The generalization ...

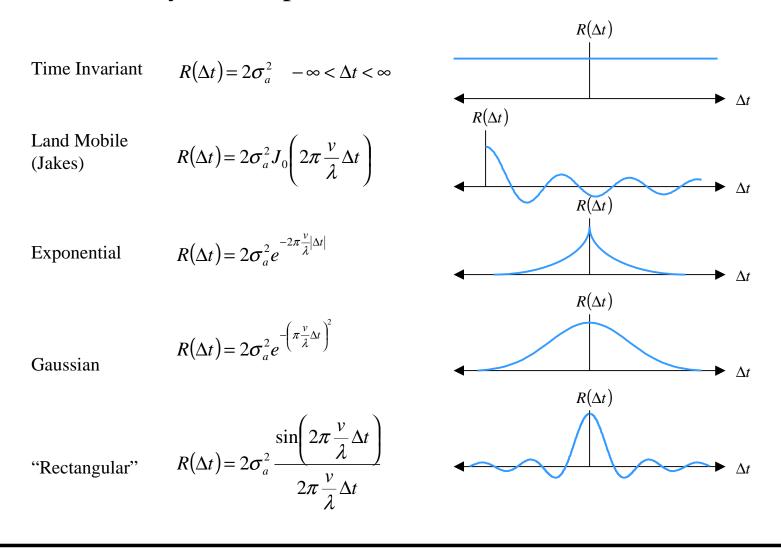
$$r(t) = a_0 s(t) + \sum_{k=1}^{N-1} a_k e^{j\theta_k} s(t - \tau_k) \qquad r(t) = a_0 s(t) + \sum_{k=1}^{N-1} a_k (x) e^{j\theta_k (x)} s(t - \tau_k (x)) \\ \approx a_0 s(t) + \sum_{k=1}^{N-1} a_k e^{j\theta_k} s(t) \\ = \left[a_0 + \sum_{k=1}^{N-1} a_k e^{j\theta_k}\right] s(t) \\ = \left[a_0 + \alpha\right] s(t) \\ \text{complex Gaussian RV} \qquad = \left[a_0 + \alpha(t)\right] s(t) \\ =$$

complex Gaussian Random Process with autocorrelation

$$R_{\alpha}(\Delta t) = E\{\alpha^{*}(t)\alpha(t + \Delta t)\}$$
$$= R(\Delta t)$$

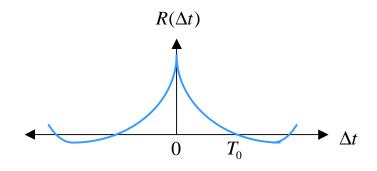
BYU Wireless Communications

Commonly Used Spaced-Time Correlation Functions



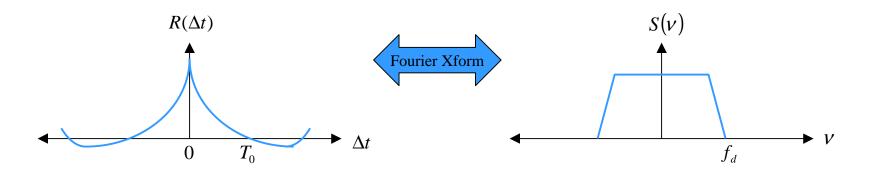
BŢU

Characterization of time variations using the spaced-time correlation function



- Fast Fading
 - $T_0 < T_s$
 - correlated channel behavior lasts less than a symbol \Rightarrow fading characteristics change multiple times during a symbol \Rightarrow pulse shape distortion
- Slow Fading
 - $T_0 > T_s$
 - correlated channel behavior lasts more than a symbol \Rightarrow fading characteristics constant during a symbol \Rightarrow no pulse shape distortion \Rightarrow error bursts...

Doppler Power Spectrum Frequency Domain View of Time-Variations

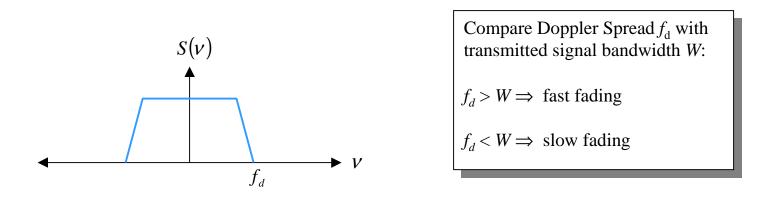


Time variations on the channel are evidenced as a Doppler broadening and perhaps, in addition as a Doppler shift of a spectral line.

Doppler power spectrum S(v) yields knowledge about the spectral spreading of a sinusoid (impulse in frequency) in the Doppler shift domain. It also allows us to glean how much spectral broadening is imposed on the transmitted signal as a function of the rate of change in the channel state.

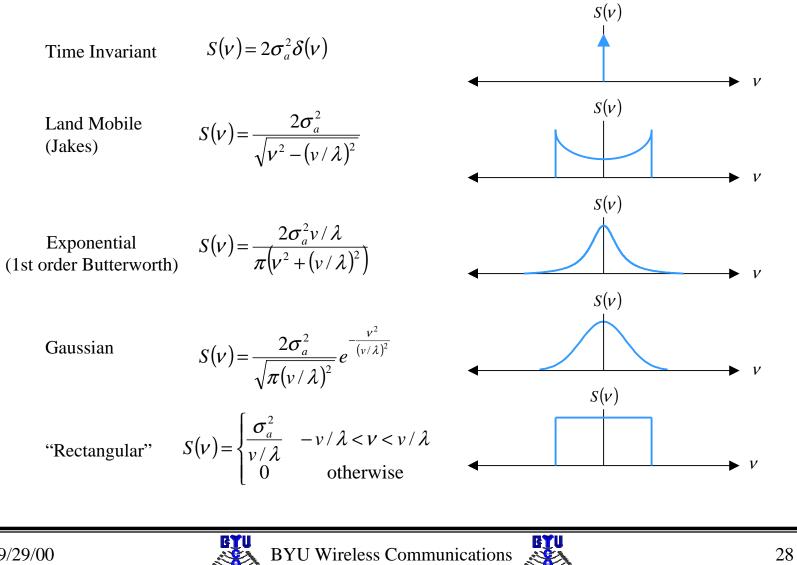
Doppler Spread of the channel f_d is the range of values of v over which the Doppler power spectrum is essentially non zero.

Doppler Power Spectrum and Doppler Spread

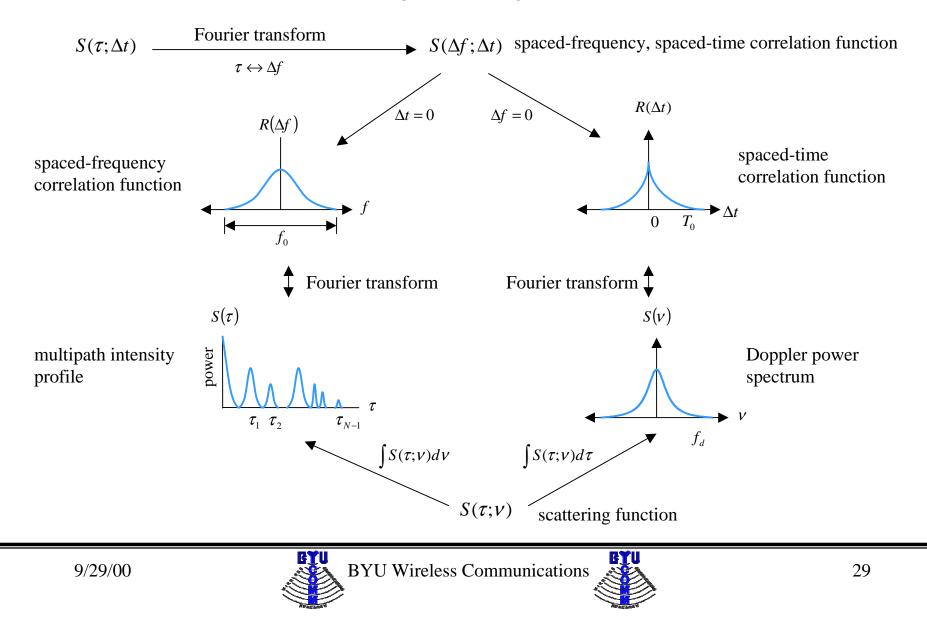


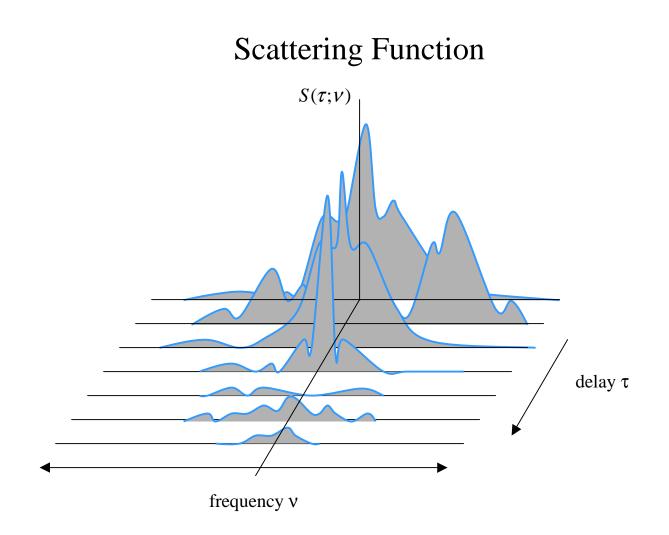
equations (18) - (21) are commonly used relationships between Doppler spread and coherence time

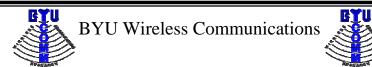
Common Doppler Power Spectra



Putting it all together...







References

- John Proakis, *Digital Communications*, Third Edition. McGraw-Hill. Chapter 10.
- William Jakes, Editor, *Microwave Mobile Communications*. John Wiley & Sons. Chapter 1.
- William Y. C. Lee, *Mobile Cellular Communications*, McGraw-Hill.
- Parsons, J. D., *The Mobile Radio Propagation Channel*, John Wiley & Sons.
- Bernard Sklar, "Rayleigh Fading Channels in Digital Communication systems Part I: Characterization," *IEEE Communication Magazine*, July 1997, pp. 90 100.
- Peter Bello, "Characterization of Randomly Time Variant Linear Channels," *IEEE Transactions on Communication Systems*, vol. 11, no. 4, December 1963, pp. 360-393.
- R. H. Clarke, "A Statistical Theory of Mobile Radio Reception," *Bell Systems Technical Journal*, vol. 47, no. 6, July-August 1968, pp. 957-1000.
- M. J. Gans, "A Power-Spectral Theory of Propagatio9in in the Mobile Radio Environment," *IEEE Transactions on Vehicular Technology*, vol. VT 21, February 1972, pp. 27-38.,

