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Multipath Propagation

• Multiple paths between transmitter and receiver

• Constructive/destructive interference

• Dramatic changes in received signal amplitude and phase as a result of
small changes (λ/2) in the spatial separation between a receiver and
transmitter.

• For Mobile radio (cellular, PCS, etc) the channel is time-variant
because motion between the transmitter and receiver results in
propagation path changes.

• Terms: Rayleigh Fading, Rice Fading, Flat Fading, Frequency
Selective Fading, Slow Fading, Fast Fading ….

• What do all these mean?
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LTI System Model
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Some Important Special Cases

All the delays are so small and we approximate kk  allfor 0≈τ
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• if N is large enough, this sum is well approximated by
complex Gaussian pdf
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Some Important Special Cases

All the delays are so small and we approximate kk  allfor 0≈τ
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Important PDF’s
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Back to Some Important Special Cases

All the delays are so small and we approximate kk  allfor 0≈τ
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Some Important Special Cases

All the delays are small and we approximate kk  allfor ττ ≈
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Multiplicative Fading

In the past two examples, the received signal was of the form

)()( tsFetr jφ=

The fading takes the form of a random attenuation: the transmitted
signal is multiplied by a random value whose envelope is described
by the Rice or Rayleigh pdf.

This is sometimes called multiplicative fading for the obvious
reason. It is also called flat fading since all spectral components in
s(t) are attenuated by the same value.
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An Example
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Example (continued)
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“frequency selective fading”
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Another important special case

The delays are all different: 
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Two common models for non-multiplicative fading
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Multipath Intensity Profile

The characterization of multipath fading as either flat (multiplicative) or frequency selective
(non-multiplicative) is governed by the delays:

small delays  ⇒  flat fading (multiplicative fading)
large delays   ⇒  frequency selective fading (non-multiplicative fading)

The values of the delay are quantified by the multipath intensity profile S(τ)
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Characterization using the multipath intensity profile
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Spaced Frequency Correlation Function
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R(∆f) is the “correlation between the channel
response to two signals as a function of the
frequency difference between the two signals.”

“What is the correlation between received
signals that are spaced in frequency ∆f = f1-f2?”

Coherence bandwidth f0 = a statistical measure
of the range of frequencies over which the
channel passes all spectral components with
approximately equal gain and linear phase.

Compare coherence bandwidth f0 with
transmitted signal bandwidth W:

f0 > W ⇒  flat fading (frequency non-
selective fading)

f0 < W ⇒  frequency selective fading

Compare coherence bandwidth f0 with
transmitted signal bandwidth W:

f0 > W ⇒  flat fading (frequency non-
selective fading)

f0 < W ⇒  frequency selective fading

equations (8) - (13) are commonly used relationships between delay spread and coherence bandwidth
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Time Variations

Important Assumption

Multipath interference is spatial phenomenon. Spatial geometry is assumed fixed. All
scatterers making up the channel are stationary -- whenever motion ceases, the amplitude and
phase of the receive signal remains constant (the channel appears to be time-invariant).
Changes in multipath propagation occur due to changes in the spatial location x of the
transmitter and/or receiver. The faster the transmitter and/or receiver change spatial location,
the faster the time variations in the multipath propagation properties.

Important Assumption

Multipath interference is spatial phenomenon. Spatial geometry is assumed fixed. All
scatterers making up the channel are stationary -- whenever motion ceases, the amplitude and
phase of the receive signal remains constant (the channel appears to be time-invariant).
Changes in multipath propagation occur due to changes in the spatial location x of the
transmitter and/or receiver. The faster the transmitter and/or receiver change spatial location,
the faster the time variations in the multipath propagation properties.
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Spatially Varying Channel Impulse Response
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• channel impulse response changes
with spatial location x

• generalize impulse response to
include spatial information

• Transmitter/receiver motion cause
change in spatial location x

• The larger    , the faster the rate of
change in the channel.

• Assuming a constant velocity v, the
position axis x could be changed to a
time axis t using t = x/v.
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Generalize the Multipath Intensity Profile
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A look at S(τ;∆t)
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Time Variations of the Channel:
The Spaced-Time Correlation Function
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Time Variations of the Channel:
The Spaced-Time Correlation Function

0 0T t∆

)( tR ∆

R(∆t) specifies the extent to which there is correlation between the channel
response to a sinusoid sent at time t and the response to a similar sinusoid at
time t+∆t.

Coherence Time T0 is a measure of the expected time duration over which
the channel response is essentially invariant. Slowly varying channels have a
large T0 and rapidly varying channels have a small T0.
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Re-examination of special cases
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Commonly Used Spaced-Time Correlation Functions
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Characterization of time variations using the spaced-time
correlation function

0 0T t∆

)( tR ∆

• Fast Fading
– T0 < Ts

– correlated channel behavior lasts less than a symbol ⇒ fading characteristics
change multiple times during a symbol ⇒ pulse shape distortion

• Slow Fading
– T0 > Ts

– correlated channel behavior lasts more than a symbol ⇒ fading characteristics
constant during a symbol ⇒ no pulse shape distortion ⇒ error bursts…
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Doppler Power Spectrum
Frequency Domain View of Time-Variations

0 0T t∆

)( tR ∆

Fourier Xform

( )νS

ν
df

Time variations on the channel are evidenced as a Doppler broadening and perhaps, in addition as a
Doppler shift of a spectral line.

Doppler power spectrum S(ν) yields knowledge about the spectral spreading of a sinusoid (impulse
in frequency) in the Doppler shift domain. It also allows us to glean how much spectral broadening
is imposed on the transmitted signal as a function of the rate of change in the channel state.

Doppler Spread of the channel fd is the range of values of ν over which the Doppler power
spectrum is essentially non zero.
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Doppler Power Spectrum and Doppler Spread

( )νS

ν
df

Compare Doppler Spread fd with
transmitted signal bandwidth W:

fd > W ⇒  fast fading

fd < W ⇒  slow fading

Compare Doppler Spread fd with
transmitted signal bandwidth W:

fd > W ⇒  fast fading

fd < W ⇒  slow fading

equations (18) - (21) are commonly used relationships between Doppler spread and coherence time
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Common Doppler Power Spectra
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Putting it all together…
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Scattering Function

delay τ

frequency ν

);( ντS
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