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ABSTRACT 

 

Software-defined radio (SDR) is an emerging technology 

that facilitates having multiple wireless communication 

protocols on one device. New cellular standards, such as 

HSPA+, LTE, and LTE+, require speeds in excess of 40 

Mbps. SNOW 3G is a new stream cipher approved for use 

in these systems. Our optimized software-only version of 

SNOW 3G achieves a throughput of 14 Mbps per thread for 

message confidentiality and 18 Mbps per thread for message 

integrity on our SDR platform. To have secure cellular 

communications in SDR platforms, the performance of 

security algorithms must be improved. This paper presents 

instruction set architecture (ISA) extensions and hardware 

designs for SNOW 3G processing. These ISA extensions 

and hardware designs are evaluated for the Sandbridge™ 

Sandblaster
®
 3011 (SB3011) SDR platform. These 

enhancements improve the performance of optimized 

software implementations by a factor of 2.5 for message 

confidentiality and 1.3 for message integrity.  

 

1. INTRODUCTION 

 

Software-defined radios (SDRs) use a combination of 

software and hardware to dynamically support multiple 

wireless communication standards. These devices have been 

widely recognized as one of the most important new 

technologies for wireless communication systems [1]. SDRs 

enable the efficient implementation of a diverse set of 

wireless communication systems. SDRs also provide the 

ability to change communication protocols and dynamically 

update communication systems through over-the-air 

software downloads [2]. 

 Current cellular systems perform cryptographic 

operations, such as confidentiality (i.e., encryption and 

decryption) and integrity (i.e., message authentication), on 

programmable processors. The former prevents other users 

of the wireless medium from eavesdropping on the user’s 

data transmission or voice call. The latter ensures a message 

or voice frame that a user sends has not been altered during 

transmission—either intentionally or inadvertently. As data 

rates over the air interface increase, cryptographic 

performance can become a bottleneck. 

 The 3rd Generation Partner Project (3GPP) has defined 

two standards for providing confidentiality and message 

integrity during transmission. The first standard uses a block 

cipher called Kasumi [3]. The second uses a stream cipher 

called SNOW 3G [4]. Both provide confidentiality and 

integrity, but have fundamentally different properties to 

prevent attacks on one cipher translating into attacks on the 

other. 

 Future DSP architectures will need to enable 

cryptographic processing at very high data rates. For 

example, fourth-generation radio access networks seek to 

provide over-the-air throughputs of up to 100 Mbps for 

mobile environments and up to 1 Gpbs in low-

mobility/stationary environments. On our test SDR 

platform, our reference software implementation with 

SNOW 3G only achieves 14 Mbps per thread for 

confidentiality and 18 Mbps per thread for message 

integrity. 

 This paper presents hardware designs and ISA 

extensions for implementing SNOW 3G processing on a 

multi-threaded DSP SDR platform: the Sandblaster 3011. 

Our SNOW 3G design has the following important features: 

1) the ability to operate efficiently in a multi-threaded 

micro-architecture, and 2) no hidden state is added to the 

programming model. Our ISA extensions and hardware 

designs should also be useful in other SDR architectures. 

The primary contribution of this paper is the presentation of 

a programmable approach to accelerating SNOW 3G that 

utilizes existing hardware features present in many SDR 

platforms. The paper also presents profile information for 

SNOW 3G to demonstrate which portions of the algorithm 

consume a majority of the execution time on an SDR 

platform. It also examines the performance benefits of 

accelerating different parts of the SNOW 3G algorithm. 

 The rest of this paper has the following organization. 

Section 2 describes the SNOW 3G algorithm and its use for 

confidentiality and message integrity. Section 3 details our 

platform architecture, simulation environment, testing 

methodology, and SNOW 3G performance profiling results. 

Section 4 presents our proposed functional units and ISA 
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extensions for accelerating SNOW 3G. Section 5 

demonstrates the performance improvements and design 

characteristics of our solution. Section 6 presents 

conclusions. 

 

2. BACKGROUND 

 

SNOW 3G is a stream cipher approved for use in cellular 

communication systems to provide both integrity and 

confidentiality [5]. It uses a 128-bit key and a 128-bit 

initialization vector (IV). With these two entities, the cipher 

produces a key stream, 32 bits at a time. SNOW 3G is 

composed of two primary components: a finite state 

machine (FSM) and a linear feedback shift register (LFSR), 

as shown in Figure 1. The two components operate together 

to produce the key stream, Z. The FSM contains three 32-bit 

registers, R1, R2, and R3, plus two substitution boxes (or S-

boxes), S1 and S2. Each S-box maps one 32-bit value to 

another 32-bit value. The LFSR contains 16 32-bit registers, 

S0 through S15, with taps at registers S0, S2, and S11. These 

values are combined using bitwise XOR operations to 

produce a new value, v, that is loaded into S15. Before the 

bitwise XOR operations, S0 is processed by the function 

MULα and S11 is processed by DIVα. These functions are 

denoted α and α
-1

 in the figure. To define MULα and DIVα, 

the SNOW 3G specification defines two additional 

functions, MULx(V,c) and MULxPOW(V,i,c) using C 

language constructs as:  

MULx(V,c) = ((V & 0x80) = = 0x80) ?  

                        (V << 1) ⨁ c : V << 1 

MULxPOW(V,i,c) = (i = = 0) ?  

                                 V : MULx(MULxPOW(V,i-1,c),c) 

where V and c are 8-bit input values and i is an integer. With 

these two definitions, the SNOW 3G specification defines: 

MULα(c)  = (MULxPOW(c, 23, 0xA9) || MULxPOW(c, 

245, 0xA9) || MULxPOW(c, 48, 0xA9) || MULxPOW(c, 

239, 0xA9)).   

DIVα(c) = (MULxPOW(c, 16, 0xA9) || MULxPOW(c, 39, 

0xA9) || MULxPOW(c, 6, 0xA9) || MULxPOW(c, 64, 

0xA9)) 

 The FSM registers are initialized to zero. The registers 

of the LFSR are initialized based on the IV and key as 

described by the standard. Figure 1 illustrates how the 

cipher runs in initialization mode, during which the LFSR 

and FSM are clocked 32 times. For each clock, the output of 

the FSM is a 32-bit word, F, which is an input to the LFSR. 

Next, the cipher enters key stream mode, as shown in Figure 

2. In this mode, the FSM still produces F, but F is used to 

generate a 32-bit key stream word, Z. The LFSR then shifts 

and loads a new value into register S15. The process repeats 

until enough data bits are generated for the confidentiality or 

integrity algorithm.  

 For encryption, the key stream is XORed with the 

plaintext (data to be encrypted). For decryption, the 

ciphertext (encrypted data) is XORed with the key stream. 

The number of key bits generated matches the length of the 

data. 

 

 
Figure 1 - SNOW 3G in Initialization Mode ([4]) 

 

 
Figure 2 - SNOW 3G in Key Stream Mode ([4]) 

 The integrity algorithm uses the SNOW 3G cipher in a 

different manner. It runs the cipher to produce five 32-bit 

words (z1, z2, z3, z4, z5). It pairs up the first four words into 

two 64-bit data values, called P (z1 || z2) and Q (z3||z4), as 

shown in Figure 3. It also breaks up the message into 64-bit 

blocks and performs padding on the last 64-bit block if the 

entire message is not a multiple of 64 bits. An additional 64-

bit block, which contains the length (D) of the message, is 

appended to the end of the message. To perform the 

R1
S1

Sbox
R2

S2

Sbox

XOR

R3

S15

XOR

S5 S4 S3 S2 S1 S0S11

XORXORXOR

α
-1 α

F

FSM

LFSR

Modulo 2
32
additon XOR

Bitwise XOR operation 

on 32-bit operands

S5

v

r

95



Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved 

integrity algorithm, D-1 blocks of the message are 

multiplied by the polynomial P inside the function 

EVAL_M. The multiplication is performed over a Galois 

field of 64 bits. The length field is combined (XORed) into 

the running data value and the result is multiplied by Q 

inside the function MUL, which is a single 64-bit Galois 

field multiply. The upper (left-most) 32 bits of the result are 

XORed with OTP (z5, the last 32-bit word). The upper (left-

most) 32 bits of the resulting value are used as the message 

authentication code (MAC) for the message. 

 
 

Figure 3 - Flow of the Integrity Algorithm ([6]) 

3. METHODOLOGY 

 

3.1. Sandbridge Sandblaster 3011 

 

Our test environment simulates the SB3011 SDR platform. 

The SB3011 platform contains four DSP cores, an ARM 

processor, and input and output peripherals found on many 

wireless handheld devices. Each core is multi-threaded and 

executes eight threads simultaneously [2]. Each core is 

partitioned into three main units: an instruction fetch and 

branch unit, an integer and load/store unit, and a single-

instruction/multiple-data (SIMD) vector-processing unit 

(VPU). The SIMD VPU consists of four vector processing 

elements (VPEs), a shuffle unit, a reduction unit, and an 

accumulator register file. The VPU performs logic and 

arithmetic operations on 16-bit, 32-bit, and 40-bit fixed-

point data types concurrently in each VPE. The VPU 

requires two load instructions to load 32-bit data into each 

VPE, while 16-bit data requires one load instruction. The 

instruction format allows for up to three source operands 

and one destination operand per instruction. 

 

3.2. Simulation Environment 

 

To analyze the impact of our instructions and hardware 

designs on performance, we use the Sandblaster toolchain 

[7]. This toolchain provides a full-system, cycle-accurate 

simulator and provides the ability for the compiler to 

recognize user-defined instructions supported at the ISA 

level. These instructions are mapped to user-defined 

functions inside the simulator that execute in an atomic 

fashion with respect to the architecture. Each user-defined 

instruction takes the same amount of time as a native 

instruction. We use the C code provided in the SNOW 3G 

standard, except we change recursive code to a loop-based 

implementation. This helps saves stack space and provides 

the ability to use zero-overhead loop counters and various 

compiler optimization techniques to improve performance. 

 

3.3. SNOW 3G Performance Profile and Optimizations 

 

To determine where to accelerate the SNOW 3G cipher, we 

profile the SNOW 3G reference implementation [4, 8] code 

using the Sandblaster toolchain and full-system, cycle-

accurate simulator [7]. For both the confidentiality and 

integrity algorithms, we identify which parts of each 

algorithm consume a significant percentage of the execution 

time. SNOW 3G has some potential software optimizations 

to improve performance. We analyze the potential benefit 

from these optimizations prior to looking at hardware 

acceleration.  

 Ten 1-KB tables can be used to accelerate SNOW 3G; 

the MUL and DIV tables implement the MULα and DIVα 

functionality in the LFSR, while the remaining eight tables 

implement the S1 and S2 S-boxes. Figure 4 shows the 

speed-up gained from using tables stored in level-1 (L1) 

data memory for the different operations. Each bar 

represents adding a table only for the specified function(s). 

Using all of the tables provides a total speed-up of almost 

25x. This comes with a cost of 10 KB of static data in L1 

memory. We also modify the LFSR code from the standard 

to use vector instructions to perform the shift of the LFSR. 

Even with all the tables present, plus this optimization (a 

27x speed-up over the original code), the architecture only 

achieves a throughput of 14 Mbps per thread for 

confidentiality.  
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 The integrity algorithm, called UIA2, specifies one 

additional method for improving message integrity 

performance. The optimization happens outside the main 

SNOW 3G processing and inside the EVAL_M computation. 

Similar to the confidentiality algorithm, called UEA2, pre-

computed tables can be used to improve performance. 

Unlike UEA2, the tables are not static and must be 

generated for each set of key and IV values. To perform this 

optimization, an extra 16 KB of data must be generated and 

stored for these tables, resulting in a total of 26 KB in table 

data. The pre_mul_p function initially reads the value of P 

and sets up the eight tables. Each table has 256 64-bit 

entries. The new MUL_P function, which replaces the 

EVAL_M function, performs eight table lookups and XORs 

the table outputs to produce a single 64-bit quantity. 

Implementing this software optimization provides a speed-

up of 60x for message integrity, which improves throughput 

to 18 Mbps per thread on our test platform. Like 

confidentiality, additional performance must be obtained to 

run SNOW 3G at next-generation cellular data rates. 

 SNOW 3G contains several primary functions that 

implement the algorithm. As discussed before, SNOW 3G 

consists of two modes: initialization mode and key stream 

mode. We extract the portions of the FSM that occur in each 

phase. The LFSR is implemented using two functions. One 

function implements the LFSR in the initialization mode, 

and the other function implements the LFSR in the key 

generation mode.  

Table 1 and Table  show the percentage execution time for 

different functions (parts) of the UEA2 and UIA2 

algorithms on the SB3011 with all software optimizations 

utilized. The ClockFSM function implements the FSM. 

Table  and Table  show the execution time breakdown of the 

ClockFSM and LFSRKeyStreamMode functions, 

respectively. In the tables, “Other processing” corresponds 

to all processing outside the functions explicitly given in the 

table.  

   

Figure 4 - UEA2 Speed-ups Due to Using Tables 

 

Table 1 - UEA2 Percentage Execution Time Summary 

Function Name Percentage (%) 

ClockFSM (KeyStream) 41.8 

ClockFSM (Initialization) 11.0 

LFSRInitializationMode 8.3 

LFSRKeyStreamMode 30.3 

Other processing 8.0 

Table 2 - UIA2 Percentage Execution Time Summary 

Function Name  Percentage (%) 

MUL64 28.9 

MUL_P 20.2 

ClockFSM 3.8 

ClockLFSRInitializationMode 2.4 

ClockLFSRKeyStreamMode 0.4 

pre_mul_p 38.8 

Other processing 3.9 

Table 3 - FSM Percentage Execution Time Summary 

Function Name Percentage (%) 

S1 29.0 

S2 29.0 

Other processing 42.0 

 
Table 4 - LFSR Percentage Execution Time Summary 

Function Name  Percentage (%) (Initial/KeyStream) 

MULα 9.6 / 10.0 

DIVα 9.6 / 10.0 

Other processing 80.8 / 80.0 

   

4. PROPOSED IMPLEMENTATION 

 

4.1. New Proposed Instructions 

 

To access the new SNOW 3G hardware, described in 

Section 4.2, the ISA was modified to include new SNOW 

3G instructions. As stated before, our simulation 

environment allows for custom instructions to be supported 

at the ISA level using C code. For our work, we implement 

new VPU instructions to accelerate various aspects of the 

algorithm. These instructions take up to three source 

operands and a single destination operand.  

 We introduce new SNOW 3G instructions to implement 

the FSM and update the value v. Figure 5 illustrates the 

transformation of the register file in each VPE when 

implementing the SNOW 3G instructions. Here, R1, R2, and 

R3 correspond to the FSM register values, while S0, S2, S5, 

S11, and S15 correspond to the LFSR register values. We 

model each 64-bit load (ld) as either loading 16 bits into 

each VPE or loading 32 bits into two consecutive VPEs, 

where ld_upper  loads data into the first pair of VPEs (VPE0 

and VPE1) and ld_lower loads data into the second pair of 
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VPEs (VPE2 and VPE3). The same is true for stores. We 

propose the following instructions to accelerate SNOW 3G: 

• snow3g_fsm(VRD, VRS1, VRS2, VRS3). This 

instruction reads two 32-bit values from the first pair of 

VPE registers, specified by VRS1, and two 32-bit 

values from the second pair of VPE registers, specified 

by VRS2 and VRS3. It passes the values from VRS1 to 

the corresponding S1 and S2 transforms. It stores the 

resulting value in the appropriate registers specified by 

VRD in the first pair of VPEs. The second set of VPEs 

uses the values in VR2 and VR3 to implement the part 

of the FSM that generates a new F value and r value as 

F = (S15 + R1) ⊕ R2 and r = (R3 ⊕ S5) + R2. The 

resulting F and r values are stored in the appropriate 

registers specified by VRD in the second pair of VPEs.  

• snow3g_shuffle(VRD, VRS). This instruction rearranges 

the 32-bit values in VRS and stores the result in VRD. 

The effective result is rotating a 128-bit register to the 

right by 32-bits. 

• snow3g_v(VRD, VRS1, VRS2, 
1
VRS3). This instruction 

produces the value v=α
-1

(S11) ⊕ S2 ⊕ α(S0), during 

initialization mode and v=α
-1

(S11) ⊕ S2 ⊕ α(S0 ⊕) F, 

during key stream mode. It takes the source registers 

specified by VRS1 and VRS2 and extracts the 

appropriate values to compute v. When the instruction 

uses three operands, the last register of VRS3 in the 

second pair of VPEs is used as well. The instruction 

uses the MULα and DIVα tables. The results from the 

table lookups and S2 are combined to produce v, which 

is written into the first register of the first set of VPEs 

specified by VRD. 

• snow3g_clmul(VRD, VRS1, VRS2). This instruction, 

which is not shown in Figure 5, is performed in all four 

VPEs in SIMD fashion. It performs a 16-bit-by-16-bit 

carry-less multiplication using VRS1 and VRS2 in each 

VPE and stores the resulting 31-bit output in VRD of 

the same VPE. This instruction is only used for the 

UIA2 algorithm. 

Pseudo-code for implementing the FSM functionality and 

value v generation follows, where memory address are 

represented by the letters a = {R1, R2}, b= {R3, F}, c = 

{S15, X}, d = {S4, S5}, e = {v, S0}, and f = {S1, S2}, g = 

{S11, S12}. The notation {X, Y} denotes the concatenation 

of values X and Y, and ‘||’ denotes an operation separator 

for the given VLIW instruction. 

 

Initilizaiton Mode 

ld_upper  (vr1, a) 

ld_lower (vr1, b) 

FSM: 

ld_lower (vr2, c) 

                                                
1
 VRS3 is optional 

ld_lower (vr3, d) 

snow3g_fsm (vr1, vr1, vr2, vr3) || ld_upper (vr3, e) 

snow3g_shuffle (vr1, vr1) || ld_lower (vr3, f) 

ld_lower (vr2, g) 

LFSR v generation: 

snow3g_v (vr3, vr3, vr2, vr1) || st_lower (vr1) 

st_lower (vr1) 

goto FSM 

 

 

KeyStream Mode 

ld_upper  (vr1, a) 

ld_lower (vr1, b) 

FSM: 

ld_lower (vr2, c) 

ld_lower (vr3, d) 

snow3g_fsm (vr1, vr1, vr2, vr3) || ld_upper (vr3, e) 

snow3g_shuffle (vr1, vr1) || ld_lower (vr3, f) 

ld_lower (vr2, g) 

LFSR v generation: 

snow3g_v (vr3, vr3, vr2) || st_lower (vr1) 

st_lower (vr1) 

goto FSM 

 

 
 
Figure 5 - FSM and v Generation 
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4.2. Execution Unit Description 

 

Our proposed implementation is designed to reuse existing 

hardware. While ASIC solutions exist [9-11], a 

programmable solution potentially yields less area because 

bus interface logic, FIFOs, and additional registers -- which 

are present with an ASIC -- are not needed with ISA 

extensions. We chose to utilize the VPU to implement our 

new instructions. The SB3011 VPU has some benefits for 

placement of our new functional units. First, it has a larger 

load/store bandwidth than the integer unit—64 bits versus 

32 bits. Second, the VPU can access more data for a given 

instruction—480 bits versus 64 bits. Third, the VPU can 

hold more state than the integer unit—1,280 bits per thread 

versus 256 bits per thread.   

 To implement the instructions, we add the hardware 

shown in Figure 6 to the different VPEs. The FSM uses the 

S1, S2, and fused addition-XOR units. The LFSR uses the 

MULα and DIVα tables. The MUL operation uses the 16-

bit-by-16-bit carry-less multiplier (CLMUL). 

 

5. EXPERIMENTAL RESULTS 

 

We synthesized our proposed functional units to determine 

their impact on the processor hardware. The latency, area, 

and power of each proposed additional functional unit and 

the existing SB3011 vector multiply-accumulate (VMAC) 

unit are listed in Table . The VMAC unit performs a 16-bit-

by-16-bit plus 40-bit multiply-accumulate operation. The 

SB3011 contains four VMAC units. Our proposed ISA 

extensions utilize four CLMUL units and one of each of the 

other units. Figure 6 depicts the throughput due to adding 

the ISA extensions. Compared to the optimized software 

with table lookups and vector shifting, the ISA extensions 

improve the performance of UEA2 and UEI2 by factors of 

roughly 4.2 and 1.5, respectively.  

 
Table 5 - Synthesized modules at 600 MHz using a 65-nm 

TSMC standard cell library 

Unit Delay (ns) Area (µm
2
) Power (µW) 

S1 0.93 4,162 372.5 

S2 1.00 4,068 373.9 

16x16 CLMUL 1.50 2,100 570.2 

Addition-XOR 1.58 453 75.2 

MULα 0.40 126 18.5 

DIVα 0.33 123 17.0 

SB3011 VMAC 1.65 6,864 1,543.1 

 

Table 6 - Throughput of UEA2 and UIA2 algorithms 

Version Throughput (Mbps) 

UEA2 (optimized software) 14.4 

UEA2 (ISA extensions) 36.2 

UIA2 (optimized software) 19.1 

UIA2 (ISA extensions) 24.9 

 

 
 
Figure 6 - New Execution Units 

 

 

6. CONCLUSION AND FUTURE WORK 

 

 Our proposed ISA extensions seek to accelerate SNOW 

3G by reusing existing hardware present in SDR platforms. 

This alleviates the area overhead of communication logic 

and storage elements needed by an ASIC. Our extensions 

use the VPU of the Sandbridge Sandblaster 3011 because it 

provides access to more data than the integer load/store unit 

in three areas: 1) loading/storing data, 2) specifying data, 

and 3) storage space to hold the data inside the processor. 

By merging the aforementioned features with new function 

units, our ISA extensions are portable to other SIMD-type 

architectures. 

   In conclusion, we have profiled and demonstrated a 

method to accelerate SNOW 3G on a SDR platform. We 

maintained the programming model and micro-architecture 

of our SDR platform in the process. To reach more than 50 

Mbps per thread for confidentiality and integrity, additional 

instructions, assembly optimization, and hardware may be 

needed.  
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