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2.2 3-D Ray Tracing and Neural Networks Channel Model.
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Highly accurate position estimation is very desirable in many applications.

 RF environment for communication are often characterized with strong 

multipath behavior. 

 There is a need for characterizing the multipath behavior of the channel to 

mitigate this multipath effect.

The empirical techniques offer low computational cost, but also low 

accuracy.

Deterministic techniques, which are based on the calculation of 

electromagnetic field, offer high accuracy at the expense of very high 

computational complexity.

Problem Definition
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Location Estimation

Relative Signal 

Strength (RSS)

Time of Arrival

(TOA)

Time Difference of 

Arrival   (TDOA)

• Distance is calculated 

based on relative signal 

strength of each 

antenna

+ No synchronization 

between Tx & Rx  

required

- Highly prone to 

environment  effects

• Position is calculated 

based on time of arrival 

from transmitter to 

receiver

+ Less number of BSs

required as compared  to 

TDOA

- Synchronization between 

Tx & Rx required

• Position is calculated based 

on time difference of arrival 

from different transmitters to 1 

receiver

+ No synchronization between 

Tx & Rx required

- Synchronization between 

transmitters is needed

- As compared to TOA, 

requires more no. BSs

Position Estimation 

Methods
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Information Extraction

• Electric field created by 

transmitter

• Electric field at receiver antenna

• Received power

• Power Delay Profile

• Medium Delay

• Dispersion

3-D Ray Tracing (1/2)
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Power Maps

Power Delay Profiles

3-D Ray Tracing (2/2)
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Neural networks

Why?

 To lessen the burden of storing the  data and 

computation for 3-D Ray–Tracing.

 To predict for the positions not visited by rays in Ray-

Tracing.

 To adapt to the change in environment while learning 

from Ray-Tracing simulations.
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*Two Hidden layer feedforward 
Neural network.

*First Layer : 
Activation function:

No. Of neurons: 4

*Second Layer:
Activation function:
No. Of neurons: 17

*Inputs: Co-ordinates of point
in the space.
*Output: Delay error due to multipath.
*NN training uses Levenberg Marquardt Back 
Propagation algorithm for mean square error
minimization.
*Normalized mean square error (NMSE) of 0.018nS is                             

achieved while trained network is used with another set of data                                     
from the same scenario, where maximum error is of 0.02nS.
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Waveform Analysis
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FCH 

Correlation

BSID & 

Coordinates 

Identification

TDOA 

Information 

Retrieval

BSID 1

BSID 2

BSID 3

BSID 4

BSID 5

TDOA

t2 – t1

t3 – t1

t4 – t1

t5 – t1

Waveform Analysis
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Waveform Synthesis
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Central 

Station 

Base 

Station 1

Base 

Station 5 Base 

Station 4

Base 

Station 3

`
Φ1

θ5

Φ4

θ1

θ2

Φ2

θ3

θ4

Φ5

Φ3

R (X, Y, Z)

1. Initial TDOA Based Position 

Estimation

2. Multipath Characterization :

 Ray Tracing

 Neural Network

3. Broadcasting of error due to 

multipath to receiver.

4. Final TDOA Based Position 

Estimation with multipath 

correction at receiver.

Proposed Location 

Estimation 

Improvement
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BS # 1 BS # 2 BS # 3

BS # 4BS # 5

Mobile Node

Central Node

Experimental Setup
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Receiver Position

Error before 

multipath 

correction (m)

Error after 

multipath 

correction (m)

Error reduction

Position 3 0.8201 0.6017 26.63%

Position 2 2.6416 2.6063 1.34%

Position 1 2.5846 1.444 44.13%

Antennas

Estimated positions

Actual position

Final estimated position

Measurements’ Results
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 A method to improve the accuracy and performance of a ray-tracing 

algorithm using feed forward neural networks has been developed.

 The proposed algorithm is used to improve the position estimation using 

TDOA.

 The proposed method only needs a software upgrade in the device.

 It has been shown that with this method an error reduction up to 44.14% 

is achieved.

We propose this method as an inexpensive solution to improve the    

location estimation of TDOA based algorithms for environments 

characterized such as emergency scenes and indoor environment.

Conclusions
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