

A CO-DESIGN METHODOLOGY BASED ON MODEL DRIVEN

ENGINEERING FOR SDR EQUIPMENTS

Stéphane LECOMTE
1,2

, Samuel GUILLOUARD
1
, Christophe MOY

2
, Pierre LERAY

2
,

Philippe SOULARD
3

1
(THOMSON R&D, Cesson-Sévigné, France, stephane.lecomte@thomson.net)

2
(SUPELEC/IETR, Rennes, France, christophe.moy@supelec.fr)

3
(SODIUS, Nantes, France, psoulard@sodius.com)

ABSTRACT

This paper presents the MOPCOM methodology, primarily

developed to enable the efficient design of SDR – Software

Defined Radio – equipments. Based on UML/MDE

approach, it could be advantageously applied for the design

of any real-time embedded systems. The MOPCOM

methodology defines a set of rules to build UML models for

embedded systems, from which HDL code is automatically

generated by means of MDE – Model driven Engineering –

techniques. The UML/MARTE profile is used to describe

real-time properties and to perform platform modeling.

Three abstraction levels are defined: abstract, execution and

detailed modeling levels (AML, EML and DML,

respectively). The second one will be particularly explained

and the overall methodology will be evaluated through a

SDR case study.

1. INTRODUCTION

Thanks to the ever-increasing performance of digital

electronics, an embedded system can be integrated on a

single chip: a SoC – System on Chip – or a SoPC – System

on Programmable Component – inside FPGA

reconfigurable components.

In parallel, to catch up with this hardware capacity, a

dramatic enhancement of hardware design facility is

required to fill the productivity gap. Another important

challenge, induced by the design of SoC/SoPC, consists in

reducing Time-to-Market and the cost due to the rapid

evolution of the technology. To achieve those goals,

SoC/SoPC design methodologies have to tackle co-design

issues such as design space exploration, reuse of IPs -

Intellectual Property - and high level synthesis. Besides

ESL – Electronic System Level – modeling approaches,

UML [1] – Unified Modeling Language – originally

dedicated to software development has extended its scope to

system or real-time embedded application development,

including hardware design. As the development of

SoC/SoPC components covers system, software and

hardware engineering activities, from the system

requirement capture, up to the fine analysis of the hardware

logic timing, a SoC/SoPC development methodology should

take advantage of these new capabilities, such as UML

MARTE profile [2]. MARTE has been standardized by

OMG. Following a MDA methodology also contributes at

capitalizing, as well, the achievements of the ESL

community.

Moreover, MDA [3] – Model Driven Architecture –

derived from MDE, promotes a development methodology

based on models transformations at several levels of

abstraction and that follows the well known Y-chart co-

design approach.

The following section presents a state of art of the

modeling approaches for codesign conception of RTES –

Real Time Embedded Systems –. In the third section, we

show an overview of our MOPCOM methodology based on

MDA and UML. In the section 4, we explain with more

details the middle level of the process. The two following

sections present an overview of the tooling MOPCOM

environment. Finally an experimentation of this approach,

carried out in the frame of the MOPCOM SoC/SoPC project

[4] is presented.

2. RELATED WORK

The developments of SoC/SoPC and RTES strongly need

the availability of reliable methodology, which represents a

wide research topic for the ESL community. Such a

methodology, based on appropriate languages and tools, can

help to handle simultaneously market pressure (time-to-

market, competitiveness), fast changing technology grade as

well as migration towards more complicated/sophisticated

standards [5].

In order to address the market constraints and

obsolescence issues, separation of concerns is needed to

allow the concurrent development of applications and

execution platforms. This kind of approach have been first

proposed in the Gajski and Kuhn Y-Chart model [6],

generalized by the Model Driven Development approach

and standardized by the Model Driven Architecture OMG’s

standard. Moreover, in order to allow faster design space

exploration, system under study must be modeled and

validated at several levels of abstraction [7].

Several languages enable the description of behavioral

or structural parts and the allocation of the system under

development. The most important factors influencing the

choice of a language in a modeling or analysis activity are

its expressiveness power and its tooling. For instance,

SystemC [8] is a language allowing functional and platform

modeling at several levels of abstraction, and is supported

by several free or commercial tools dedicated to analysis or

compilation / synthesis.

In addition to separation of concerns and definition of

levels of abstraction, there is a need to favor reusability in

order to improve the productivity.

Developments of RTES include modeling activities,

using languages based on either grammars or metamodels,

as well as analysis activities such as formal validation or

simulation. The main issues when modeling RTES are the

description of concurrency/communication, execution

platform, possibly represented at several levels of

abstraction, and QoS – Quality of Service. Modeling and

analysis activities must be placed in the context of a well-

defined methodology. For that, there are two different

approaches: use several DSL – Domain Specific Language –

fitting for each modeling or analysis activity, or use a

general purpose modeling language, such as UML, with

dedicated profiles to support the required concepts.

Additional mechanisms such as annotations are also

required in order to add relevant information needed by

analysis tools (example: resource usage for schedulability

analysis).

Based on the use of selected formalisms, several

methodologies and tools have been developed to support

RTES development. A few examples are given below.

The methodology MCSE – Méthodologie de

Conception des Systèmes Electroniques –, proposed in [9],

enables design space exploration through the use of the

SystemC TLM language.

The Ptolemy environment from UC Berkeley [10]

allows description of systems mixing several MoC – Models

of Computation – through the notions of actors and

directors. A director defines a domain of execution for its

actors enabling the mixing of several models of computation

in the same model. This is an important issue because real-

time systems usually mix analog and digital devices and

possibly several time domains.

In the context of UML, several profiles have been

proposed to extend UML capabilities in order to handle

modeling and analysis of RTES or SoC. Among them, we

can list:

 the UML4SOC OMG’s profile is dedicated to

describe System on Chip [11];

 the UML for SystemC profile proposed in [12]

gathers the capabilities of UML and SystemC;

 the UML for MARTE OMG’s profile can be

viewed as an improvement of the SPT profile [13].

Based on the use of UML profiles, examples of RTES or

SoC design environments are given below.

The ACCORD/UML methodology [14] aims at using

UML concepts to design RTES.

A first trial for SDR profile has been proposed in the

A3S profile which was a first attempt to design SDR in a

MDA perspective [15], but has not been followed by a

standardization effort.

In [16], the authors proposes a development process for

embedded systems and SoC called UPES – Unified Process

for Embedded Systems –, based on UML for SystemC

profile.

The Gaspard Methodology [17], based on MDA

approach, is intended to provide a framework for developing

parallel and distributed applications implemented on SoC.

3. MOPCOM METHODOLOGY

Defined in [18], the MOPCOM methodology is a refinement

of the MDA Y-chart dedicated to design space exploration

and Platform Based Design. MDA techniques coupled with

UML are used to perform code generation (VHDL, C/C++

for HLS – High-Level Synthesis – and SystemC). It takes as

input functional, non-functional and allocation requirements

expressed in SysML [19]. Figure 1gives an overview of the

process, highlighting 3 modeling levels:

 AML – Abstract Modeling Level – is intended to

provide the description of the expected level of

concurrency and pipeline through the mapping of

functional blocks onto a virtual execution platform;

 EML – Execution Modeling Level – is intended to

provide the topology of a generic platform defined

in terms of execution, communication or storage

nodes in order to proceed to coarse grain analysis;

 DML – Detailed Modeling Level – is intended to

provide a detailed description of the platform in

order to proceed to fine grained analysis. It allows

RTL code generation for hardware (VHDL) and

software (C) parts including glue code (drivers).

For each level, we identify which subsets of MARTE are

mandatory and we capture modeling rules constraints

applied to the process model.

Functional Application

(PIM)

MoC Analysis

Topology &

Schedulability

Analysis

Cycle

Accurate

Analysis

Abstract Platform

(PM)

Allocated Model

(PSM)

AML

(PIM)

Execution Platform

(PM)

Allocated Model

(PSM)

AML

(PIM)

Detailed Platform

(PM)

Allocated Model

(PSM)

Hard Driver
RTL Code

(VHDL)

Abstract Modeling Level

Execution Modeling Level

Detailed Modeling Level

Requirements Analysis

Definition of system Use Cases

Soft

Driver
SoftwareDocumentations

AML

EML

DML

Figure 1 – MOPCOM process overview

4. EMBEDDED SYSTEM MODELING

In this section, we detail EML, the middle level of the

MOPCOM process. The EML - Execution Modeling Level -

is made up of three different models (Figure 1). The main

goal of this level is to model the topology of the virtual

hardware platform and to analyze the system scheduling.

Platform and allocation are defined regarding trade-offs

between implementation, performances and costs. In the

context of design space exploration, all those aspects must

be checked by a top-down refinement analysis.

4.1. The Platform Independent Model in EML

The PIM of EML is the output model of the AML. So the

PIM model in EML is composed of MoC components on

which functions of the application are allocated. The links

between MoC components are point-to-point with specific

semantic of data transfer [20]. A MoC component offers a

service of concurrent execution for the function(s) allocated

in it.

A refactoring of PIM in EML is possible if necessary.

We can transform the functional architecture in order to

allocate the PIM onto PM – Platform Model –. In fact,

Analysis feedbacks drive potential refactoring on the platform

as well as on the MoC or the functional architecture. Actually,

those refactoring depend mainly on the skill of the engineers to

proceed to the right adjustments.

4.2. The Platform Model in EML

In EML, PM only represents the topology of the virtual

hardware platform based on high-level generic components.

Indeed, the objective of the virtual platform is to hide the

physical platform to the application. This PM cuts itself of

superfluous details such as the protocols description, the

type of computing resources and storage resources used in

the physical platform model. The first interest of such a

modeling is to represent the nodes of computation, of

storage, of communication and the services offered by the

platform to the application. In fact, PM of EML design

emphasizes the number of processing elements, organization

of data or communication media and their characteristics.

Interfaces between connected elements and communication

protocols are considered from high level perspective: data

are bit true and inaccurately timed. A natural modeling

concept of PM in EML is a transactional-level modeling, as

promoted by Gajski and SystemC community in general.

Thus the communications between the components of the

platform are represented by calls of functions and not by a

detailed modeling of the protocol and the connectivity

which are represented in the RTL level.

To model the PM, we use the class/object diagram or

the component diagram of UML associated with MARTE

profile.

The MOPCOM methodological tool at this level is

MARTE GRM – Generic Resource Modeling – subprofile.

Figure 2 shows an example of PM with the following

stereotypes of MARTE: «ComputingResource»,

«StorageResource» and «CommunicationMedia». Each

resource of PM is characterized by these services offered,

several non-functional properties such as latency, frequency,

datapath width.

Figure 2 – Platform model in EML

4.3. The Platform Specific Model in EML

The PSM - Platform Specific Model -, allocation model, is

built to allocate the functionalities of PIM model into the

components of the virtual platform (PM).

The link of allocation between a MoC component

(concurrency virtual component) of PIM and a component

of PM is done using a UML dependency. This dependency

is characterized by the «Allocate» stereotype of the MARTE

alloc sub-profile. Thus this stereotype helps in specifying

whether it is a space or temporal allocation. More than one

MoC of one virtual component of the platform can be

allocated.

Moreover, the mapping of PIM onto the PM to form the

PSM must not damage the semantic of the MoC. Actually, if

more than two MoC components are mapped onto one

component of the PM, the semantics of the point-to-point

communication between the MoC components is not

affected. But if two MoC components, which communicate

to each other, are mapped onto two different components of

the PM, the semantic is not ensured because the

communication between both hardware components can be

done through a bus and not necessarily via a simple point-

to-point link. Therefore, the semantics have to be

guaranteed for bus communication.

4.4 Analysis model

To analyze the scheduling and the performances of the

system, some information must be necessary added on the

models of this level. What is the signification of

schedulability analysis? It provides the ability to evaluate

time constraints and guarantee worst-case behavior of a

real-time system.

For the schedulability analysis, MARTE sub-packages,

SAM – Schedulability Analysis Modeling – and PAM –

Performance Analysis Modeling – are used.

Analysis scenarios have to be defined. For each

scenario the context and the parameters are modeled, thus

requiring an indication about the type of scheduling

resource of each element of the model (shown in Figure 3).

Figure 3 – PSM with SAM stereotype of MARTE

For example, Analysis scenarios emphasize data rates

and latencies as well as memory size or context switching in

the case of dynamic reconfiguration.

When the model analysis is completed, several

possibilities to analyze the different scenarios are possible.

We can use a dedicated analysis tool. Another possibility

consists in generating the equivalent model in SystemC in

order to simulate the analysis scenarios. In both approaches,

it should be noted that the metamodels of UML and

MARTE might be different from the metamodel of the

syntax used in the selected analysis tool or SystemC

language. Thus, it is necessary to translate EML model into

another syntax. This transformation could be done with

MDWorkbench environment (cf. section 5).

5. TOOLING SUPPORT

The MOPCOM process tooling relies on tools related to

OMG standards (MDA, UML, MOF, XMI) and Eclipse

(EMF, EMOF, Ecore):

 The KerMeta language from INRIA [21] is used to

formalize and validate the metamodels (concepts

and constraints);

 The Rhapsody UML Modeler [22] is used to model

applications as well as platforms according to the

defined levels;

 The Sodius MDWorkbench tool [23] is used to

transform models (model-to-model) and generate

code or documentation from models.

The generator is delivered as a white-box add-on, where

all transformations and generation rules are available for

any customization. In addition,

RTES modeling requires an action language for low-

level expressions to complete the high-level UML semantics

and diagrams, and to specify operation bodies,

trigger/guard/action on transition and states as well as data

declarations. The selection of the right action language

raises questions about textual or graphical notation, and

general versus HDL-specific language accessible to

designers, taking into account learning curves. The C++

language turned to be a convenient choice and only a C++

subset is used in the models (along with some macros for

event and port handling). C++ expressions are parsed for

VHDL generation thanks to a C++ syntactic metamodel

allowing grammar to model transformations.

6. CODE GENERATION

The MOPCOM process associated with MOPCOM tools

offers three different generation of code: VHDL code,

C/C++ code for HLS tools, and a SystemC code.

6.1 VHDL code generator

VHDL code generator input is a DML model, lowest

abstraction level within the process (as shown in Figure 1),

which includes the application and platform packages, as

well as the allocation of the application class instances on

the platform class instances. Structural parts are derived

from the platform model, where VHDL entities are derived

from hierarchy of instances. UML ports are translated to

VHDL ports thanks to communication protocols and data.

Behavioral parts are derived from application models, where

VHDL architectures are mainly issued from attributes,

operations and state machines.

6.2 C/C++ code generator for HLS tool

In order to reuse an external IP, a VHDL black-box can be

generate with the right interface of system element. VHDL

IP block come from IP libraries, or from a High Level

Synthesis tool, such as Catapult [24], which generate a

VHDL IP from C/C++ code.

So the C/C++ generator code is based on the C++

description of an algorithm in the functional (PIM) model.

Then the C/C++ for HLS code generator generates only the

code for the element of the model tagged with <<HLS>>.

6.3 SystemC generator

In section 4, we have presented the EML level, inside which

SystemC model could be used to perform the simulation.

This requires a generation (from UML model to System C

code), which has been developed and integrated in the

MOPCOM methodology.

7. A CASE STUDY EXAMPLE

The case study is a TDMA/OFDM/MIMO wireless IP based

on IEEE 802.16a standard and for which proprietary

extensions have been proposed [25]. Our approach has been

applied to the MIMO processing at the receiver side. Figure

4 shows a synoptic of the MIMO decoder.

MIMO RX

Channel

Preprocessing

(QR factorization)

Data

Preprocessing

(Projection)RX signal

RX data

Channel

estimation

Lattice search

(Stack

decoder)

Demapper

Figure 4 – Synoptic of the MIMO decoder

The user of the system can configure the system before

starting the transmission, or the system can reconfigure

itself with the properties of the received signal.

Figure 5 shows the interaction between the actors and the

system, the Source corresponds to the Channel estimation

and the RX signal while the Sink corresponds to the

decoded RX data.

Figure 6 shows the different functions of the MIMO

decoder. The itsDecoderMIMO object (instance of

Decoder_MIMO class) controls the steps of the decoding,

with a statechart. The itsPreprocChannel, itsPrepocData

and itsDemapper objects are pure computing objects (no

control). And the itsStackDecoder object is composed of

computing and control.

Figure 5 – Interaction view between actors and system

Figure 2 and 3 display two samples of the EML level of a

subset of the proposed UML models (part of the virtual

platform model and allocation of a part of the functional

model to the virtual platform model in figure 2 and figure 3

respectively).

Figure 6 – Objects model diagram for the MIMO

decoder

The targeted platform for the implementation is a

reconfigurable component that can perform self-

reconfiguration. Figure 7 shows a sample of the modeling of

the target platform on DML level (section 3). With MARTE

profile [2], the type of each component is specified (with a

stereotype) and the characteristics of this one (by completed

the associated tags to the stereotype).

8. CONCLUSION

A subset of the MOPCOM Soc/SoPC methodology has been

presented. The main objective of this approach is to offer a

co-design methodology for RTE systems based on MDA

approaches, using UML and MARTE profile. This process

emphasizes application and platform modeling at different

levels of abstraction and the allocation of the application

models to the platform models. For each level, the selected

MARTE stereotypes and the related constraints have been

presented. This process has been applied on a SDR case

study, for which a C/C++ code and a synthesizable RTL

code have been generated. Our future works will consist in

integrating the modeling of the partial reconfiguration (PR)

of FPGA in the process and to simulate the analysis model

of EML with SystemC language.

9. ACKNOWLEDGMENT

The UML/MDA approach presented above is experimented

in the RNTL06 research program MOPCOM SoC/SoPC

supported by the French National Research Agency (ANR –

contract 2006 TLOG 022 01), the “cluster of clusters”,

“Media and Networks” and the Brittany and Pays de la

Loire regions.

11. REFERENCES

[1] OMG, “UML 2.1 Infrastructure”, report num. ptc/06-04-03,

Object Management Group, 2006.
[2] OMG, “UML Profile for MARTE, Beta 2”, report num.

ptc/2008-06-08, Object Management Group, 2008.
[3] OMG, “MDA Guide Version 1.0.1”, report num. omg/2003-

06-01, Object Management Group, 2003.

[4] MOPCOM partners, “MOPCOM SoC/SoPC Project”,
www.mopcom.fr, 2007.

[5] S. Gerard, F. Terrier, “UML for real-time: wich native
concepts to use?”, ACM, vol. 13, p. 17-51, Kluwer
Academic Publishers, 2003.

[6] D. D. Gajski, R. H. Kuhn, “New VLSI Tools”, IEEE
Computer, vol. 16, num.12, p. 11-14, IEEE Computer
Society Press, December 1983.

[7] A. Sangiovanni-Vincentelli, L. Carloni, F. D. Bernardinis,
M. Sgroi, “Benefits and challenges for platform-based
design”, Proceedings of the 41st annual conference on Design
Automation (DAC), New-York, USA, ACM, p. 409-414,
2004.

[8] OSCI, “IEEE Standard SystemC Language Reference
Manual”, report num. IEEE Std 1666-2005, IEEE Computer
Society, 2005.

[9] J. Calvez, “The MCSE Methodology overview”, report,
Cofluent Design, 2008.

[10] J. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, “Ptolemy: a
framework for simulating and prototyping heterogeneous
systems”, IEEE, vol. 10, p. 527-543, Kluwer Academic
Publishers, 2002.

[11] OMG, “UML Profile for System on a Chip”, report num.
formal/06-08-01, Object Management Group, 2006.

[12] E. Riccobene, P. Scandurra, A. Rosti, S. Bocchio, “A SoC
Design Methodology Involving a UML 2.0 Profile for
SystemC”, Proc. of the conference on Design, Automation
and Test in Europe (DATE), Munich, Germany, IEEE
Computer Society, p. 707-709, March 2005.

[13] OMG, “UML Profile for Schedulability, Performance, and
Time”, report num. formal/2005-01-02, OMG, 2005.

[14] S. Gerard, F. Terrier, Y. Tanguy, “Using the Model
Paradigm for Real-Time Systems development:
ACCORD/UML”, Advances in Object-Oriented Information
Systems, vol. 2426/2002 of Lecture Notes in Computer
Science, p. 260-269, SPRINGLINK, Ed., 2002.

[15] C. Moy, M. Raulet, S. Rouxel, J.P. Digeut, G. Gogniat, P.
Desfray, N. Bulteau, J.E. Goubard, Y. Denef, “Uml profile
for waveform Signal Processing Systems Abstraction”, SDR
Technical Conference, Phoenix, USA, November 2004.

[16] E. Riccobene, P. Scandurra, A. Rosti, S. Bocchio,
“Designing a Unified process for Embedded Systems”, In the
4th international Workshop on MOdel-based Methodologies
for Pervasive and Embedded Software (MOMPES), Braga,
Portugal, IEEE Computer Society, March 2007.

[17] E. Piel, J.L. Dekeyser, P. Boulet and Al., “Gaspard 2: from
MARTE to SystemC Simulation”, 2008.

[18] A. Koudri et al. “Using MARTE in a co-design
Methodology”, Workshop MARTE in DATE, Munich,
Germany, March 2008.

[19] OMG, “Systems Modeling Language”, report num. ptc/2008-
05-16, Object Management Group, 2008.

[20] A. Koudri, J. Champeau, D. Aulagnier, D. Vojtisek,
“Processus de codesign UML/MARTE”, Neptune, Paris,
France, May 2009.

[21] INRIA Triskell Team, « KerMeta », www.kermeta.org
[22] Telelogic, an IBM Company, “Rhapsody UML modeler”.
[23] SODIUS, “MDWorkbench platform”,

www.mdworkbench.com.
[24] Mentor Graphics, “Catapult Synthesis tool”,

www.mentor.com
[25] F. Le Bolzer and Al., “Prodim@ges - A new Video

Production Environment based on IP wireless and optical
links”, NEM’SUMMIT, Saint-Malo, France, October 2008.

Figure 7 – Sample of model of target platform

	Home
	Papers by Author
	Papers by Session

