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Abstract 
One of the most significant promises in today’s integrated broadband wireless networks such as WiMAX is in providing 

Quality of Service (QoS) guarantees. Using scheduling algorithms to provide QoS guarantees, wireless networks are able to 
integrate applications with a wide range of traffic characteristics.  Deficit fair priority queue (DFPQ) provide directional based 
priority and service class differentiation.   However, the environment for wireless networks is variable both in time and space so 
that the effectiveness of scheduling algorithm maybe invalidated by bad channels conditions. This paper proposes a channel 
aware deficit fair priority queue (CA-DFPQ) packet scheduling architecture for the QoS management for the Mobile WiMAX. 
The proposed scheduling is an extension of DFPQ found in literature, suitably modified to provide differentiated service even in 
non-ideal channel conditions.  The modified algorithm together with a proposed mechanism for error compensation in WiMAX 
error-prone channels is designed to provide directional differentiation and service class priority. 
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1. Introduction 
WiMAX (Worldwide Interoperability for Microwave 

Access) is a part of IEEE 802.16 [1] family of standards that 
target wide area line of sight (LOS) and non-line of sight 
(NLOS) broadband data access for fixed and mobile 
terminals. IEEE 802.16 standards specify the air interface at 
the physical (PHY) and the media access control (MAC) 
layers; the WiMAX forum defines additional specifications 
to support fixed, nomadic and mobile access [1].  Based on 
specific profiles from IEEE 802.16 standards the WiMAX 
forum also promotes and certifies compatibility of broadband 
wireless products to ensure diverse vendor interoperability 
[2]. 

802.16 WiMAX is designed to simultaneously support a 
diverse set of applications such as voice, video and data 
through a common bandwidth. Each of these applications has 
unique traffic requirements e.g. throughput, delay, jitter, loss 
rate that are collectively specified by Quality of Service 
Support (QoS).  To successfully transmit these applications 
through the wireless link, their QoS requirements must be 
met and maintained throughout the duration of the 
transmission.  The problem of assuring QoS then becomes 
how to allocate the limited bandwidth resources while at the 
same time ensuring an application’s QoS requirement.  To 
help in allocating bandwidth, traffic scheduling is used.  

IEEE 802.16 standard does not specify how to support 
QoS features and requirements, such implementations are 
vendor specific [1], [4].  Therefore one of the most important 
issues in designing WiMAX networks is the choice of a 
scheduling algorithm. As a consequence, a number of 
scheduling algorithms have been proposed in the literature, 
most of which assume perfect channel conditions, no error 
losses and an unlimited power source [5]. The proposed 
schedulers would work well for wired networks.  However, 
unlike wired networks, wireless links suffer from diverse 
impairments; they are subject to time-and location-dependent 
attenuation, multipath and noise that results in received 
message degradation.  For the users on the move, there may 
be rapid changes in their environment. These factors together 
with transmission impairments due to bad channel and MAC 
delays  greatly affect the performance of wireless traffic 
schedulers [5], [6], [7]. 

 Consequently, it is difficult to predict the behavior of a 
scheduler in such an unpredictable wireless environment.  
It’s crucial that the schedulers take into effect channel states 
when assigning resources. In this paper we present a 
modified scheduling algorithm for Mobile WiMAX named 
Channel Aware Deficit Fair Priority Queue (CA-DFPQ).  It 
is a combination of a hierarchical scheduler proposed in 
[3]suitably modified with a channel compensation 
mechanism. Our objective is to provide bandwidth and delay 
guarantees to QoS sensitive applications while achieving 
high bandwidth  utilization even in the face of poor channel 
environment. 
 

2. IEEE 802 IEEE 802.16 QoS Architecture 
802.16e Mobile WiMAX  is an improvement over fixed 

WiMAX (IEEE 802.16d). It offers mobility with scalability 
in radio access and network architecture [1], [4].  Key 
features that differentiate 802.16e Mobile WiMAX from 
other wireless access technology include its use of (1) 
Orthogonal Frequency Division Multiple Access (OFDMA), 
(2) a scalable spectrum use which ranges from 1.25 MHz to 
28 MHz, (3) advanced antenna combined with multiple input 
multiple output (MIMO) support, (4) adaptive modulation 
and coding schemes and (5) a variety of QoS service class 
support. 

For 802.16, communication at the link layer is either 
time-division duplex (TDD) or frequency-division duplex 
(FDD). Mobile WiMAX supports TDD mode, where time is 
divided into frames [4] and each frame is further dynamically 
subdivided into an uplink (UL) sub-frame and a downlink 
(DL) sub-frame. TDD frame for fixed WiMAX mode is 0.5, 
1 or 2 ms while for Mobile Mode it’s typically fixed at 5 ms 
[1].  Each sub-frame is divided into subcarriers, and a 
number of available subcarriers are grouped together to form 
sub-channels.  For OFDMA-PHY, the frame is partitioned 
both in time and frequency forming slots. The MAC layer 
allocates the time/frequency resources to subscriber stations 
(SSs) in units of slots.  A slot is the smallest PHY layer 
resource that can be allocated to a single SS in the 
time/frequency domain (Fig 1).   

The DL channel is a broadcast channel used by the Base 
station (BS) to transmit control information and data to 
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connections.    In addition the BS can group several SS into a 
multicast UL group. The BS can then advise all the SS in the 
group that they can send their UL bandwidth request 
simultaneously instead of granting individual UL 
opportunities. Only minimum rate is guaranteed. 

Best effort service (BE); similar to non-real-time Polling 
Service where the service is not ensured for bandwidth or 
delay.  Bandwidth is granted only if there is any left over 
from other classes. SS uses contention and unicast request 
opportunities to send bandwidth request. The number of 
collisions, jitters etc depends on the number of SS in the cell 
area and the length of the contention area. The disadvantages 
of BE and nrtPS class of service is that a collision occurs 
whenever two or more stations accesses the medium in the 
same contention slot to send bandwidth request. To ensure 
minimum lost packets, that is, reduce collisions, collision 
avoidance scheduling schemes maybe used.  Both BS and 
nrtPS UL connections request bandwidth by either 
responding to broadcast polls from BS or by piggybacking 
bandwidth requests on an outgoing PDU. 

A number of functions are required to adequately support 
QoS for these service classes. Among these are a connection 
establishment where a connection admission control (CAC) 
is employed and packet scheduling for traffic prioritization.  
CAC algorithms are used to control packet entry during a 
connection establishment of new connections and reserve 
resources i.e. bandwidth and buffering.   Packet scheduling is 
used to allocate resources during packet transfer.  Buffering 
may also be required to ensure that packets without strict 
priority can be buffered, and provided for a means to discard 
packets whose QoS requirement cannot be guaranteed. 
 
3.0 Related work 

Among the scheduling schemes proposed in the literature 
are hierarchical and channel aware schemes.  In hierarchical 
schemes, a two-layer approach is implemented [7]. With this 
approach, Deficit Fair Priority Queuing (DFPQ) is used to 
simultaneously schedule both UL and DL traffic in the first 
layer.   At the lower level, a service class based priority is 
implemented so that as expected rtPS>nrtPS >BE.  UGS is 
assigned fixed bandwidth allocation and thus taking 
precedence over all other service classes.  To meet the strict 
delay requirements for rtPS, a variation of [7] is proposed in 
[8] where the DFPQ algorithm is modified to Pre-emptive 
DFPQ so as to give more bandwidth to rtPS flow.  

Channel aware schedulers are designed to contend for the 
unpredictable wireless environment. The approach adopted 
for most of the proposed channel aware schedulers is to 
allocate more resources to SSs with better channel conditions 
at the expenses of SSs with poor channel conditions.  In  
cases where the channel state conditions for such SSs falls 
below certain predetermined levels, no scheduling is done 
altogether. The reasoning is that for such channels, scheduled 
packets sent to or from the SS would be dropped anyway.  A 
compensation scheme may also be introduced, so that SSs 
that had missed resource allocation will be compensated at a 
future time when their channel conditions improve [4], [8], 
[5].  In this case, channel compensation is used to swap 
channels between a flow that perceives a bad channel and a 
backlogged flow that is subject to a good channel.  
Additional channel access maybe granted to channels that 

were are bypassed once their channels quality becomes 
better.   

Channel aware schedulers include Wireless Deficit 
Round Robin (WDRR) which is a modification of Deficit 
Round Robin (DRR) [5].  WDRR consists of an error free 
service model to provide service to error free channel, a 
leading and lag model that determines which sessions are 
leading, lagging or in sync, and a compensation model that 
compensate lagging session from leading sessions for 
additional services received when the lagging sessions had 
poor channels. All sessions in WDRR are examined serially 
and then allocated their quantum based on the examined 
channel state. Uniformly-Fair DRR (UF-DRR) [8] improves 
on WDRR. In UF-DRR the quantum of all leading sessions is 
summed up and distributed among all clean lagging sessions 
in proportion to their lag values. This way, the authors 
contend, each leading session gets an equal opportunity to 
relinquish its quantum and each lagging session gets equal 
opportunity to gain additional resources resulting in better 
short-term fairness.  

In [4] proposes a channel aware scheduler specific to 
WiMAX using Worst-Case Fair Weighted Fair Queuing + 
(WF2Q+) algorithm enhanced with an error compensation 
technique. WF2Q+ provides good QoS guarantees and 
fairness to all service class flows, but at the expense of higher 
implementation complexity.  This however, is not an issue; 
while we expect that such channel aware schedulers will 
provide delay and throughput bounds as well as fairness, they 
also introduce implementation complexity.  The scheduler 
have to search serially for clean sessions from among N such 
sessions, and hence their implementation complexity will 
increase beyond O(N)  [4].  

!
4.0 Proposed QoS Architecture  
Fig. 2 shows the proposed reference channel aware DFPQ.  
The network model discussed consists of a cell-structured 
wireless network with the BS in every cell responsible for 
both the DL and UL communications.  The wireless links 
between the SSs and the BS are subject to bursty errors but 
they are assumed to be independent.  Therefore a flow for a 
wireless link channel can be in an error prone state-- in which 
a high proportion of transmitted packets are corrupted, and 
no transmission is possible, or in an error free state-- in 
which a high proportion transmitted packets will be received 
without being corrupted.  

Our solution approach is composed of a (1) CAC 
admission control and packet classifier.  This is used to limit 
the number of flows admitted into the network so that 
overflow and starvation for some services are preserved. (2) 
A hierarchical packet scheduler that is used to schedule flows 
based on directional differentiation (i.e. DL or UL traffic) 
and service class differentiation. (3) A compensation block 
that is able to sense the channel and aid in per flow 
compensation, and (4) buffering used in order to control 
buffer size and drop stale packets.  

 
4.1 Admission control and Packet Classifier 
We use an admission control mechanism to determine 

whether to admit new connections.  Flows belonging to UGS 
and ertPS are not subject to scheduling since they receive a 
constant reserved bandwidth.  The packet classifier will sort 
out the packets received at the BS and buffered into one of 
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the per class queues according to class of service i.e. rtPS, 
nrtPS or BE. 

Similar to [3], we shall use the minimum reserved traffic 
rate (rmin) for admission control and maximum sustained 
traffic rate (rmax) for scheduling.  We use rmin  to estimate the 
available bandwidth. For rtPS, both  rmin and rmax are 
specified, while nrtPS service only rmin is specified.  For BE 
service rmin and rmax  are not specified. In this case since   rmin 

= rmax =0, then they can be accepted by the admission control, 
however, their QoS will not be guaranteed. 
 

 
 

All the DSA requests from the SSs to the BS are summed 
up and compared to the estimated available bandwidth 
(BWT).  In this case, for the ith class of services queue with ji 
simultaneous connections, the available bandwidth BWt is 
given by; 
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BWt ! 0         (2) 

 
Where rmin(i,j) is the minimum reserved traffic rate for the 

jth connection in the ith class of service. BWT is the total 
wireless link capacity. Service flow with rmin equal to zero i.e. 
BE traffic, can be admitted, but since they have low priority 
their QoS will not be guaranteed.  Eq. (2) in this case will 
serve as the admission criteria. 

For each connection, the admission control timestamps 
each arriving packet according to its arrival time. This 
information will also be exploited by the buffer manager to 
define when the time-out expires.  In such a case, the packet 
should be discarded.  

 
4.2 Packet scheduling 
We focus on the hierarchical scheduling architecture 

proposed in [7], where a two-layer approach is implemented.  
We propose to use service class based and directional based 
priority using deficit fair priority queuing (DFPQ).  DFPQ 
assigns a higher priority to DL to distribute total available 
bandwidth among DL and UL services.   This is done in 
order to ensure that the BS is able to relays packets as soon 

as they are received thereby avoiding buffer overflow in the 
BS that would otherwise arise at the BS. DFPQ will then 
schedule service class flows in the active list in a strict 
priority rtPS(DL) > rtPS(UL) > nrtPS(DL) > nrtPS(UL) > 
BE(DL) > BE(UL). In each round highest priority queues are 
serviced first. In the second layer, round robin is used for BE, 
earliest deadline first (EDF) for rtPS and weight fair queue 
(WFQ) for nrtPS. 

 
a. DFPQ  
In DFPQ [7] the scheduler updates the active lists of 

queues, and then the variable DeficitCounter is derived from 
a value quantum.  The value of the quantum is given such 
that   

9:;3<:1427 %()1;=425 67
*
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Where Ji is the total connections for the ith service class flow. 
If rmax is not specified (e.g. rmax = 0 in DSA message), rmax 
will be set to rmin.  since rmax  and rmin are not defined for BE 
we vary the value for rmax arbitrarily.  The scheduler will visit 
each non-empty queue in the active list, starting with the 
queue with the highest priority and determine the value of 
quantum. The priority of the each service class is defined 
bellow: 
 
DL_rtPS UL_rtPS DL_nrtPS UL_nrtPS DL_BE UL_BE 
1 2 3 4 5 6 
 

The DeficitCounter is initially set to the value quantum 
for each active queue, and then decremented by the amount 
of packets assigned each time a queue is visited.  The process 
is repeated until the DeficitCounter for each queue is equal or 
less than zero, or there is no additional bandwidth request for 
that queue. The scheduler will then move to the next round.  
If there is no available slots on the frame i.e. BWt =0, the 
MAP message will be sent, and the scheduling for the current 
frame will end. 

 
b. Channel Aware DFPQ 
Factors such as transmission impairments due to bad 

channel or MAC delays greatly affect the performance of 
deadline-based schedulers.  If an SS has poor channel quality 
(Fig. 3), assigning it slots will result in wastage of resources. 
Therefore this study will modify the DFPQ model by 
introducing a compensation block, as shown in fig. 2. 

The compensation block makes the BS aware of the 
channel state.  The BS gathers channel to interference and 
noise ratio (CINR) information whenever the SS requests 
bandwidth allocation for either rtPS, nrtPS, and BE traffic.  
The signal-to-noise ratio of the monitored channel  compared 
to allowed signal-to-noise ratio and receiver sensitivity for 
each modulation and coding scheme defined by the standard 
for a given bit error rate (BER).   The following section 
describes the operation of the compensation block.  

The burst profile (modulation and coding rate 
adaptations) for each SS will be based on the channel-quality 
measurement i.e. received signal strength indicator (RSSI) 
and the carrier to interference and noise ratio (CINR) that the 
SS is required to provide to the BS on request.  Each SS will 
monitor its own channel. It will then use this information to 
predict future channel state and send this information to the 
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The next service class is composed of BE traffic.  At 

this point, both ss1 and ss2 session channels are good.  Both 
packets will be scheduled and the DeficitCounter for BE 
traffic service class will be reduced to zero i.e. 
Quantum(BE)-300-200 =0.  Remain frames slots will be 
BWt=1400-500=900, therefore the scheduler will move to 
the next queue which is rtPS.   

At this point, the channel for ss1 is good, but it’s 
lagging with "(ss1) =-400.  In addition, there exists another 
flow ss2 which is leading with the highest credit "(ss2) 
=500.  Since there is a another good session flow with a 
lagging credit, the scheduler will bypass flows for ss2 by 
scheduling two ss1 packets i.e. ss1(400) and ss1(500).   The 
compensation block will update and mark ss1 as leading (i.e 
"(ss1)= -400 +500 =100) while ss2 will be in sync i.e 
"(ss2) =+500-500 =0 

Remaining frame slots BWt =0, therefore there are no 
more slots to fill and we send the frame.  The scheduler will 
then move to a new round with to start scheduling a fresh 
frame.  It will move to the highest priority service class 
queue where the process will be repeated again.  

 
5.0 Simulation Strategy and Future Work 
We use TDD modulation where the frame is divided 

into DL and UL sub frame by a guard interval. The ratio of 
DL to UL can be varied and is typically set from 3:1 to 1:1 
to support different traffic profiles. The choice for TDD is 
because it allows flexible sharing of bandwidth between 
uplink and downlink, and does not require paired spectrum. 
It also has a simpler transceiver design [2], [10].  However, 

the most important aspect in this case is that it has a 
reciprocal channel that can be exploited for spatial 
processing. The UL sub-frame has a channel-quality 
indicator channel (CQI) used by the SS to feed back 
channel-quality information that can be used by the base 
station (BS) scheduler to predict the channel quality. 

Therefore this study will use a TDD channel bandwidth 
set at 5 MHz with a FFT size of 1024. Partially Used Sub-
Carrier (PUSC) is used, in which the useful data subcarriers 
are 720 [11], 540 of which are allocated   for DL and the 
rest are assigned to UL traffic. The frame length as 
suggested by [4] is fixed at 5ms. We use the International 
Telecommunication Union Telecommunication (ITU-T) 
recommendation Y.1541 for rtPS, nrtPS and BE traffic [12] 
that are mapped over Classes 1, 4 and 5 with maximum 
latency 400ms, 1s, and no limit respectively. 

  The classification and mapping are shown in table I. 
Total bandwidth BWT = 20 Mpbs, and frame duration at 
5ms so that the frame bandwidth will be 100Kbits.  

For the channel model, we will use the second 
generation system suggested by the WiMAX working 
group [2] for scalable multi-cell architecture under NLOS 
conditions.   The wireless channel is characterized by path 
loss resulting from shadowing, multipath delay, fading, 
Doppler spread, and co-channel interference etc.  The 
median path loss (PL in dB) at a distance d0 is given by, 

 
PL = A + 10#log10 (d/ d0) + s  for d > d0, 
 

where A = 20 log10 (4$ d0 /%) 

0

Deficit_Counter[rtPS]= Quantum[BE] -200-300= -0

rtPS Queue[Quantum]=1000

Deficit_Counter[rtPS]=Quantum[rtPS] -500-600=-100rtPS Queue(1,j)[Quantum]=1000

Deficit_Counter[BE]=0BE Queue[Quantum]=500

0

Deficit_Counter[rtPS]=-300

BE Queue[Quantum]=500

FRAME SIZE, BWT= 2500OutputWaiting Queue

1st. Round
FRAME 1

2nd round
FRAME 1

BWt= 1400

BWt= 0

0

Deficit_Counter[BE]= -200+Quantum[BE] -500=-
200

rtPS Queue[Quantum]=1000

Deficit_Counter[rtPS]=-100 +Quantum[rtPS] -400-500= 0
rtPS Queue[Quantum]=1000

Deficit_Counter[BE]=0BE Queue[Quantum]=500

0

BE Queue[Quantum]=500

BWT= 2500

BWt= 2000

0

SS2(3,1)[500] SS2(2,1)[600] SS1(1,1)400]SS1(5,1)[500] SS2(4,1)[500]

ss1(1,2)[200]ss1(3,2)[500] Ss2(2,2)[300]

ss1(1,2)[200]ss2(4,2)[400] ss2(2,2)[300]

SS2(2,1)[600]SS2(3,1)[500]

SS1(1,1)[400]

SS1(1,1)[400] SS1(1,1)[400]

SS2(4,1)[500]

SS1(5,1)[500]

1st. Round
FRAME 2

ss(3,2)[500]

ss1(3,2)[500]

ss(3,2)[500]

ss(4,2)[400]

ss(4,2)[400]

FIRST ROUND
SS1 channel is banned
SS2 channel is good
No other SS has lower lag 
value
SS2 will use SS1 bandwidth

BW-REG for other rtPS 
packets not ready
Scheduler moves to next 
queue

SS1 and SS2 channel good, 
schedule their BE flows 

Deficit_Counter[rtPS]= 0

ss1(1,2)[200]ss2(2,2)[300]

3rd  round
FRAME 1 SECOND  ROUND

SS2  channel is good
SS1 channel is good and has 
highest credit of lag value
SS1 will use SS2 bandwidth

FRAME 1 is full send MAP 
message

Active queue

Active queue

Active queue

Active queue

SS1(5,1)[500] SS2(4,1)[500]

BWt= 900

SS2(4,1)[500]

SS1(5,1)[500] SS2(4,1)[500]

 
Fig. 3: Illustration of Channel Aware DFPQ 
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%being the wavelength in m 
# !is the path-loss exponent and given by # = (a – 
bhb+ c / hb) and depends on the given terrain type 
and the BS antenna height hb 
hb is the height of the base station in m for hb 
between 10 m and 80 m 
 d0 = 100m and a, b, c are constants dependent on 
the terrain category given in [4] 
d is the distance between SS and BS antennas in 
meters, and 
 s is a log normally distributed factor that accounts 
for the shadow fading with a standard deviation 
value between 8.2 and 10.6 dB.  

  
QoS 
Class 

Applications 
(Examples) 

Node 
Mechanisms 

Network 
Techniques Characteristics 

0 

Real-time, sensitive 
to jitter, interactive 
(VoIP) 

Separate Queue 
Preferential 
Servicing, 
Traffic 
Grooming 

Constrained 
Routing/Distance 

mean delay <= 100 
ms, delay variation 
<= 50 ms, loss ratio 
<= 10-3 

1 

Real-time, sensitive 
to jitter, interactive 
(VoIP)   

Less Constrained 
Routing/ 
Distance 

 mean delay <= 400 
ms, delay variation 
<= 50 ms, loss ratio 
<= 10-3 

2 

Transaction data, 
Interactive -
Signaling  

Separate 
Queue, Drop 
Priority 

Constrained 
Routing/Distance 

mean delay <= 400 
ms, delay variation 
<= 50 ms, loss ratio 
<= 10-3 

3 
Transaction Data, 
Interactive    

Less Constrained 
Routing/ 
Distance 

mean delay <= 400 
ms, delay variation 
unspecified, loss 
ratio <= 10-3 

4 

Low Loss (Bulk 
Data, Video 
Streaming) 

Long Queue, 
Drop Priority Any Route/Path 

mean delay <= 1 sec, 
delay variation 
unspecified, loss 
ratio <= 10-3 

5 
Traditional best 
effort applications  

Separate Queue 
(Lowest 
Priority)  Any Route/Path 

mean delay 
unspecified, delay 
variation unspecified, 
loss ratio unspecified 

Table II: Y.1541 Guidance for IP QoS Classes and Mapping 
 
The parameter figures chosen will depend on terrain, 

tree density, antenna height etc.  The path loss value is 
calculated by the SS.  The SS will then use this calculated 
value to estimate the channel quality and pass the same 
information to the BS using CQI.    This  simulation uses 
BPSK with ½ rate coding and fixes the receiver sensitivity 
RSS at -83.22dB as suggested in [1].  With the RSS at -
83.22 dB,  a BER lower than 10-6 can be achieved when 
using BPSK with half rate coding. 
We compare the effect of a non-ideal channel i.e. the 

scheduler is unaware of channel conditions for each active 
flow.  Since the scheduler is unaware of channel errors, it 
will schedule packets to active flows in poor channel 
conditions, thus wasting variable resources.  We then 
introduce a channel aware scheduler which is able to 
schedule packets by making reference to channel quality. 

 
 
6. Conclusion 

This paper, proposes a channel aware DFPQ for QoS 
architecture. This study compares the effect of a non-ideal 
channel i.e. when the scheduler is unaware of channel 
conditions for each active flow to channel aware DFPQ  i.e. 
one that schedules  packets by making reference to channel 
quality. The proposed solution involves the addition of a 
compensation block and a buffer mechanism to support the 
QoS class of services specified by the IEEE 802.16 
standard. The modified scheduler ensures that bandwidth 
resources are conserved by only allocating resources to 
good channels. The purpose is to provide directional based 

and service class based QoS guarantees even in the 
presence poor channel conditions. 

This study has taken the practical step of proposing an 
efficient QoS architecture for IEEE MAC protocol.  The 
practical issues such as performance and stability associated 
with the QoS architecture will further be investigated 
through simulations.  In addition, even though the IEEE 
802.16 standard specifies unsolicited grants for both UGS 
and ErtPS, scheduling these service classes in poor channel 
environments are a waste of resources.  This study will also 
improve on the scheduler by modifying proposed 
architecture so that all service class flows can be scheduled.   
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