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ABSTRACT 
 
This paper shows how cognitive radio (CR) can help to 
optimize system power consumption of multiple input 
multiple output (MIMO) communication systems. This 
paper mathematically formulates the system power 
consumption minimization problem under a rate constraint 
for MIMO systems. Optimal and suboptimal algorithms are 
developed to solve the optimization problem numerically. 
The simulation results show that significant power savings 
(up to 75% for a 44×  MIMO system with Class A power 
amplifiers) can be achieved compared to conventional 
allocation schemes. The results also show that the presented 
suboptimal algorithms can achieve power savings 
comparable to the optimal algorithm with lower complexity. 
 
 

1. INTRODUCTION 
 
This paper shows how cognitive radio (CR) can be used to 
optimize system power consumption of multiple input 
multiple output (MIMO) wireless communication systems 
by dynamically reconfiguring the radio for the required 
Quality of Service (QoS) based on channel conditions and 
radio (component) capabilities and characteristics. 
 Recently, significant power reduction through radio 
reconfiguration based on channel conditions and QoS 
requirements has been reported for wireless 
communications, mostly for short range and sensor network 
applications [1]-[6]. For MIMO systems, various power and 
bit loading algorithms have been proposed to solve the two 
classic problems [7], [8], rate maximization (maximizing 
rate under a power constraint), and power minimization 
(minimizing power under a rate constraint). However, most 
investigations focused on the received or radiated power 
[7]-[10]. The system power consumption of MIMO systems, 
on the other hand, has only received limited attention. In [2], 
Alamouti based MIMO scheme and modulation are jointly 
adapted to minimize system energy consumption per bit 

under throughput and delay constraints in sensor networks. 
In [5], the number of transmit antennas, receive antennas, 
spatial streams, and MIMO detection scheme are adapted 
with other radio parameters, to minimize energy per 
successfully received bit under packet error rate (PER) and 
transmission bit rate constraints. However, the fundamental 
relationship between rate and system power consumption 
for MIMO systems has not been fully investigated. 
 With the advance of cognitive radio (CR) technologies, 
some capabilities of a CR have been adopted to optimize 
system power consumption further. A CR [11], [12] is an 
intelligent wireless communication system which is able to 
determine the most favorable operating parameters for 
application QoS requirements (cognition) based on the 
knowledge of the radio environment and its capability 
(awareness) and reconfigure the radio accordingly 
(reconfigurability). By doing this, radio resources can be 
used more efficiently. A CR can not only learn the channel 
conditions as in conventional radios, but is also aware of the 
radio (component) capabilities and characteristics. The 
knowledge of radio capabilities and characteristics as well 
as channel conditions helps system power consumption 
optimization. In [4], in addition to modulation adaptation, 
the best available channel is dynamically detected and 
chosen for transmission to minimize power consumption 
under a bit error rate (BER) constraint in a CR sensor 
network setting. A power optimization framework using CR 
for given QoS requirements based on channel conditions 
and radio capabilities and characteristics for single channel 
communication systems is demonstrated in [6]. In addition, 
this framework has been applied to multichannel 
communication systems [13]. A system power consumption 
minimization problem under a rate constraint is formulated 
and numerical algorithms are proposed in [13] for 
multichannel systems. 
 This paper extends our previous work on multichannel 
systems in [13] to a specific multichannel system, the 
MIMO system. This work leverages information theory and 
cognitive radio technologies (e.g., learning capability in 
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obtaining radio capabilities and characteristics) for the 
development of a theoretical framework and algorithms for 
system power consumption minimization of MIMO systems. 
To be specific, instead of focusing on specific MIMO 
techniques, such as those investigated in [2], [5], the system 
power consumption minimization problem with rate 
constraint for general MIMO systems is mathematically 
formulated and numerical solutions are developed. This 
paper focuses on medium and long range applications where 
the power amplifier (PA) usually dominates the system 
power consumption. Other power consuming components 
can be integrated into the analysis as future work. 
 This paper is organized as follows. Section 2 discusses 
the MIMO system model. Section 3 formulates the system 
power consumption minimization problem with a rate 
constraint for MIMO systems. Section 4 discusses the 
optimal and suboptimal algorithms to solve this problem. 
Section 5 evaluates the power reduction of the proposed 
schemes by simulation. Section 6 concludes the paper. 
 

2. MIMO SYSTEM MODEL 
 
We consider a MIMO system with additive white Gaussian 
noise (AWGN) and flat Rayleigh fading. A linear model for 
a MIMO system with t  transmit antennas and r  receive 
antennas can be expressed as [14] 

 nHxy += , (1) 

where 1×∈ rCy  is the received signal vector, 1×∈ tCx  the 

transmitted signal vector, trC ×∈H  the channel gain 
matrix, and 1×∈ rCn  the zero mean complex Gaussian 
noise vector with independent and equal variance real and 
imaginary parts, { } rE Inn 2

0σ=+ . H  is a complex 
Gaussian random matrix with independent and identically 
distributed (i.i.d.) entries, each entry having independent 
real and imaginary parts with zero mean and variance 1/2. 
In other words, this models an uncorrelated Rayleigh fading 
channel. H  is assumed to be independent of x  and n . 
 If the channel state information (CSI) is known at the 
transmitter and the receiver, the MIMO channel can be 
decomposed into several parallel single input single output 
(SISO) channels using singular value decomposition (SVD) 
[14]: += UDVH , where rrC ×∈U  and ttC ×∈V  are 
unitary, and trR ×∈D  contains the non-negative singular 
values on its diagonal with iλ  the i-th singular value of 

H . At the transmitter, let 1×∈ tCs  be the modulation 
symbol vector, then the transmitted signal vector is Vsx = . 
At the receiver, the received signal vector y  is pre-

multiplied by +U . We then have 
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where the subscript i  refers to the i-th element of the vector. 
It is clear that the MIMO channel H  has been decomposed 
into m  parallel virtual Gaussian channels with the i-th 

virtual channel having channel gain iλ .  

 Although only m  elements of the modulation symbol 
vector s  can deliver information from the transmitter to the 
receiver, all the transmit antennas are used in the 
transmission according to the following relationship: 
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 The average radiated power from branch n  can then be 
expressed as 
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where { }2
ii sEP =  is the allocated power on virtual 

channel i . 
 This paper focuses on medium and long range 
applications where the PA usually dominates the system 
power consumption. In this case, the power consumption of 
each transmit branch can be approximated as 

 
n

n
nPAn

PPP
η

~

,

^^
== , (6) 

where nPAP ,

^
 is the power consumption of PA in branch n  

and nη  is the average PA efficiency in branch n  and an 
engineering approximation model is adopted, 
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. However, in 
general, the average efficiency depends on the distribution 
of the output power of the underlying signal [15]. 
 If we limit our analysis to linear PAs, such as, Class A 
and Class B PAs, similar to [13], the average PA power 
consumption for Class A and Class B PAs can be expressed 
as 
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where  
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From (7), the power consumption of a Class A PA is 
constant over its entire range of output power level. 
 Hence, for systems using Class A or Class B PAs, the 
power consumption of branch n  becomes 
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If we further assume the branches are identical, we have 
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We use (10) in the following system power consumption 
analysis. 
 

3. SYSTEM POWER CONSUMPTION 
MINIMIZATION 

 
Similar to [13], the system power consumption 
minimization problem for MIMO systems can be formulated 
as 
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where ib  is the achieved rate on virtual channel i . For an 

AWGN channel, ib  is given by [7] 

 ( ) ( )iiiii gPgPb ⋅+=⋅+= 1ln
2ln

11log2 , (13) 

where 2
0σλiig =  is the channel signal to noise ratio 

(SNR). 
 As in [13], the solution to the constrained optimization 
problem defined in (11) and (12) generally needs to be 
obtained numerically except for the following special case, 
MIMO systems with Class A PAs. 
 
3.1. Special Case: MIMO Systems with Class A PAs 
 
For MIMO systems with Class A PAs, the constrained 
optimization problem in (11) and (12) is reduced to 
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 Observe that for MIMO systems with Class A PAs the 
system power consumption only depends on the number of 
active antennas and different power allocation only affects 
the total radiated power and the total achieved rate under the 
same number of active antennas. An obvious solution to this 
constrained optimization problem is to minimize the 
required number of active transmit antennas. 
 

4. NUMERICAL ALGORITHMS 
 
This section discusses the optimal and the suboptimal 
numerical solutions to the constrained system power 
minimization problem defined in Section 3. It is assumed 
that any branch of the MIMO system can be deactivated as 
needed. Deactivating a branch results in a change in H , i.e., 
the column of H  corresponding to the inactive transmit 
branch is removed. In addition, for the same number of 
active transmit branches, different branch combination 
results in different H . Changes in H  may result in 
different SVD decomposition. 
 Conventionally, the water filling algorithm is used to 
minimize the total radiated power of a MIMO system for a 
given target rate when the CSI is known at both transmitter 
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and receiver [7, 8]. It allocates power to the subchannels 
proportional to the inverse of the channel SNR as if water is 
poured into a container whose bottom is in the shape of the 
inverse of the channel SNR [7]. However, due to the 
nonlinear relationship between the radiated power and the 
power consumption (see (7)), the water-filling algorithm 
does not guarantee to generate the power allocation result 
that minimizes system power consumption. Therefore, 
several algorithms are proposed in this section to solve the 
constrained minimization problem. The water-filling 
algorithm is used as the comparison baseline.  
 Due to the similarity between the problem defined for 
MIMO systems and that for general multichannel systems 
[13], the algorithms proposed in [13] are adapted to solve 
the problem in this paper by integrating (10) in the 
calculation of power consumption.  
 
4.1. Optimal Algorithm – Exhaustive Search 
 
As in [13], the exhaustive search algorithm can find the 
optimal solution if the search step size, stepP , is sufficiently 

small by testing all possible power allocation combinations 
for all branch combinations.  
 The total number of power allocation combinations is 
[13] 

 ( )⎡ ⎤( ) 12minmax −+−= t
stepes PPPN , (16) 

where [ ]maxmin

~
, PPP ∈ , and ⎡ ⎤⋅  is the ceiling function. 

The execution time and memory footprint of this algorithm 
can be prohibitive for large power range, a small step size, 
or a large number of branches. 
 
4.2. Suboptimal algorithm 1 – Branch Adaptation 
 
In order to reduce the computational burden and the 
memory requirement, as in [13], a suboptimal algorithm, the 
branch adaptation algorithm, uses the water-filling 
algorithm in power allocation for each branch combination. 
This algorithm differs from the conventional water-filling 
algorithm in a way that the branches in the conventional 
water-filling algorithm are fixed while the branches in this 
algorithm are adapted to minimize power consumption. 
 The total number of power allocation combinations is 
[13] 
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The branch adaptation algorithm results in much lower 
computational complexity and smaller memory requirement 
as compared to the exhaustive search algorithm. 

 
4.3. Suboptimal algorithm 2 – Branch Minimization 
 
The branch adaptation algorithm can be further simplified 
as in [13] based on the observation in the Class A PA case, 
i.e., the more transmit branches the MIMO system uses, the 
more power the system consumes. Hence, the suboptimal 
algorithm 2 finds the branch combination with the minimum 
number of active branches that satisfies the rate requirement. 
We call this algorithm branch minimization. The branch 
minimization algorithm uses the water-filling algorithm to 
allocate power for each branch combination. 
 In the worse case, the total number of power allocation 
combinations for branch minimization algorithm is the same 
as that for the branch adaptation algorithm [13].  
 

5. PERFORMANCE EVALUATION AND 
SIMULATION RESULTS 

 
In this section, the performance of the optimal and 
suboptimal algorithms discussed above is evaluated using 
simulation to understand the tradeoff between the power 
saving performance and the computational complexity. 
 The simulation assumes an uncorrelated flat Rayleigh 
fading channel with AWGN. The instantaneous channel 
gain is assumed to be known to the transmitter and the 
receiver. The number of branches at the transmitter and the 
receiver is 4, 4== rt . The maximal radiated power on 
each branch is 1 Watt, 1max =P W. The average channel 
SNR is set to 10 dB in order to achieve the desired rate.  
 The system power consumption reduction is defined as 

 %100⋅
−

=
con

cogcon
saving P

PP
P , (18) 

where conP  is the system power consumption with a 
conventional power allocation scheme (i.e., the water-filling 
algorithm), and cogP  the system power consumption with 

the proposed power allocation schemes.  
 
5.1. MIMO Systems with Class A PAs 
 
The power saving for MIMO systems with Class A PAs and 
corresponding branch configuration are shown in Figures 1 
and 2, respectively.  
 From Figure 1, up to 75% of power saving can be 
achieved depending on the rate requirements. The power 
saving decreases as the target rate increases. The 
conventional approach always uses all transmit branches no 
matter what the target rate is. Hence, the system power 
consumption is the same over all target rates. On the other 
hand, the proposed optimal and suboptimal algorithms tend 
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to use as few transmit branches as possible. As we 
mentioned in Section III.A, for Class A PA case, the more 
active transmit branches the MIMO system uses, the more 
power the system consumes. At lower target rate, the 
proposed algorithms use fewer transmit branches. As the 
target rate increases, more transmit branches are activated 
(see Figure 2). In other words, the power consumption of 
the proposed algorithms increases as the target rate. 
Therefore, the power saving decreases as the target rate 
increases. 

Figure 1. Power saving for systems with Class A PAs. 

Figure 2. Number of branches for systems with Class A PAs. 
 
 From Figure 2 the optimal number of branches 
increases gradually as the target rate increases in all 
proposed algorithms. This result is consistent with earlier 
analysis. Note that the number of active antennas is 
averaged over many runs of simulation and rounded to the 
closest integer. 
 For MIMO systems with Class A PAs, the number of 
antennas is the same for the optimal and suboptimal 
algorithms and the power saving results are almost identical 
for the optimal and suboptimal algorithms. This suggests the 

branch minimization algorithm provides the best tradeoff 
between power saving and algorithm complexity. 
 
5.2. MIMO Systems with Class B PAs 
 
The power saving for systems with Class B PAs and 
corresponding branch configuration are shown in Figures 3 
and 4, respectively.  

Figure 3. Power saving for systems with Class B PAs. 

Figure 4. Number of branches for systems with Class B PAs. 
 
 As in Figure 3 the power saving can be up to 30% 
depending on the rate requirements. This power saving is 
lower than the Class A case. Because Class B PAs achieve 
higher efficiency than Class A PAs at all output power 
levels, the power consumption penalty for using more 
branches in water-filling algorithm is less severe in Class B 
case than the Class A case. Similar trend in power saving is 
observed in the Class B PA case as in the Class A PA case. 
The performance gap between the branch adaptation 
algorithm and the exhaustive search algorithm is larger than 
that in the Class A PA case. This is because in the Class B 
PA case, it is possible that the system power consumption 
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using more transmit branches can be lower than that using 
fewer branches. For example, at target rate 5 b/s/Hz, in 
Figure 4, the exhaustive search algorithm and the branch 
adaptation algorithm use 2 branches while the branch 
minimization algorithm uses 1 branch. The exhaustive 
search algorithm achieves higher power saving.  
 As for branch configuration in Figure 4, similar to the 
Class A PA case, the optimal number of active branches 
increases as the target rate increases.  
 For MIMO systems with Class B PAs, the number of 
antennas and the power saving results are almost identical 
for the optimal algorithm and the branch adaptation 
algorithm. This suggests the branch adaptation algorithms 
provides the best tradeoff between power saving and 
algorithm complexity. 
 

6. CONCLUSION 
 
This paper formulates analytically the system power 
consumption minimization problem under a rate constraint 
for MIMO communication systems and derives optimal and 
suboptimal algorithms to solve this constrained 
minimization problem numerically. The power saving 
achieved by the proposed algorithms in comparison with the 
conventional power allocation scheme is evaluated by 
simulation for 44×  MIMO systems with Class A PAs and 
with Class B PAs. The simulation results show that 
significant system power saving (up to 75% for systems 
with Class A PAs and 30% for systems with Class B PAs) 
can be achieved using the proposed schemes for MIMO 
systems. 
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