
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

USING INTEL® ARCHITECTURE FOR IMPLEMENTING SDR IN WIRELESS

BASESTATIONS
John Mangan (Intel, Shannon, Ireland; john.mangan@intel.com)
Rajesh Gadiyar (Intel, Portland, OR; rajesh.gadiyar@intel.com)

Kannan Babu Ramia (Intel, Chandler, AZ; kannan.babu.ramia@intel.com)
Niall Power (Intel, Shannon, Ireland; niall.power@intel.com)

Terence Nally (Intel, Shannon, Ireland; terence.nally@intel.com)

ABSTRACT

The requirements for Wireless Basestations are rapidly

evolving as more and more devices are becoming connected

and Mobile Broadband has become a reality. Enabled by

standards such as LTE and WiMax and technologies like

OFDM and MIMO the throughput and capacity needs are

increasing exponentially. At the same time Wireless

Basestations are required to simultaneously support multiple

radio standards and meet many different deployment and use

case scenarios. It is becoming increasingly difficult for

current solutions based on multiple application specific

architectures to meet these demands while maintaining

software and engineering investment

 Software Defined Radio (SDR) has become a key

element in introducing flexibility in recent solutions,

however many obstacles still remain towards a single

architecture and a 100% reuse nirvana.

 This paper describes some of the Intel® Architecture

developments and how it is becoming a practical solution

towards running all Wireless Basestation workloads on the

same platform. In particular we will focus on the elements

that have evolved in the architecture that now allows SDR

workloads to match and in many cases exceed the

performance of current solutions. We provide proof points

for some of the latest LTE signal processing workloads and

also show how the development cost can be significantly

reduced and maintained across multiple platforms and

follow-on silicon generations.

1. INTRODUCTION

The pressures on modern Wireless networks to carry more

and more data at a more competitive price point is

increasing as subscribers demand a mobile internet

experience similar to what is available from their home

network. The telecommunication industry is challenged to

respond to the explosive increase of data carried on modern

wireless networks while dealing with a steady reduction in

revenue earned per data bit.

 The growth of these networks and evolution to higher

capacity does not have a single path, with service providers

moving from one generation to another or skipping

generation’s altogether, sometimes deploying overlay

networks or planning on consolidation on a single network.

Software Defined Radio has a critical part to play in offering

flexible basestation deployment and the ability to adapt to

the dynamic networks requirements in the future.

 Over the years Telecommunication Equipment

Manufactures (TEMs) have turned to multiple different

silicon architectures to meet the specific workload demands

of Basestations. For example we could have Intel®

Architecture handling application and control workloads, a

Network Processor running packet processing and signal

processing on a number of DSPs. Though providing high

performance to isolated workloads, this approach increases

the complexity and overall cost of both the basestation

hardware and software and limits portability and reuse

between generations. How do you best design a basestation

supporting more than one service provider’s 2G, WCDMA

and LTE services?

 In 1991 Joseph Mitola coined the term “Software

Defined Radio”, describing it as “A software radio is a

radio whose channel modulation waveforms are defined in

software…” he goes on to define the extraction, down-

conversion and demodulation of the channel waveform is

done “using software on a general purpose processor”[1].

The concept of moving all digital workload to a general

processor provides the greatest flexibility for SDR design.

 In this paper we will discuss the evolutionary Signal

Processing capabilities of Intel® Architecture and how the

architecture which has a strong history in Application and

Control (Packet processing capabilities are discussed

elsewhere) workloads has become a real option for

executing signal processing workloads. There are many

advantages to consolidating the workloads on a single

standard architecture such as the support of a large

ecosystem, reduction in design complexity, rapid time to

market and software reuse. These advantages of designing a

basestation on a single scalable architecture provide the

platform for fully functional Software Define Radio design.

The latest Intel® Microarchitecture (Nehalem) allows the

design process to be significantly streamlined and cost

optimized.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

2. INTEL® MICROARCHITECTURE (NEHALEM)

The latest generations of Intel® Architecture processors are

produced on 45nm and 32nm process technologies and are

based on the Intel® Microarchitecture (Nehalem). This

architecture includes many features that suit high

performance and power efficient execution of signal

processing workloads. To help understand how this

architecture is effective a simplified block diagram is shown

in Figure 1.

 The front end fetches and decodes instruction streams

through the L1 cache and can provide a sustained throughput

of 4 decoded micro-operations (uops) per cycle. Up to 16

bytes of instructions can be fetched per cycle and the unit

can support decoding instruction streams for 2 hardware

threads in alternate cycles (known as Simultaneous

Multithreading – SMT). Multiple performance and power

enhancements are integrated such as branch prediction, loop

caching & streaming, op code fusion and stack pointer

tracking.

 The uop stream then enters the first stage of the Intel

Wide Dynamic Execution unit. This is an out-of-order

superscalar execution core that can issue up to 6 uops per

cycle and can have up to 128 uops in flight at any moment.

The reservation station schedules which uops are issued for

execution and an entry per uop in the reorder buffer of the

retirement unit ensures the processing of the operations and

architectural states are updated according to the specified

program order.

Of the six issued uops per cycle, 3 can be related to

computational operations and 3 to memory operations (up to

128-bits each). Please refer to Figure 2 for breakdown. For

signal processing workloads this means that if SIMD (single

instruction, multiple data) operations are used, the

architecture is capable of supporting in a single cycle up to

12 compute and 3 memory I/O operations. These operations

may be a combination of 4 x 32bit FP MULTIPY, 4 x 32 bit

FP ADD, an SIMD shuffle or integer ALU op, a load, an

address store and a data store.

 To support high instruction throughput the Intel®

Microarchitecture (Nehalem) contains a sophisticated

memory sub-system. Each core contains a first level

instruction cache (32KB 4way), a first level data cache

(32KB 8way), a second-level unified cache (256KB 8way)

and a last level cache of up to 8MB 16way that is shared

amongst all the processor cores. With 3 DDR3 memory

controllers the processor can provide a peak memory

bandwidth of 25.6 GB/s. This high throughput capability is

required to support the multi-gigabit rates for the processing

of the sample streams from modern Wireless multi-antennae

standards.

Figure 1 Intel Microarchitecture (Nehalem) simplified block diagram

F r o n t E n d

F e t c h a n d P r e d e c o d e

I n s t r u c t i o n Q u e u e

I n s t r u c t i o n D e c o d e

W i d e D y n a m i c E x e c u t i o n U n i t

R e n a m e / A l l o c a t e

R e s e r v e / S c h e d u l e

E x e c u t i o n U n i t s

R e o r d e r

R e t i r e

M e m o r y C a c h e

L 1 I n s t r u c t i o n

C a c h e

U n i f i e d L 2
C a c h e

L 1 D a t a
C a c h e

S h a r e d L a s t -
l e v e l C a c h e

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Figure 2 Execution Units

3. INTEL® ARCHITECTURE INSTRUCTION SET

CAPABILITY

This section looks at some of the details of the Intel®

Instruction Set Architecture (ISA) in relation to efficient

implementation of signal processing requirement for SDR.

Support for high throughput signal processing is based on

the SSE (Streaming SIMD Extensions) which are part of the

standard Intel® ISA [2][3]. Up to the current generation

(4.2) more than 300 new instructions have been added to the

ISA. SSE operations work from a set of 16 128-bit wide

XMMx registers. The main categories covered for optimized

parallel execution are:

 - Floating point (single and double precision)

 - Data Transfer

 - Packing and unpacking

 - Comparison and Logical

 - Shuffle & Streaming

 - Data Conversion

It should be noted that for many signal processing

algorithms the IA implementation in floating point is faster

and more accurate than the performance of a fixed point

implementation due to high FP capacity and avoidance of

range checking.

Some of the SSEn instructions applicable to signal

processing are shown in Table 1.

Sub Group Instructions Usability Description

Load and

Store

Floating

Point

(single/doubl

e) precision

MOVAPS,

MOVAPD,

MOVHPS,

MOVHPD,

MOVLPS,

MOVLPD

Data Movement instructions.

Load and store packed

single/double precision floating

point value from/to

memory/registers. They are

used extensively in FFT and

other single processing

algorithms

Arithmetic

Floating

Point

(single/doubl

e) precision

ADDPS/PD

SUBPS/PD

MULPS/PD

SQRTPS/PD,

ADDSUBPS,

ADDSUBPD

These Arithmetic instructions

are heavily used in signal

processing algorithm like FFT,

FIR etc.

Floating

Point Dot

Product

DPPS, DPPD Improved performance for

AOS(Array of structures) data

processing through support for

single and double precision dot

products. Usages can be found

in channel estimation

algorithms.

Floating

Point Round

ROUNDPS,

ROUNDSS,

ROUNDPD,

ROUNDSD

Efficiently rounds the scalar

and packed single and double-

precision operands to integers,

with enhanced support for

various language requirements.

Packed Test

and Set

PTEST Faster branching from SIMD

decisions to support

conditionally vectorized code.

Accelerated

searching and

pattern

recognition of

large data sets

POPCNT Calculates the number of bits

set to 1 in the given operand.

Often used for schedulers and

buffer/memory management

Thread

synchronizati

on

MONITOR,

MWAIT

Places Processor in an

optimized state until write to

the monitored address range

occurs. SDR performance is

dependent on efficient

threading

Memory

Barriers

SFENCE,

LFENCE,

MFENCE

Insures a performance efficient

way of store and load memory

ordering. Benefits multitasking

programming where tasks

execute in the out of order core.

Typical use cases are

implementing the inter

thread/process communication

mechanisms like queues and

shared memory.

Table 1 Common SSE instructions used in SDR

applications.

Integer ALU/Shift

FP Multipy
SSE ALU/Shuffle

R
E

S
E

R
V

A
T

IO
N

 S
T

A
T

IO
N Integer ALU/MUL

FP ADD

SSE MUL/Shift

LOAD

Store Address

Store DATA

Integer ALU/Shift
SSE ALU/Shuffle

Port 0

Port 1

Port 2

Port 3

Port 4

Port 5

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

4. SIGNAL PROCESSING – EXAMPLE

This section describes the performance of two of the most

common signal processing algorithms, the Fast Fourier

Transform (FFT) and the Finite Impulse Response (FIR)

filter.

 The FFT implementation used in this example is a

version that is included in the Intel Performance Primitive

(IPP) library. The Intel IPP libraries contain a wide range of

functions that are optimized implementations of common

algorithms. and take advantage of Intel® ISA features such

as SSE. Many signal processing functions are included such

as filtering, convolution, transforms, windowing, sampling

and array operations. The latest implementation is optimized

for Intel® Microarchitecture (Nehalem) [4]. Other

optimized software is available from the ecosystem such as

the open source FFTW libraries. A large range of intrinsics

may also be used to access specific instruction extensions.

 This example uses 32-bit single precision complex

floating point samples. The FFT is implemented for different

sizes and the number of cycles per sample has been

measured. Figure 3 shows the profiled results using a single

thread on an Intel® Microarchitecture (Nehalem) core

running at 2.67 GHz (Core i7 platform).

Figure 3 FFT Cycles per sample

The complexity of a N point FFT can be described as an

order of O(N.log2N) complex multiplications and additions.

The IPP implementation uses a complex multiplication

taking 6 operations (2MUL & 2ADD) and a complex

addition takes 2 operations (2ADD) for each point (Note: a

MUL takes 4 operations). This amounts to 8N.log2N floating

point operations (FLOPs). By calculating the number of

FLOPs per cycle the sustained GFLOP performance can be

derived. Figure 4 shows that a single core is capable of

between 20 and 30 GFLOPS for FFT execution which is up

to more than 90% of theoretical capability.

Figure 4: FFT Performance GFLOP's

The second Signal Processing example focuses on the FIR

filter. Similar to the FFT example the FIR example is

implemented using the Intel IPP functions. The results

shown are for a 64 tap FIR filter using single precision 32bit

complex floating point samples and coefficients. Figure 5

shows the profiled results using a single thread on an Intel®

Microarchitecture (Nehalem) core running at 2.67 GHz

(Core i7 platform).

Figure 5 FIR filter, cycles per sample

 The implemetation of the FIR filter for 64 taps requires

64 additions and 64 multiplications. This equates to a total

of 512 floating point operations per sample. By calcualting

the number of FLOP’s per cycle the sustained GFLOPS

Performance can be derived.

Figure 6 FIR filter GFLOP performance

FIR Performance Cycles

0

50

100

150

200

250

300

0 1024 2048 3072 4096 5120 6144 7168 8192 9216

Number of Samples

C
y

cl
e

s
p

e
r

S
a

m
p

le

FIR Performance GFLOPS

0

2

4

6

8

10

12

14

16

18

100 1000 10000

Number of Samples

G
F

L
O

P
S

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

5. PARALLELIZATION

Effective SDR implementation requires efficient use of all

the resources on a processor platform. It is essential to be

able to parallelize algorithms across multiple cores in a

linear manner. This section presents an example of the

parallelized scaling across multi-cores of an Intel®

Microarchitecture (Nehalem) based platform. The example

used here is complex multiplication, a common operation

used in signal processing. The same approach can be applied

to the parallelizing of more computationally intense

algorithms. The implementation used in this example is

based on the IPP library implementation of complex

floating-point multiplication.

 A threading model was used to implement the algorithm

with parallel execution. The input data is divided into

blocks, and each block (or number of blocks, depending on

data size) is executed in full in separate parallel threads.

This method is assumes no interdependence between blocks.

 Some processor architecture parameters are required to

be taken into account to optimize performance. These are

cache size, cache line alignment and thread affinity. Inter-

thread dependencies need to be minimized or avoided

altogether.

 In the example a single processor Core i7 platform was

used to execute the complex floating point multiplications.

The processor includes 4 cores and from Figure 7 we see a

linear scaling result for the first 4 threads which are assigned

to run on separate cores. Going from 4 to 8 threads takes

advantage of the symmetrical multithreading (SMT)

capabilities of the Intel® Microarchitecture (Nehalem)

which supports 2 independent hardware threads per core.

While performance here does not scale linearly the benefits

are evident.

Figure 7: Complex floating point multiplication performance

The complexity of a single floating point complex

multiplication is 6 FLOPs, 4 multiplications and 2 additions.

C = A.B where C(real)=A(real).B(real)-A(img).B(img) and

C(img)=A(real).B(img)+A(img).B(real).

The number of FLOPs per cycle can be calculated and Figure

8 shows the sustained GFLOPS performance based on

number of threads used on the processor running at

2.67Ghz. Again, we see linear performance scaling across

the 4 cores and an additional benefit when SMT is included.

Figure 8: GFLOPS Per Thread

6. WIRELESS WORKLOAD EXAMPLE

In April 2009 Aricent, a global innovation, technology and

services company focused exclusively on communications

announced that they would create a complete Long Term

Evolution(LTE) eNodeB reference solution including Layer

1 signal processing and Layer 2 protocols stacks for Intel®

Architecture. The example used in this section is the

downlink physical layer processing for LTE 2x2 MIMO.

The uplink processing and other protocol stacks have also

been completed.

Figure 9 shows the pipeline of the layer 1 downlink

implementation. Based on the protocol stacks supplied by

Aricent the code was profiled and optimized for Intel®

Microarchitecture (Nehalem). The configuration used as the

basis for these measurements is the downlink PDSCH

channel. This is the highest bandwidth channel used to send

data to the user equipment. A 20 MHz channel was used

with 2x2 MIMO in transmit diversity mode. The highest

modulation 64-QAM was coded and the output of the

system’s is 4 antenna channels each of 30.72 Msamples/sec

of 32-bit (I and Q samples) ready for analog conversion. The

signal consists of 10ms radio frames which are broken into

1ms sub-frames and 0.5ms slots. Each slot is divided into 15

kHz sub-carriers which carry 7 OFDM symbols each. For a

20Mz channel 1200 sub-carriers are available which

corresponds to 8400 symbols per slot or just over 100Mb/s

of raw data when 64-QAM coding is used.

Complex floating Point

multiplication GFLOPS

0

5

10

15

20

25

30

1 Thread 2 Threads 4 Threads 8 Threads

Number of threads

G
F

L
O

P
S

 p
e

r
T

h
re

a
d

Complex Floating Point

multiplication performance

0

0.5

1

1.5

2

2.5

3

1 Thread 2 Threads 4 Threads 8 Threads

Number of threads

C
y

cl
e

 p
e

r
sa

m
p

le
 a

n
d

th
re

a
d

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

The 2 subsystems of the pipeline are the Modem and the

Channel Coding & Multiplexing. They consist of a mix of

many sophisticated DSP algorithms working either at bit

level (ex. Turbo Encoder) or 32-bit single precision floating

point (ex. IFFT in OFDM signal generation). The pipeline

executes on a single core of an Intel Core i7 platform with

hyper-threading enabled. The complete processing of a sub-

frame for all 2 antennae is taking 1.87M cycles. This

corresponds to 0.7 milliseconds with the processor

frequency at 2.67 GHz. With a budget of 1ms to achieve

sustained throughput the result shows that a single IA

processor core is capable of meeting the requirement with

headroom.

 The overall results show that the complete uplink and

downlink processing for LTE 20MHz + 20MHz 2x2 MIMO

can be performed on 3 IA processor cores (ex. Turbo

Decoding) with scope to reduce this to just 2 cores in the

future.

7. FUTURE TECHNOLOGY

The processors using Intel® Architecture are evolving at a

regular yearly beat rate. Known as the tick/tock model the

major evolutions of the Microarchitecture are interleaved

with process technology evolution. The 2010 ‘tick’ sees the

introduction of products based on 32nm technology while

the 2011 ‘tock’ introduces the new ‘Sandy Bridge’

architecture which contains the instruction extensions (AVX

[5]) doubling the FLOP performance.

 Another technology that is relevant to signal processing

is emerging from the Intel Visual Computing Group.

Codenamed ‘Larabee’ it is initially targeting high-

performance GPU products. The Intel Embedded Group is

evaluating the technology for Wireless Signal Processing.

The Larabee ‘core’ is an IA based processor that contains a

new 512-bit wide vector processing unit (VPU). The VPU

can handle 16 parallel 32-bit operations (integer or FP) or

512-bit level operations and has a very flexible and

comple

te set of instructions. Future embedded solution for signal

processing may integrate this technology.

8. CONCLUSION

Intel Architecture has evolved significantly over the past few

years and has incorporated several micro-architectural,

platform and Instruction Set Architecture (ISA)

enhancements for much improved Signal Processing. In this

paper a selection of SSE instructions have been described

and the performance of 2 common Signal Processing

algorithms (FFT and FIR) benchmarked. The Wireless LTE

Workload example epitomizes how these architectural

improvements combined with software parallelization

techniques can be used to implement a high performance

SDR solution. The prowess of IA for Applications, Control

and Data Plane processing is already well established. The

Telecom Equipment Manufacturers (TEMs) now have the

unique opportunity to consolidate all their workloads –

Applications, Control, Data Plane and Signal Processing on

a single architecture (IA) thereby achieving a scalable

design, reduced software investment and time to market and

improved total cost of ownership (TCO).

9. REFERENCES

[1] http://www.sdradio.eu/sdradio/

[2] R.M. Ramanathan, “Extending the World’s Most

Popular Processor Architecture,” Intel Corporstion White Paper,

http://download.intel.com/technology/architecture/new-

instructions-paper.pdf, 2006
[3] http://www.intel.com/products/processor/manuals/

[4] http://software.intel.com/en-us/intel-ipp/

[5] http://software.intel.com/en-us/avx/

Figure 9 LTE Downlink PHY processing using SDR

Channel Coding & Multiplexing

CRC
attach

Code-blk

segmentation &

CRC

Turbo

Encoder

Code-blk

concatenation

Rate

Matching

HARQ

Modem

Resource

Element Mapper Pre-

coding

Layer

Mapper
Scrambler

Modulation

Mapper

OFDM

Resource

Element Mapper
OFDM

	Home
	Papers by Author
	Papers by Session

