
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved 

 
IMPLEMENTATION OF A 2-FSK CONTINUOUS WAVEFORM USING A 

SOFTWARE DEFINED RADIO PLATFORM  
 

Jesús García Lledó, Javier Bermejo Parra, Ramón García Gómez  
GTSC - ETSIT Universidad Politécnica de Madrid, Spain,  

{jesus.garcial, javier.bermejo, ramon.garcia}@upm.es 
 
 

ABSTRACT 
 

In this paper we describe a “software-based” 
implementation of a 2-FSK continuous waveform. The base 
band processing is done in the DSP and the interpolation / 
decimation, and frequency translation is implemented in the 
FPGA. The AD and DA interfaces are situated in an 
intermediate frequency of  70 MHz. For the AD conversion 
a band pass scheme is used. The DA conversion is a low 
pass filtering although the signal is digitally modulated at 
the frequency of 70 MHz. Sliding Goertzel algorithm is 
used in the 2-FSK receiver as a pass band filter. Symbol 
Synchronization is based on an Early – Late algorithm. 
Viterbi Coprocessor available in the DSP is used to 
implement a convolutional decoder. The architecture and 
most significant blocks are explained in this paper. Finally 
some results of the implementation are given. 
Keywords: Software Defined Radio, FSK Modulation, DSP, 
FPGA, Goertzel, ADC, DAC, NCO, DDS. 
 

1. INTRODUCTION 
 

Nowadays the challenge of Software Defined Radio 
concept is to digitize the signal as early as possible in the 
receiver while keeping the signal in the digital domain and 
converting to the analog domain as late as possible in the 
transmitter, to achieve a high degree of reconfigurability. In 
some practical designs this solution is not feasible or is very 
expensive. In these cases an alternative can be making a 
frequency translation of the signal to an intermediate 
frequency. Other alternatives are also possible [1]. 
Therefore, we have worked in the digital domain from 
baseband to the intermediate frequency of 70 MHz which is 
also a standard in communications. 

The main electronic devices we have used are: a fixed-
point DSP of Texas Instruments (TMS320C6416T), a 
XC4VSX35 Virtex-4 FPGA of Xilinx, a Digital-to-Analog 
Converter of Texas Instruments (DAC5687) and an Analog-
to-Digital Converter of Texas Instruments (ADS5500). 

The processing capabilities of these chips exceed the 
necessary amount for the implementation of the FSK 
Modem, however we have selected them because other 
more complex waveforms and signal processing algorithms 
are under consideration. 

In this work we present the design and implementation 
of a “software based” 2-FSK continuous waveform. The 
baseband processing is implemented in the DSP. This 
processing includes functions such as:  Scrambler / 
Descrambler, convolutional encoder / decoder and 2-FSK 
digital modulator / demodulator. Some remarkable 
algorithms we have used in the baseband demodulator are 
the sliding Goertzel algorithm, which works as a band-pass 
filter, and an early-late timing recovery block. On the other 
hand, the FPGA is used to implement the up and down 
conversion. In this process we can distinguish three blocks: 
the interpolation / decimation stages, mixers and local 
oscillators. 

We have implemented the interpolation / decimation 
stages with CIC (Cascaded Integrator-Comb) filters. For 
large rate changes, this kind of filter has a significant 
advantage over a FIR filter with respect to architectural and 
computational efficiency, because they don’t need to use 
multipliers. Regarding to the mixer stage, both transmitter 
and receiver, use a complex multiplier and a NCO 
(Numerically Controlled Oscillator) as local oscillator. The 
data conversion module is equipped with a 125MSPS 14-bit 
single channel ADC and a 500 MSPS 16-bit dual channel 
interpolating DAC.  The DAC also includes programmable 
gains at the input and output, which can be used to 
implement a transmission power control. 

In the paper we present the design and implementation 
of each one of the blocks of the previously commented 
architecture. Different considerations about reconfigurable 
parameters, the computational burden and the FPGA 
utilization are discussed.  

Finally, some of the implementation results, both 
simulation and real-time execution, are presented, and for 
future work we describe some possibilities to achieve a 
software defined radio with a higher degree of 
reconfigurability. 

 
2. ARCHITECTURE 

 
In figures 1 and 2, block diagrams of the transmitter and 

receiver of the 2-FSK modem are shown. As can be seen, it 
was decided to use the FPGA to perform the stages of 
channelization (interpolation in case of transmitter and 
decimation in the receiver one), and frequency modulation 
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(from Baseband to Intermediate Frequency in transmitter 
and the inverse operation in the receiver). Therefore, DSP is 
responsible for implementing the blocks corresponding to 
the binary processing and digital baseband modulator – 
demodulator. 
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DAC
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Fig. 1. Transmitter diagram. 

 
Fig. 2. Receiver diagram. 

2.1. Binary Processing 
 
This block would include operations such as source 

coding, encryption, scrambling, channel coding… In the 
case of this modem it has been selected an auto-
synchronized randomizer and a convolutional encoder (2, 
1, 7), with 2 as the number of output bits, 1 as the number 
of input bits and 7 as the number of cells in the shift 
register (constraint length). The connection vectors in octal 
code are 131 and 171. 

To perform the convolutional decoder, the Viterbi 
algorithm is implemented using the Viterbi Coprocessor 
available in the DSP. 

 
2.2. Digital Baseband Modulator 

 
Digital 2-FSK modulator [2] consists of a module that 

matches each bit with its corresponding digital waveform. 
As this is a 2-FSK modulation, a two-symbol alphabet is 
used and only one bit is needed to code each symbol. Bit 
‘0’ is matched with waveform )(~

0 tg , and waveform )(~
1 tg is 

assigned to bit ‘1’. Being )(~
0 tg , )(~

1 tg  , two windowed 

sinusoids of frequencies 10 , ww respectively. 
In this way, concatenating previous waveforms, the 2-

FSK Band Pass signal is formed. As the modulator is 
implemented in digital, it is only necessary to store in 
memory the samples corresponding to the waveforms of 
each symbol, i.e. )(~

0 tg  and )(~
1 tg . The problem of 

generating the 2-FSK signal by this procedure is that the 

number of samples to be stored may be quite huge if the 
frequencies 10 , ww are very high.  

Due to the mentioned problem, it was chosen to 
implement a 2-FSK Baseband Modulator in the DSP and 
then the FPGA will perform an interpolation and a 
frequency translation from baseband to the frequency band 
desired. 

Baseband pulses for each symbol have now the 
following expressions: 

 ( )( )( )2exp)()( 00
π−−⋅⋅= twwjtWtg c        (1) 

 ( )( )( )2exp)()( 11
π−−⋅⋅= twwjtWtg c        (2) 

It should be kept in mind that the pulses )(),( 10 tgtg  are 
complex signals, and therefore, two arrays for each 
waveform are required to store their samples, one for the 
real part and another one for the imaginary part. The main 
advantage is that the number of samples of each 
array BBsampN _ is much less than in the case of the band-
pass modulator. It was used 16 samples per symbol.  

In Figure 3 seven symbols of a 2-FSK baseband signal 
are shown.  

 

Fig. 3.  Baseband 2-FSK signal. 

2.3. Up Conversion 
 

2.3.1. CIC interpolator  
 
Once generated the 2-FSK baseband signal, the next 

stage is interpolating the signal to increase their sampling 
rate. Interpolation is performed in the FPGA using two CIC 
Filters (Cascaded Integrator and Comb) [3], one for the real 
part of the signal and the other for the imaginary part. 
Scheme of the used CIC Interpolator filter is shown in 
Fig.4.  

 
][ny][nx

 

Fig. 4. CIC Interpolator Filter. 
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The main advantage of CIC filters is that they do not 
use multipliers, so they are very efficient in terms of 
computational cost. 

Due to instability of the integrator filter, it is necessary 
to increase the number of bits of the datapath. The 
minimum number of bits required at the output of the 
integrator stage is given by following expression [3]: 

 

     
( )⎡ ⎤RNBB INOUT 2log⋅+=                           (3) 

 
being BIN, BOUT the number of input and output bits 
respectively,  N the number of integrator filters and R the 
interpolation factor. In our case N=5 and R =24. In the 
comb stage it is also required one additional bit per 
differentiator. Consequently it has been chosen a 64 bits 
width datapath. 

As mentioned above, the system has been implemented 
and developed in a XC4VSX35-10 Xilinx FPGA. 

Synthesize and implementation results are shown in the 
following Tables: 

 
Device Utilization Summary 

Slices 2293 out of 15360 14% 
Flip Flops 2070 out of 30720 6% 

4 Input LUTs 3140 out of 30720 10% 
IOBs 140 out of 448 31% 

GCLKs 1 out of 32 3% 

Table 1. Device resource utilization summary. 

Timing Summary 
Minimum period 6.435 ns 

Maximum frequency 155.412 MHz 
Minimum input arrival time before clock 7.350 ns 

Maximum output required time after clock 7.358 ns 
Maximum combinational path delay 7.906 ns 

Table 2. Timing summary and maximum operating frequency. 

 In the next figure it is represented the output of the CIC 
interpolator filter, obtained with the Real-Time platform, 
using the Texas Instruments tool Code Composer Studio. 

 

 
Fig. 5. CIC Interpolator Filter Output Signal (Real and Imaginary parts). 

 
Finally, baseband signal is translated to the intermediate 

frequency of 70 MHz, simply being multiplied by a 
complex exponential and then the real part is taken. 

 

2.3.2. Mixers and NCOs  
 

Mixers are used to modulate or demodulate the signal 
with the carrier frequency. In the transmitter, mixer 
modulates the interpolated baseband signal with the carrier 
generated by an NCO (Numerically Controlled Oscillator) 
programmed with the value of the desired carrier frequency. 

On the other hand, in the receiver, mixer demodulates 
the signal provided by the ADC with the carrier provided by 
another NCO configured with the specific value of 
frequency. 

The transmitter clock is not known exactly at the 
receiver, in spite of that, we have enough precision (10-6 
ppm) to do the bit synchronization with a first order PLL. In 
our application the carrier frequency is considered to be low 
enough that does not increase the error rate of the receiver. 
Consequently a carrier frequency tracking loop was not 
implemented.  

The block denoted as MIXER is composed by two IP 
cores, one of them implements a NCO based on DDS and 
the other performs the complex multiplier. 

 
Fig. 6. Block Diagram of the Mixers. 

As mentioned above, NCOs have been implemented 
with a core of a Direct Digital Synthesizer based on DDS 
techniques. This core has been created and configured using 
the Xilinx tool Coregen. Besides, the Complex Multipliers 
have been performed with another core that implements a 
multiplier of complex data. The block has been programmed 
using Coregen. Synthesize and implementation results are 
shown in the following Tables: 

 

Device Utilization Summary 
Slices 167 out of 15360 1% 

Flip Flops 266 out of 30720 0% 
4 Input LUTs 193 out of 30720 0% 

IOBs 95 out of 448 21%
FIFO16 / RAMB16 8 out of 192 4% 

GCLKs 1 out of 32 3% 
DSP48s 4 out of 192 2% 

Table 3. Device resource utilization summary. 
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Timing Summary 
Minimum period 4.214 ns 

Maximum frequency 237.290 MHz 
Minimum input arrival time before clock 5.541 ns 

Maximum output required time after clock 5.280 ns 
Maximum combinational path delay No path found 

Table 4. Timing summary and maximum operating frequency. 

Figure 7 shows the 2-FSK signal that would result after 
the whole process discussed above. It can be observed that 
band pass signal has continuous phase despite of 2-FSK 
baseband signal having phase jumps of 180º in the real 
part. The FFT magnitude of 2-FSK modulated signal is 
represented in figure 8. 
 

 
Fig. 7. 2-FSK modulated signal. 

 
Fig. 8. FFT magnitude of 2-FSK modulated signal. 

 
2.4. Down Conversion 
 

The first stage of 2-FSK demodulator consists of 
translating the 2-FSK signal from intermediate frequency to 
baseband. For achieving this, the digital band pass signal is 
multiplied by a complex exponential of the same frequency 
(but opposite sign) as the one used in the transmitter for the 
frequency modulation.  

This process is implemented in the FPGA in the same 
way as the Up Conversion.  

Afterwards, it would be necessary to low pass filter the 
resulting signal, but it would be taken advantage of the fact 
that CIC filter is a low pass filter to avoid that filtering 
stage. Therefore, decimation CIC filter will perform the 
low pass filtering, while reducing the sampling rate of the 
signal to get only L=16 samples per symbol. The CIC filter 
designed is shown in Figure 9: 

][ny][nx

 

Fig. 9. CIC Decimator Filter. 

According to the expression (3), it has been used a  64 bits 
width datapath for the whole CIC Decimator filter. 
Synthesize and implementation results for this specific 
FPGA are shown in Tables 5 and 6: 

 
Device Utilization Summary 

Slices 2988 out of 15360 19% 
Flip Flops 3198 out of 30720 10% 

4 Input LUTs 3552 out of 30720 11% 
IOBs 140 out of 448 31% 

GCLKs 2 out of 32 6% 

Table 5. Device resource utilization summary. 
 

Timing Summary 
Minimum period 6.393 ns 

Maximum frequency 156.431 MHz 
Minimum input arrival time before clock 5.769 ns 

Maximum output required time after clock 7.653 ns 
Maximum combinational path delay 7.906 ns 

Table 6. Timing summary and maximum operating frequency. 

In the next figure it is represented the output of the CIC 
decimator filter, obtained with the Real-Time platform, 
using the Texas Instruments tool Code Composer Studio. 
 

 
Fig. 10. CIC Decimator Filter Output Signal (Real and Imaginary parts). 

2.5. Digital Baseband Demodulator 
 
The first block of the digital baseband demodulator is 

the Goertzel algorithm module [4] [5] [6]. This algorithm is 
used to calculate efficiently the Discrete Fourier Transform 
(DFT) at one specific frequency. 

It basically helps us to detect the tones corresponding to 
the symbols of the 2-FSK signal, i.e. it performs a band 
pass filtering. 

Figure 11 presents a scheme to describe the Goertzel 
algorithm [4].  N is the number of samples of the DFT and 

N
j

N eW
π2−

= . 

][][ nuWnh kn
Nk ⋅= −

 

Fig. 11. Scheme corresponding to Goertzel Algorithm. 
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 We have implemented the Sliding Goertzel Algorithm, 
which is a variant of the Goertzel Algorithm that allows 
computing efficiently the DFT of a signal at a specific 
frequency while samples arrive at the block. Instead of 
calculating the Goertzel algorithm of  Figure 11 to blocks 
of N samples, which differ only in one sample from one 
block to the next, new algorithm calculates the Goertzel 
algorithm of a group of a N samples using the Goertzel 
value obtained in the previous block. 

 Figure 12 displays two consecutive time windows of 
the signal x[n], which will be the input of the Goertzel 
module. 

The sequence St-1[n] corresponds to the window that 
includes the samples n=0,1,…N-1 of the signal x[n]. 
Sequence St[n] corresponds to the window which includes 
the samples n=1,2,…N of the original signal x[n], i.e. it 
represents the situation when a new sample of x[n] has just 
arrived for  processing. 

 

Fig. 12. Sequence x[n] with two consecutive time windows. 

The relationship between the DFT of a window and the 
next one is given by equation 4, which is finally 
programmed in the DSP. 

      ( )]0[][][][ 1

2

xNxKSeKS t

K
N

j

t −+⋅= −

π

                    (4) 

 
In figure 13 the programmed flow graph is shown: 

k
N

j
e

π2
][][ kXny =][nx

 

Fig. 13. Flow graph corresponding to Sliding Goertzel Algorithm. 

A filter as the one represented in Figure 13 has been 
implemented to compute the Discrete Fourier Transform 
(DFT) at frequency f0 corresponding to symbol defined as 
‘0’, and another analogous filter, to calculate the DFT at 
frequency f1 corresponding to symbol defined as ‘1’ was 
also implemented.    

Figure 14 presents the output provided by the sliding 
Goertzel algorithm for the case of f0. At the bottom of the 
figure appears the 2-FSK signal after having been 

converted to baseband and decimated, i.e. the signal the 
sliding Goertzel algorithm is applied to. Notice that the 
output of the Goertzel Algorithm is maximum when the 
input symbol is ‘0’, as it corresponds to the case when the 
algorithm seeks the frequency f0, and minimum when the 
input symbol is‘1’.  

 

 

Fig. 14. Digital 2-FSK Demodulator. 

 
In Figure 15 the outputs provided by the sliding 

Goertzel algorithm for the case of f0 and f1 are displayed. 
Those are complementary curves, namely when one is 
maximum the other is minimum and vice versa. 

 

 
Fig. 15. Comparative time diagram of Goertzel at frequencies f0 y f1. 

Then, after the Goertzel algorithm, a timing recovery 
algorithm or symbol synchronism is implemented to select 
only one sample per symbol and also to look for the best 
sampling instant. To achieve this, the timing recovery 
algorithm is based on an Early – Late mechanism. 

Sampling phase instant correction is done dynamically, 
as samples reach the receiver. The target would be 
sampling at the top of the curve generated by the Goertzel 
algorithm, where outputs of the filters tuned at f0 and f1 
differ more, and so it will be easier to take a correct 
decision. The decision process simply compares the output 
samples of the Goertzel module at f0 with output samples at 
f1 and decides the received symbol based on whichever is 
greater. 
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2.6. FIFOs 
 
Two FIFOs, one for the transmitter and another for the 

receiver, have been implemented in the FPGA using a block 
RAM IP Core. These FIFOs interface between the DSP and 
the FPGA. The parameters of the FIFOs are: 2048 positions 
depth, 32 bits width. 
 
2.7. Clock Domains 

 
The clock signal is generated in the FPGA with a DCM 

(Digital Clock Manager) from a crystal oscillator of 16.384 
MHz. The value of the synthesized frequency is 98.304 
MHz. This signal is used in the following blocks: DAC, AD 
Mixers, and CIC filters. 

FIFOs previously commented work with a lower sample 
rate clocks which are generated in the CIC filters and 
depend on the interpolation / decimation factors. 
 
2.8. Data Converters 
 

The real-time platform used, provides two data 
converters of Texas Instruments, the Digital to Analog 
Converter DAC5687 and the Analog to Digital Converter 
ADS5500. 

 
Fig. 16. Functional Block Diagram of the DAC5687. 

 
The chip DAC5687 is a 16-bit, 500 MSPS (2x-8x) 

interpolating dual-channel DAC. Besides, it includes a 
complex mixer with 32-Bit NCO. This DAC provides two 
digital data channels of 16 bits and two analog output 
channels. The highest data rate is 500 MSPS. It includes a 
digital quadrature modulation correction (QMC), sinc 
correction and gain control. It has several memory registers 
inside for configuring the different operation modes. The 
interface for programming the registers is the serial 
interface SPI. The ADS5500 is a 14-bit, 125MSPS single-
channel ADC. It can work in two data formats (Straight 
Binary and 2’s Complement), and with two active edges 

(rising and falling). The interface for programming the 
registers is the serial interface SPI. 

 

 
Fig. 17. Functional Block Diagram of the ADS5500. 

 
3. CONCLUSIONS 

 

In this paper we present the design and implementation 
of a 2-FSK continuous waveform based on what nowadays 
is known as Software Defined Radio design philosophy. 
We explain the chosen architecture, firstly mentioning the 
main electronics devices we have used and afterwards 
describing the different blocks that have been implemented. 
Apart from the description of each block we also discuss 
about the computational burden of the algorithm and we 
present some results that we have obtained, mainly using 
the Code-Composer Tool for the DSP device. 
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