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ABSTRACT

Existing Anti-Jam (AJ) and interference mitigation tech-
niques are based on the assumption that the nature of
interference is known a priori. Generally, one or more fixed
AJ techniques (FATS) are applied to reduce the impact
of the jammer or interferer to a receiver. A more general
approach is to apply cognitive radio technology, whereby the
receiver’s AJ processing and receiver signal processing adapt
to the incoming interference environment by determining the
characteristics of the interference, then jointly optimizing
signal processing to mitigate the characterized jammer or
interferer. We refer to this approach as a Cognitive AJ Radio
System (CARS). The CARS architecture consists of three
primary components: a signal analysis block that estimates
the characteristics of the signal and jammer, an interfer-
ence mitigation algorithm that adapts its AJ processing to
the measured jammer characteristics, and a receiver signal
processing block that adapts to the measured signal and
jammer characteristics. This paper compares the performance
of a representative CARS architecture to that of a FATS
architecture when applied to a direct-sequence spread spec-
trum (DSSS) receiver. The bit error rate (BER) performance
of CARS and FATS under the influence of various types
of jammers is evaluated by simulation. Simulation results
show that the CARS approach allows data demodulation to
be reliably performed even in severe jamming conditions,
whereas FATS approaches fail to achieve such performance
levels.

1. INTRODUCTION

Interference caused by intentional or unintentional jamming,
co-channel users, or adjacent channel users can cause se-
vere degradation in receiver performance. In cognitive radio
systems, for example, unintentional jamming occurs when a
cognitive user transmits on a channel that was misdetected
as being available. Depending on the scenario, various tech-
niques may be applicable, see [1] for a categorization of
techniques.

In this paper, we restrict our attention to a single an-
tenna/channel Direct-Sequence Spread Spectrum (DSSS) re-
ceiver. Although the inherent processing gain of a DSSS
system provides reasonable interference rejection capability,
a strong interferer can still render a link unusable [2].
However, depending on the time-frequency nature of the
strong interference signal, it may be possible to achieve
relatively good performance by applying signal processing

techniques at the receiver. Several fixed Anti-Jam (AJ)
techniques (FATS), such as filtering and transform domain
excision, have been proposed for interference mitigation in
a single-channel DSSS system [3], [4]. Some techniques can
be more effective than others, depending on which properties
of the signal and the interference are assumed to be known
[5], [6].

The Discrete Fourier Transform (DFT) is a popular choice
for transform domain excision systems [7], [8], [9] primarily
due to the low-complexity Fast Fourier Transform (FFT)
algorithm. Transform domain excision techniques perform
well when the interference signal aligns with as few basis
functions as possible. When the interference signal is of
a fixed type, it is possible to design transforms that align
well with the interference and can effectively mitigate it[10].
However, excision systems that use a fixed basis (that do
not adapt to the interference) will not be adequate when
the interference is dynamic and changing. With the increase
in adoption of software radio technology, the interference
encountered will only become more challenging. We refer
to fixed-basis systems as fixed AJ techniques (FATS), an
example of which is the system in [9].

To address the problem of changing interference, adap-
tive subband transforms have been proposed [11]. However,
choosing a non-uniform basis may result in susceptibility to
certain types of interference that are not aligned with the
subband transform. Recently, [12] suggested an approach
that uses the FFT and Fractional FFT (FrFFT), where all
possible transform combinations are evaluated in order to
compute a metric called compression gain. Based on this
metric, the best transform is chosen to excise the interference.
However, this approach can have a large complexity if there
are many transform combinations to evaluate. While these
techniques may theoretically mitigate a changing interferer,
they require a search over a large space of possible transform
combinations, which will fail if the interference is changing
more rapidly than the time required to search many jammer
hypotheses. Moreover, the complexity of such approaches
grows nonlinearly with the number of jammer hypotheses,
where each hypothesis consists of a jammer with a particular
set of possible characteristics, including time variation, center
frequency, amplitude, phase, etc.

In this work, we investigate a novel Cognitive Anti-Jam
Receiver System (CARS) approach whereby the AJ signal
processing and the receiver signal processing are jointly
adapted to more effectively mitigate interference than is pos-
sible using FATS approaches. The CARS approach generally



estimates the characteristics of the signal and jammer, and
uses these measured characteristics to configure an inter-
ference mitigation algorithm that adapts its AJ processing
and receiver signal processing to optimize receiver bit error
rate and/or synchronization performance. In this case, the
parameters of the FFT itself are adapted to the changing
interference characteristics through a cognitive process.

In this paper, a representative CARS architecture is em-
ployed consisting of an interference estimator using a bank
of channelized radiometers, decision logic, a time and time-
frequency jammer excision block (based on the FFT al-
gorithm), and a demodulator that is adapted to the mea-
sured jammer characteristics [13]. The CARS approach is
illustrated using both an ideal genie jammer estimator with
a priori knowledge of the jammer characteristics and an
imperfect estimator based on the channelized radiometers.
The AJ system using the genie is referred to as GENIE
for convenience. We demonstrate the relative performance of
the CARS architecture as compared to conventional FATS
approaches when applied to a DSSS receiver. The BER
performance of CARS and FATS are simulated under the
influence of various jammer types. The CARS estimation
algorithm does not assume much about the interference,
except that it is sparse in some basis, or not like white noise.

The paper is organized as follows. In section 2, we
introduce the signal model (2.1), CARS architecture (2.2)
and interference classes (2.3). In section 3 and section 4, we
describe the operation of the main components of the CARS
architecture, the signal analyzer, and the time/frequency ex-
cisor, respectively. In section 5, we present simulation results
that demonstrate the performance of the CARS architecture.
The paper is concluded in section 6.

2. SYSTEM MODEL

2.1. Signal model
At the receiver, a discrete-time complex baseband model is
used to describe how a BPSK-modulated signal is affected
by AWGN noise and some type of interference:

y(n) = s(n) + j(n) + w(n)

=
√
SNR c(n) xl +

√
JSR j

′
(n) + w(n)

where s is the transmitted signal, j is the interference, c is
the oversampled spreading code normalized to unit power,
xl = (−1)bl is the BPSK-modulated symbol for the l-th bit
period and data bit bl, j′ is interference (jamming) signal
normalized to unit power, and w(n) is an i.i.d. zero-mean,
unit variance, complex Gaussian noise random variable. The
discrete sample indices for a symbol (bit) period T range
over 0 ≤ n ≤ KN − 1, where K is the number of samples
per chip and N is the number of chips in the spreading code.
In this work, we will often operate on vector sequences and
different transformations of these sequences. We define the
power of a sequence, s, as:

Ps =
E||s||2

KN
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With this definition and normalization of the noise power,
SNR takes on the usual meaning of Signal-to-Noise Ra-
tio (SNR) and JSR is the Jammer-to-Signal power Ratio
(JSR). We introduce some general notation that will be used
throughout the paper. We denote by ŷ, the received signal
vector resulting after applying an AJ processing algorithm.
The spreading code that is adapted to the excision process is
denoted ĉ. We utilize a simple matched-filter (MF) receiver

in this work, whose operation is described by ℜ{ĉ†ŷ}
b=0

≷
b=1

0,

where ()† denotes taking the complex conjugate transpose of
a vector.

2.2. CARS architecture
The CARS architecture is shown in Fig. 1. The three key
components of a general CARS architecture are

1) Signal analyzer
2) Time/Frequency Excisor
3) Adapted demodulator
The signal analyzer block takes SNR and received base-

band signal y as inputs and determines if there is an
interference signal present. It continues by estimating the
interference characteristics, Î (see section 2.3 for definition).
The signal analyzer block utilizes the fact that the DSSS
waveform has a flat, noise-like spectrum. This estimate is
provided as an input to the time/frequency excisor (TFE).
The TFE removes the interference as best as possible, given
the knowledge of the interference class. The outputs of the
TFE block are the received signal with interference excised,
ŷ, and corresponding time/frequency excised spreading code,
ĉ, called the adapted spreading code. It is well known that
an adapted demodulator, which is a matched filter using the
adapted spreading code, can provide improved performance,
as much as 3 dB in some cases [13]. We refer the reader to
[13] for more details and analysis of the adapted demodulator.
We describe the signal analyzer in section 3 and the TFE in
section 4.

2.3. Interference Classes
For the purpose of configuring the TFE, we define the
following two characteristics that will be used to classify
the interference type or class:

1) Bandwidth support: Bs ∈ {0, 1, . . . , Q}
This is a measure of the bandwidth occupied by the



interference. In the context of this paper, we define
Bs as the maximum number of bands occupied by the
interference. The signal bandwidth is partitioned into
Q idealized non-overlapping bands. For example, Bs

can be estimated by finding the maximum number of
channelized radiometer decisions that are simultane-
ously true.

2) Time support: Ts ∈ [∆T, T ]
where ∆T is the minimum time resolution of the
system. Ts is a measure of time occupied by the
interference in any band or bands. In the context of
this paper, we define Ts as the longest duration of
the interference localized in any one of the bands.
For example, Ts can be estimated by computing the
maximum of the number of consecutive radiometer
decisions that are true for each channel.

We provide some example signals and the corresponding
values of Bs and Ts to help illustrate:

1) Impulse train interference: Bs = Q and Ts = ∆T
2) Single-tone continuous waveform (CW) interference:

Bs = 1 and Ts = T
3) Multiple-tone CW interference: Bs = Nj and Ts = T ,

where Nj tones are in different bands
4) Frequency-hop interference: Bs = 1 and Ts = T/Nj ,

where Nj tones appear one at a time for duration Ts

5) Linear chirp CW interference: Bs = 1 and Ts = T/Q

The objective of the signal analyzer is to provide accurate
estimates of Bs and Ts. It is sometimes useful to quantize
these estimates. In the next section, we will use Ts to
configure the FFT length, and although not done in this paper,
one can suggest rounding the estimates to the closest powers
of two. We find it useful to quantize Bs to a binary-valued
variable W (Bs), which if true indicates that the interference
signal is wideband. We denote the pair (W (Bs), Ts) by I
and their estimates (Ŵ (Bs), T̂s) by Î .

2.4. Methodology for setting thresholds

In this paper, there are various thresholding (binary hypoth-
esis tests) operations on computed energy observations that
need to be performed for both signal analysis and excision
purposes. We use a simple methodology for setting these
thresholds, parameterized by a False Alarm Rate (FAR) and
SNR. The threshold, τ , is determined as a function of the
SNR and FAR, α by the following equation (based on
Gaussian approximation [14]):

τ = Q−1(α)σsn + µsn (1)

where Q−1() is the inverse Q-function (Gaussian tail proba-
bility), σ2

sn, is given by

σ2
sn = 4TB + 8SNR

and µsn is given by

µsn = 2TB + 2SNR

where by a slight abuse of notation, 2TB is the number of
degrees-of-freedom of the signal whose energy is being mea-
sured/thresholded. For example, let W represent the complete
bandwidth of the system. If we bandpass filter the signal with
a filter whose bandwidth is some fraction of W , say B = W

KQ
and the number of discrete-time samples (sample rate is W )
used in the computation of the energy value is M , then the
number of degrees-of-freedom is computed as

2TB = 2
M

W

W

KQ
= 2

M

KQ

3. SIGNAL ANALYZER

The block diagram of the signal analyzer is shown in Fig. 2.
The signal to be analyzed is filtered into different bands, and
the energy of the filtered output is measured and then further
processed to determine the interference class. In the literature,
the structure that consists of a bandpass filter followed by
an energy measurement and a decision device is known
as a channelized radiometer and has been used to detect
frequency-hopping spread spectrum (FHSS) signals [15]. In
Fig. 2, we call a wideband radiometer one that measures the
energy of the whole band (i.e., without any bandpass filter
in front).

There are many possible alternatives for implementing a
channelized radiometer, however, in this paper we utilize,
for its simplicity, a digital resonator filter bank [16]. The
block diagram of a single channelized radiometer is shown
in Fig. 3, where the energy measurement is averaged over
a moving window of length M . A large value of M pro-
vides averaging over several noise samples and reduces the
variance of the energy measurements, but M also determines
the minimum time resolution. This can be seen, for example,
when an impulse is input into the energy-averaging block,
the result is a constant output that lasts for M samples.

The output of the energy-averaging block is compared to
a threshold that is set by choosing a FAR and knowledge of
SNR using 1. The results of the thresholding operation, the
binary decisions di(n), are further processed for interference
classification, where 0 ≤ i ≤ Q and i = 0 is reserved for
the wideband radiometer decision. The on cadences of the
interference are computed (by counting runs of decisions)
for all channels. We denote the maximum on-time estimate
for channel i as T̂ON(i), where 0 ≤ i ≤ Q. Again, T̂ON(0)
corresponds to the maximum on-time for the wideband
radiometer.

3.1. Estimating bandwidth and time support of interfer-
ence
There are several ways to classify interference as wideband.
We describe one such method. Let us compute a measure
that gives an idea of frequency support of the interference at
any sample instant 0 ≤ n ≤ KN − 1, as B̂s(n):

B̂s(n) =

Q∑
i=1

di(n)
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From B̂s(n), we can compute maximum instantaneous fre-
quency support over all 0 ≤ n ≤ KN − 1, B̂s =
max(B̂s(n)). Consistent with the description in section 2.3,
B̂s ∈ {0, 1, . . . , Q}. The following rule is used to estimate
the binary variable W (Bs):

Ŵ (Bs) =

{
1 if (B̂s ≥ NWB) ∧ (T̂ON(0) ≤ NFFT,min);
0 otherwise.

where NWB is a design parameter that represents how many
channels must be active simultaneously and NFFT,min is the
minimum FFT length. If Ŵ (Bs) = 1, then an estimate
of time support is T̂s = T̂ON(0). If Ŵ (Bs) = 0, then
an estimate of time support is T̂s = max T̂ON(i), where
1 ≤ i ≤ Q.

4. TIME/FREQUENCY EXCISOR (TFE)
If interference is detected to be present, the TFE is used to
remove it. The TFE consists of two separate excision meth-
ods: a) time (only) excisor b) FFT-based excisor. As shown
in Fig. 4, the time excisor is called when the interference is
determined to be wideband and has a short duration. In this
paper, the interference has a short duration when:

NT̂s
≤ NFFT,min

where NT̂s
, is the number of discrete-time samples that

correspond to T̂s, and NFFT,min is a design parameter that
corresponds to the minimum FFT length for the FFT excisor,
which is discussed next. Time excision occurs on a sample-
by-sample basis. If the power of a sample exceeds a threshold
τTIME (computed by setting αTIME and using (1)), that
sample is excised (or set to zero). The FFT-based excisor
is shown in Fig. 5. Each branch operates on a block of
NFFT samples. The number of parallel branches depends
on the overlap ratio. For example, for an overlap ratio,
OV = 50%, we will have two parallel branches and the
number of overlapped samples, NOV = ⌊NFFTOV⌋. The
block of samples are first windowed (using a suitable window
function, for example, Hamming or Gaussian) and then
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ŷ

ŷ
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TABLE I
PARAMETER VALUES USED IN NUMERICAL EXAMPLE

Parameter Name Symbol Value

Samples/chip K 5
Num. of radiometer channels Q 16

Num. samples for energy averaging M 40
Wideband classification parameter NWB 11

FATS FFT length (samples) NFFT,FATS 256
Window type Hamming
Overlap ratio OV 50%

Min. FFT length NFFT,min 128
Max. FFT length NFFT,max 1024

FAR for signal analyzer αSA 0.01
FAR for FFT excisor αFFT 0.05
FAR for time excisor αTIME 0.001

followed by the FFT. The power in each bin is compared
to a threshold, τFFT (computed by setting αFFT and using
(1)) and excised if the threshold is exceeded. The excised bin
can be set to different values. For example, [7] suggests that
setting the excised bins to the background noise level results
in an improved performance. In this paper, for simplicity, we
set excised bins to zero.

5. SIMULATION EXAMPLE

5.1. Simulation setup

Our simulations use the GPS C/A code (PRN1) as the
spreading code, with number of chips N = 1023. BPSK
modulation is assumed and the symbol (bit) time is assumed
to match the code period, which is 1 ms. Unless stated
otherwise, the parameters used in the simulation are given
in Table I.
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Fig. 6. BER vs. SNR: linear chirp interference at 40 dB JSR. All three AJ
schemes—GENIE, CARS, and FATS—exhibit similar performance.

5.2. GENIE and FATS schemes
It is to be noted that all AJ schemes in this paper—namely,
FATS, GENIE and CARS—utilize the adapted demodulator
as described in [13]. FATS is the fixed AJ scheme and hence
is oblivious to the interference character, and thus the FFT
excisor is always configured at a fixed length NFFT,FATS.
The GENIE method assumes perfect knowledge about the
interference and is basically the CARS approach without the
possibility of estimation error. For the linear chirp interfer-
ence, GENIE sets time support as Ts =

√
1
ḟi

, where ḟi is
the derivative of the instantaneous frequency with respect to
time. This result is obtained by solving ḟiTs =

1
Ts

. Intuitively
speaking, for a very slow-changing chirp interference, it is
desirable to have a larger frequency resolution.

5.3. BER vs. SNR performance
Figures 6, 7, and 8, show BER vs. SNR performance of
all the AJ schemes for three different types of interference.
It is noticed that for the linear chirp interference in Fig. 6,
all AJ schemes perform more or less similarly, with a small
advantage for the CARS approach. In Fig. 7 and eight tones
of equal power, uniformly spaced over signal bandwidth,
we see the superior performance of the CARS approach.
In FATS, due to the relatively smaller frequency resolution,
a large part of the signal gets excised. In Fig. 8, sixteen
uniformly spaced, discrete impulses of equal power appear to
have little or no impact on the BER of the CARS architecture,
which seems to recognize the interference type and excises
in time. In all cases, the high JSR of 40 dB seems to
render the system without AJ practically useless. We note
that the processing (spreading) gain for this DSSS system is
10 log10(1023), which is about 30 dB.

5.4. Performance at different JSRs
We are interested in knowing the performance of the CARS
approach at various JSRs. Is the estimator able to correctly
classify the interference type and indicate what the BER per-
formance is ? Figure 9 shows the BER vs. JSR performance
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Fig. 7. BER vs. SNR: Eight-tone interference at 40 dB JSR. FATS performs
poorly when compared to the CARS approach. Note that CARS performance
is indistinguishable from GENIE.
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Fig. 8. BER vs. SNR: Sixteen-impulse interference at 40 dB JSR. AWGN,
CARS, and GENIE performances are indistinguishable from each other.

at an SNR of −22 dB for a sixteen-impulse interference.
We can see that there is a range of JSRs for which the
CARS estimation is susceptible to incorrectly determining the
interference type, as evidenced by the GENIE performance
close to the AWGN or no interference case. In Fig. 10, we
show the BER vs. JSR performance subject to a four-tone
interference. Note that GENIE performs better than all other
AJ schemes and that there is a region of JSR from around
10 to 20 dB where not performing any AJ is actually better
than CARS or FATS. This is due to the processing gain of
the DSSS scheme. However, as JSR increases, the CARS
scheme becomes identical to the GENIE scheme. In both
interference cases, the CARS approach provides a way to
operate at reasonably good BER performance in a high-JSR
environment and provides a considerable improvement over
the FATS approach.

6. CONCLUSION

In this paper, we introduced a novel Cognitive Antijam
Receiver System (CARS) approach whereby the antijam
(AJ) signal processing and the receiver signal processing
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Fig. 9. BER vs. JSR: Sixteen-impulse interference at −22 dB SNR. CARS
performs as well as GENIE and AWGN for most JSR, and outperforms
FATS.
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Fig. 10. BER vs. JSR: Four-tone interference at −22 dB SNR. CARS
performs as well as GENIE for most JSR, and outperforms FATS.

are jointly adapted to more effectively mitigate interfer-
ence. A representative CARS architecture was employed
that consisted of an interference estimator consisting of a
bank of channelized radiometers, decision logic, a time and
time-frequency jammer excision block based on the FFT
algorithm, and a demodulator that is adapted to the measured
jammer characteristics. We demonstrated the relative perfor-
mance of the CARS architecture as compared to conventional
FATS approaches when applied to a DSSS receiver. We
find that the FATS approach does not provide adequate
performance when compared to the CARS approach. This
advantage is observed even when the interference is very sim-
ple, like impulses or multiple tones. The CARS approach, by
virtue of its adaptability (cognition), is suitable for mitigation
of various types of interference.

Further work, currently in progress, involves determining
optimum values for the parameters listed in Table I. An
important question is how to determine the optimal time
support and excision strategy for more complex interferer
patterns that are combinations of different interferers. In this

paper, we have considered two classes of basis functions
(discrete sample basis and parameterized DFT basis). Future
work will consider basis functions from the fractional Fourier
transform family since these are better equipped to handle
chirp-like interference.
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