
A HIGH ASSURANCE WIRELESS COMPUTING SYSTEM (HAWCS®) ARCHITECTURE
FOR SOFTWARE DEFINED RADIOS AND WIRELESS MOBILE PLATFORMS

David Murotake, Ph.D. (SCA Technica, Inc. Nashua NH, USA; dmurotak@scatechnica.com)
Antonio Martin (SCA Technica, Inc. Nashua NH, USA, tony.martin@scatechnica.com)

ABSTRACT

In 2004, 2005 and 2006, the authors provided details of
wireless network threats discovered during wireless threat
analysis studies exposing a potentially serious flaw in the
security architecture of software defined radio (SDR),
cognitive radios (CR) and wireless mobile platforms. The
reconfigurable radio terminal, and the host to which it is
attached, are potentially vulnerable to exploitation,
malicious reconfiguration and denial of service as a result
of Internet based attacks delivered via a wireless signal.
These vulnerabilities extend to consumer mobile computing
devices with embedded wireless network interfaces
including WIFI enabled laptops, PDAs, Smart Phones and
Cognitive Radios.

In January 2005, the Joint Tactical Radio System
(JTRS) issued Change Proposal CP295, “Exposed Black
Side” to address this new class of threats to SDRs (Figure
1). The Software Defined Radio Forum also considered
these threats in security related Recommendations
published in 2006. This vulnerability was realized in
November 2006 with the “Broadcom Exploit” attack
affecting world-wide consumer WIFI installations
including those from Apple, Gateway, HP, Dell and
eMachines. [1, 2]

Figure 1

This paper presents an architectural approached called
High Assurance Wireless Computing System (HAWCS®)
as one way to address such concerns. HAWCS® leverages
state of the art separation kernel technology, originally
developed for Multiple Independent Levels of Security
(MILS) applications, to fortify user end-node integrity and
isolate “soft” operating system kernels and applications
from network threats such as root kits without the need of
additional hardware. HAWCS® addresses CP295 related
security flaws in SDR and wireless mobile devices without
the need for costly encryption hardware, allowing for
greater assurance in mobile eCommerce and endpoint
computing.

1. INTRODUCTION

During SDR06, Murotake and Martin showed the
architecture of many SDRs and mobile wireless platforms
was critically flawed in their approach for a high assurance
design [3]. This fundamental flaw in the design of today’s
wireless mobile device, including many smart phones,
wireless laptops and SDRs, allows compromise of the
device by network attacks delivered using wireless signals
on the radio interface. This allows attackers to easily bypass
normal security measures, including firewalls, VPNs and
encrypted connections to access points. An example was
recently shown at a recent “Black Hat” technical
conference; the researchers were able to demonstrate an
application for finding vulnerabilities in the iPhone and
Android SMS stacks that may lead to remote exploitation of
such devices by sending a simple text message. Windows
mobile devices are also being tested. [4]

2. DESCRIPTION OF PROBLEM

Virus/Malware/Worms and other such infections are on the
increase. Technological security advancements are falling
behind as “zero day” exploits become prevalent and system
infections become impossible to detect. Except for limited
research and development, security industry dollars are
primarily focused on reactive solutions, not proactive.
Patches and signature definitions are days, if not weeks
behind active exploits. Attacks have not been just confined
or limited to individual infected machines tied into "bot

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

nets" numbering into the thousands, utilized primary by
individuals for financial gains. This playground is evolving
as state sponsored activities are on the rise in the form of
attacks on multiple US government facilities and agencies
as seen as in Titan Rain attacks. [5]

2.1. Device Driver Exploits

In 2006, security researchers Dave Maynor and Jon Ellch
demonstrated an exploit leveraging flaws in the device
drivers for Apple’s Atheros WiFi chipset allowing for root
access without the target even being connected to a
network. This attack translated to the Broadcom chipset
and allowed for attacks on Windows based systems as well.
[1,2] Broadcom inadvertently released a reference driver
with a buffer over flow exploit; the companies utilizing the
chipset in their computers (Dell, HP, Gateway, etc), simply
used the reference drivers, porting them to their respective
platforms.

Wi-Fi chipsets are constantly scanning for available
networks as soon as power is applied, whether connected to
a network or not. The exploit leveraged a buffer overflow
by broadcasting a malformed SSID or network access point
identifier. The malformed SSID was received by the target
and the attacker was able to inject executable code at the
device driver level, allowing for instant root access and
bypassing all firewalls and virus checking mechanisms.

2.2 Vulnerable Monolithic OS/System Kernels

Figure 2

Exploitation of device divers allows an attacker to
tunnel into the heart of the system, usually at root level
privileges (Figure 2). If such an attack is realizable, the
integrity of the whole system (and the security of its
applications and information) may be called into question.
Since a successful attack at any single point of entry can
then subsequently corrupt the entire platform (including

corruption of USB drivers, firewalls, crypto drivers, virus
protection programs, etc.) the first successful exploit can
result in a “catastrophic” security breach. In the vernacular
of the hacker, “the system is owned”.

Figure 3

Current means of computational operation revolve
around complex and relatively insecure monolithic
operating systems and applications. The large size of their
code base makes it nearly impossible to attain high level of
assurances. [6] As a result, system integrity is always
questionable. The monolithic operating system incorporates
all operating system functionality into a single system or
code group such as Unix, Linux, OS X and the various
Windows operating systems. Even if a system is
momentarily “stable”, the addition of a new or updated
device driver or application may introduce a flaw.. Viruses
and other attacks can penetrate a system and hide
themselves within and even under the operating
environment.

2.3 Conventional Endpoint Defenses Are Inadequate

In today’s mobile devices and endpoints (including SDRs
and CRs), the vulnerability of I/O device drivers and
monolithic system kernels makes the conventional
approach of defending mobile platforms and endpoints
through the use of software firewalls and virus checking
programs inadequate against today’s cyber threats. Many
operating system based protection mechanisms work by
detecting malicious actions or patterns described in a data
base of malware, updates to which must be continuously
maintained. The firewall examines incoming and outgoing
data requests and decides if the information should be
allows to flow or not. Virus checking programs also
examine flowing (Email scanners for example) and static
data (hard drive) looking for known and undesired data
patterns. More advanced operating system based tools are
examining state and behavior, looking for malicious actions
from known sets of rules. These reactive means of

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

protection are fundamentally flawed and are becoming
increasingly ineffective. If the operating system is the target
of the attack, the attack must be first allowed inside before
a firewall or virus checking program can recognize and
stop the attack. The first thing many infections will do is
disable firewalls and virus checking programs, prevent
updates and then download a more advanced payload to
take over a computer. (Figure 2)

Some of the most serious attacks employ “root kits”
which cannot effectively be detected and removed by
operating system level applications. Rootkits embedded
themselves into, run parallel to and even underneath (by
virtualizing) an operating system kernel. By successfully
exploiting any input/output (I/O) device driver, the system
kernel itself can be compromised. Even encryption (either
software based methods, or hardware encryption using
drivers hosted by the monolithic system kernel) are not
sufficient to provide system security. The mobile platform
must provide always-on, in-line, non bypassable security to
achieve effective isolation of the vulnerable components
from the protective mechanisms (firewall, malware
detectors), networking stacks and applications (Figure 3).

3. MEMORY SEPERATION

HyperVisors provide an environment where monolithic
kernels are virtualized. The concept of virtualization has
been around since at least the 1960 with IBM’s CP-40 and
soon after CMS. [7] IBM continued to utilized
virtualization and in the mid to late 90s, as computing
resources increased, server based virtualization began to
pick up steam with other vendors. In the late 90s,
virtualization technologies appeared in the desktop
environment and in recent years have made headway into
the embedded space.

Figure 4

Hosted virtualization or type 2 hypervisors, have a
standard operating system (Windows, OS X, Linux) within
which a virtual machine runs as an application(s) that
hosting another operating system. (Figure 4). This solution
begins to approach a solution for some of the problems with
securing a monolithic kernel. An operating system is
contained in the virtual machine; all I/O into and out of the
virtualized operating system can be inspected from the host
operating system and the system state of the contained
operating system can be monitored. There are some
weaknesses to this approach (when considered from a
HAWCS® point of view):

1. The data flowing into the contained operating system
must first traverse through the hosting operating system’s
drivers and IP stack. Any vulnerabilities in the processing
of the data allows an attacker exploit and take over the host
and then the contained operating system.
2. The contained operating system runs within a virtual
machine. It is possible an attacker could cause a memory
overflow in the virtualized OS into the virtual machine
application, escalating privileges to eventually assume
control of the host OS.

Figure 5

A second form of virtualization is the “bare metal”,
type 1 hypervisor. (Figure 5). This approach does not
contain a host operating system but only a very slim virtual
machine on which the virtualized operating system runs.
This type of virtualization offers enhanced performance
over the type 2 (less memory abstractions) but has its own
set of flaws:

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

1a. In some designs, the network I/O and drivers are hosted
by the contained operating system. Thus it is still subject to
attacks on the drivers.

1b. In other designs, the device drivers are hosted in the
virtual machines (as apposed to a memory map pass
through), these are subject to attack allowing the subversion
of the host kernel.

2. I/O is not inspected prior to entering the contained OS.

The advantage of this type of approach is the enhanced
performance and the limited kernel footprint for the virtual
machine helps to limit the potential exploits and increase
performance within the conainted operating system.

Separation and
virtualization can also be
achieved using modern
“separation kernels”, such as
those used in Multiple
Independent Levels of Security
(MILS) or DO-178B high
assurance separation kernels.
The United States Government is
supporting the development of
MILS which allows various
levels of classified memory
containers, operating in parallel
on the same processor and
memory. In the past, to handle
multiple levels of security, a
system(s) had to employ an

independent processor and memory for each security level
or more simply, multiple separate machines. As depicted in
Figure 6, the typical conceptual usage for MILS technology
is to separate various information classifications to prevent
leaks. In the course of MILS development, separation and
virtualization micro-kernels with very high Evaluated
Assurance Levels (EAL) were developed and are being
deployed as publicly available, embedded real time
operating systems. Much like the hypervisor, the MILS
kernel separates processing groups or elements that are
used to segregate information of different levels; yet it can
also be used for other purposes.

Figure 7

4. HAWCS® ARCHITECTURE

In HAWCS®, a separation kernel or virtualized memory
partitions are used not as security containers but to create
an in-line, non bypassable security-in-depth architecture.
(Figure 7) This is accomplished by using the memory
partitions to separate functionality (as opposed to security
levels) and then to define and limit exactly how data is
allowed to flow from one partition to the next.

As shown in figure 8, a memory partition holds
the device drivers for the network interface. If there are
multiple network I/O devices, each can have its own
memory partition or they can reside as a group within one.
Placing each driver into its own partition adds complexity
and overhead (yet another context switch) but adds greater
containment, protecting the other drivers from a cascading
attack. It would be possible for a buffer overflow attack on
one driver to overwrite other another, giving an attacker
access to protected networks. Network device driver
communication with other memory partitions is restricted;
the network driver partition must only exchange
information (status, configuration, data) with the memory
location containing the system’s protective mechanisms.

The protection layer, as shown, contains a network
firewall and a malicious data inspector. These processes
accept incoming data from the network driver memory
partition(s), inspect the data, take appropriate action when
an issue is found and forward the traffic on to the
appropriate memory partition with the contained operating
system. Likewise, it inspects outgoing information from the
contained operating system to the network device drivers.
In this way, all data is inspected and information cannot
flow directly between the contained OS and the device
drivers.

The protection layer can abstract cryptographic
functionality away from the contained operating system. It
can provide virtual private network capabilities (like
IPSEC) to secure communication and also encrypt/decrypt

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

data stored on disk (hard drive, USB, etc), protecting static
information.

The operating system is contained within its own
memory partition. Any infection trying to “escape” cannot
disable the firewall or virus checking functions. Like the
device drivers, the only outlet for network data (and file
storage is chosen) is to the protection layer for inspection.

Yet another memory partition (not shown) can be
established with read access to all other partitions. It would
host a system monitor, actively scanning the memory and
state of the processes running in the various partitions (like
Windows, the network drivers, firewall) for abnormal
behavior. Rootkit like infections within the contained
operating system would have a more difficult time hiding
from such a malicious behavior / pattern inspection tool.

Figure 8

Such a protection architecture and supporting
mechanisms and services carry a cost. Virtualization of an
operating system increases memory abstractions and thus
access latencies. Moving data between memory partitions in
a limited and secure manner will degrade performance and
multiple memory partitions require more kernel context
switching and require more memory. With today’s multi-
core, multi-gigahertz and multi-gigabyte of memory

machines, it is questionable how much a problem this
presents to the normal user.

5. HAWCS® REQUREMENTS

Always invoked: Protection services must always be
invoked. The security layer or partition must be the first
environment booted after the partitioning microkernel
boots. There should be no easy way to turn protection
services off. The partitioning microkernel should be a high
assurance kernel, such as those employed in MILS or DO-
178B certified RTOS. The memory partitioning must
utilize a hardware memory management unit (MMU).

Inline and non-by passable: There must be no way for a
network attack to bypass protection services or mechanisms
in the security layer. An example of a bypassable security
function can be found in USB based hardware firewalls.
The issue becomes the operating system must be trusted to
route the traffic to the device. In the case of a successful
exploit, this routing can be corrupted. Such corruption can
render the protection worthless. Device drivers for
different network interfaces should be contained in separate
memory protected regions.

Detection: The secure system must incorporate an effective
detection service capable of identifying possible intrusion or
tamper incidents.

Logging: The system must log critical incidents, such as
detection (or possible detection) of intrusion and tamper
and the countermeasures taken.

Reporting: When queried by a higher level monitoring
function in a network-centric system, the protection
services must authenticate the query, and upon successful
authentication, report critical incidents. When queried by
an authorized entity, security services must be capable of
reporting part or its entire log file / incidents, such as
intrusion or tamper detections. The report may be to a user
console.

Defensive Mechanisms Location: The placement of
defensive services and mechanisms must be such that they
form a non-bypassable barrier between the source and the
point of attack. Trying to stop an attack at the point being
attacked fails the premises of defense in depth.

Ability to Inspect and Intervene: The monitoring and
control applications must be able to inspect all running
processes, memory mapped I/O and memory in common
memory areas, including the virtualized partition(s)
containing the system kernel, OS services and utilities,

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

device drivers, firewalls, network stacks and applications of
the protected part of the mobile platform or endpoint.

Containment and Countermeasures: When an attack is
realized, it must be contained in such a manner so as to
cause as little harm to the protected system as possible. If so
configured, security system shall attempt countermeasures
through removal of malicious software and repair of
damage caused by the attack.

6. CONCLUSIONS

Attacks on mobile wireless devices, using delivery of
malicious software delivered via radio signals to wireless
devices, are now a reality. Systems such as WIFI enabled
laptops, wireless mobile devices and smart phones have
been successfully “hacked”, validating the concerns of the
authors from previous years. In recognition of these threats,
JTRS Change Proposal CP-295 was issued in January 2005.
However the threat extends to many SDRs, CRs and mobile
wireless platforms. The patented HAWCS® architecture,
demonstrated to US Government officials in 2006, provides
one approach to providing non-bypassable security-in-depth
which “fixes” the flawed design approach making today’s
mobile platforms vulnerable to this class of exploits.

This paper presented is an overview of High Assurance
Wireless Computing System (HAWCS®) (US Patent #
7,490,350 and pending application #20080016313).

7. REFERENCES

[1] R Lemos, Maynor reveals missing Apple flaws, Security
Focus, Mar 2007, http://www.securityfocus.com/news/11445

[2] R Naraine, Alarm Raised for Critical Broadcom Wi-Fi
Driver Flaw, http://www.eweek.com/c/a/Security/Alarm-
Raised-for-Critical-Broadcom-WiFi-Driver-Flaw, November
2006.

[3] D. Murotake and A. Martin, A High Assurance Wireless
Computing System (HAWCS®) for Software Defined Radio,
SDR Forum Technical Conference,

[4] C Mulliner, C Miller, Fuzzing the Phone in your Phone,
Black Hat Technical Security Conference: USA 2009, June
2009

[5] N Thornburgh, The Invasion of the Chinese Cyberspies (And
the Man Who Tried to Stop Them), Time, August 2009
http://www.time.com/time/magazine/article/0,9171,1098961-
1,00.html

[6] W. M. Vanfleet et al,. MILS :Architecture for High-
Assurance Embedded Computing, CrossTalk, The Journal of
Defense Software Engineering, August 2005
http://www.stsc.hill.af.mil/crosstalk/2005/08/0508Vanfleet_e
tal.html

[7] R. J. Creasy, The Origin of the VM/370 Time-Sharing
System, IBM Journal of Research and Development, Vol. 25,
September 1980

Copyright Transfer Agreement: “The authors represent that the work is original and they are the author or authors of the
work, except for material quoted and referenced as text passages. Authors acknowledge that they are willing to transfer the
copyright of the abstract and the completed paper to the SDR Forum for purposes of publication in the SDR Forum
Conference Proceedings, on associated CD ROMS, on SDR Forum Web pages, and compilations and derivative works
related to this conference, should the paper be accepted for the conference. Authors are permitted to reproduce their work,
and to reuse material in whole or in part from their work; for derivative works, however, such authors may not grant third
party requests for reprints or republishing. The U.S. Government has royalty-free permission to reproduce this work for
official U.S. Government purposes. “

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

	Home
	Papers by Session
	Papers by Author

