
Policy Based Control of Cognitive Radios:
Methods and Tools

Mitch Kokar
mkokar@ece.neu.edu

www.ece.neu.edu/groups/scs/kokar

Proceedings of the SDR ‘08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Outline
• What is a Cognitive Radio (CR)?
• A scenario
• Semantic Web, ontology, ontologies
• Semantics, Semantic Webs
• Cognition and Cognitive Radio
• Classification of languages – procedural vs. declarative
• Interoperability scenario/problem
• Solving the interoperability with ontologies/OWL
• Adding Rules – representation of structure
• Adding functions – representation of functionality
• Behaviors
• Computational complexity
• Summaries
• Language standardization efforts

27 October, 2008 2

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Cognitive Radio Requirements

• Be aware of its own state and the state of the
environment

• Tell other radios and network of what it knows
and what it wants

• Reflect, i.e., be able to draw conclusions from
the facts that it is aware of

• React to surprise, i.e., react to the
circumstances it has not seen before.

Note: there are many other requirements …

27 October, 2008 3

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

A Scenario for CR Application

27 October, 2008 4

H2:Intermediate Radio
(automatically reconfigured as
repeater)

H1:On scene
officer

Base: Dispatch/Emergency
Operations

H3: Street level Officer

No communications
directly from subway
to dispatch

Links enabled
automatically
based on cognitive
capability

Above
Ground

Below
Ground

Source: Use Cases for MLM Language in Modern Wireless Networks. MLM Work Group, SDRF.

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Two Conversations

27 October, 2008 5

Send ambulance …

Are you connected to Base?

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 6

Another Example

Software
Radio 1

Software
Radio 2

Reasoner 1 Reasoner 2Ontology

PC PC

query

query: What is the rmsDelay, excessDelay and equalizerError in your last Buffer?

answer: rmsDelay = 1.0078370372505556; excessDelay = 1.062759005498691;
equalizerError = 851.5498431539809

answer

Depending on these values, the transmitter can: select the size of the alphabet,
e.g., QAM2 or QAM4 or QAM16, increase equalizer length, increase power …

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 7

A Framework for Use of Ontologies in Cognitive Radios

Data

Physical

Application

Data

Physical

Application

Cog Radio A Cog Radio B

Application
Ontology

Link
Ontology

PHY
Ontology

End User User Task
Ontology

End User

Heterogeneous Network
(may include user nets &
sensor nets)

Heterogeneous Network
(may include user nets &
sensor nets)

A
pp

ly
 O

nt
ol

og
ie

s
at

M

ul
tip

le
 L

ev
el

s

Cog Radios can also
obtain and reason
about information from
sensors, e.g., GPS

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 8

Solution Ingredients

• If the “connected to Base” question was the only question, then
we could hard-code it into the process.

• But then the capabilities would be limited to the encoded
question!

• How can we add more flexibility for questions/answers?

Ingredients exist (Semantic Web Technology):
• Ontologies to define a description-and-query language
• Ontology description language (OWL) for computer processing
• SPARQL – Query Language
• Formal reasoners (theorem provers) to derive answers to queries, e.g.,

Racer, Pellet, BaseVISor, Jena reasoners, KAON2, Fact++, Prolog, …

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Semantic Web

• Semantics + Web
• Semantics: meaning plus inference
• Web

– WWW

– One web page
– Distributed databases

– One database with simplified schema
(triples)

– Any source of information with semantics

27 October, 2008 9

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 10

What is Ontology (in philosophy)?

1. A science or study of being: specifically, a branch of
metaphysics relating to the nature and relations of
being; a particular system according to which
problems of the nature of being are investigated;
first philosophy.

2. A theory concerning the kinds of entities and
specifically the kinds of abstract entities that are to
be admitted to a language system.

- Webster's Third New International Dictionary
- www.formalontology.it/

• Study of fundamental categories of object, state of affairs, part,
whole, the relations between parts and the whole and their
laws of dependence

• Study of logical features of predication and of the various
theories of universals

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 11

What is Ontology (in AI)?

• An ontology is an explicit specification of a
conceptualization. (Tom Gruber)

• What exists is that which can be represented.
• Knowledge of a domain represented in declarative

formalism, objects of a domain, universe of
discourse.

• Definitions that associate the names of entities in the
universe of discourse (e.g. classes, relations,
functions, or other objects) with human-readable text
describing what the names mean, and formal axioms
that constrain the interpretation and well-formed use
of these terms.

• The statement of a logical theory.
• Note: Microsoft recognizes only the philosophy

version of Ontology!

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 12

Philosophy + AI + Engineering

OntologyOntology

Formal
Ontology

object, class
part/whole
time, state

Formal
Ontology

object, class
part/whole
time, state

FormalizationFormalization
Formalized
Ontology

Formalized
Ontology

ToolsTools ResultsResults

Formalized
Ontology

Formalized
Ontology

Ontology
Tools

Ontology
Tools

Domain
Specific
Ontology

Domain
Specific
Ontology

Inference
Engine

Inference
Engine

ResultsResults

“Universals”

“Universals”
(domain)

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Semantics

• Meaning, but what does it mean to have
a “meaning”?

• Answer: It’s mainly in classifications and
relations

• Example (next page)

27 October, 2008 13

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

20 Questions

• Is it a thing? Yes.
• Is it an institution? Yes.
• Is it government owned? No.
• Is it a school? Yes.
• Is it a university? Yes.
• Is it located in Boston? Yes.
• Is it near a river? No.
• Is it near MFA? Yes.
• Bingo: Northeastern!

27 October, 2008 14

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Terminology � Ontology

• Is it a thing ? Yes.
• Is it an institution ? Yes.
• Is it government owned ? No.
• Is it a school ? Yes.
• Is it a university ? Yes.
• Is it located in Boston ? Yes.
• Is it near a river ? No.
• Is it near MFA? Yes.
• Bingo: Northeastern !

27 October, 2008 15

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Ontology

27 October, 2008 16

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Annotation

27 October, 2008 17

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

In Web Ontology Language (OWL)

<xm<?xml version="1.0"?>
<rdf:RDF

xmlns="http://www.owl-
ontologies.com/Ontology1203277937.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"

xml:base="http://www.owl-
ontologies.com/Ontology1203277937.owl">

<owl:Ontology rdf:about=""/>
<owl:Class rdf:ID="School">
<rdfs:subClassOf>
<owl:Class rdf:ID="Inst"/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="University">
<rdfs:subClassOf rdf:resource="#School"/>

</owl:Class>
<owl:Class rdf:ID="City"/>
<owl:Class rdf:ID="River"/>
<owl:Class rdf:ID="Museum">
<rdfs:subClassOf rdf:resource="#Inst"/>

</owl:Class>
<owl:ObjectProperty rdf:ID="locatedIn">
<rdfs:domain rdf:resource="#Inst"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="near">
<rdfs:domain>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Inst"/>
<owl:Class rdf:about="#River"/>

</owl:unionOf>
</owl:Class>

</rdfs:domain>
<rdfs:range>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#River"/>
<owl:Class rdf:about="#Inst"/>

</owl:unionOf>
</owl:Class>

</rdfs:range>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="ownership">

<rdfs:domain rdf:resource="#Inst"/>
</owl:ObjectProperty>
<River rdf:ID="CharlesRiver"/>
<Inst rdf:ID="Private"/>
<City rdf:ID="Boston"/>
<Museum rdf:ID="MFA"/>
<Inst rdf:ID="Gov"/>
<University rdf:ID="NEU">

<near rdf:resource="#MFA"/>
<locatedIn rdf:resource="#Boston"/>
<ownership rdf:resource="#Private"/>

</University>
</rdf:RDF>27 October, 2008 18

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Querying and Inference

• “Semantics” means we can infer facts that
are not explicit in the representation

• Does NEU have students?
– Yes, since every school has students

• Is NEU in Massachusetts?
– Yes, since Boston is in Massachusetts

• Is NEU near Symphony Hall?
– Yes, since MFA is near Symphony Hall

• Give me all Colleges of NEU
– Technological Entrepreneurship, Engineering,

CIS, Arts & Sciences, …

27 October, 2008 19

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Semantic Webs

• Web of pages (from www to SW)
• Web of data (from databases to RDF

stores)
• Web of services (from SOA to Semantic

Web Services)
• Web of actors (humans, agents and all

of the above)
• Web of Cognitive Radios

27 October, 2008 20

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 21

Towards Cognitive Radio

• Premise: Humans possess cognitive
skills

• If Cog Radios are to possess some
cognitive skills, it might be worthwhile to
mimic some of the humans’ cognitive
skills in the radios
– Philosophical views of human cognition
– Architectural aspects of cognition

– Procedural vs. declarative languages

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 22

Philosophy of Cognition

• Behaviorism (mainly 50’s, 60’s and earlier)
– Observable behaviors, response to environment
– Input-output reflexive behaviors
– Focus on “low-level” learning experiments (Pavlov’s dogs

salivated after hearing the bell)
– No explicit reference to mental processes/reasoning

• Cognitivism
– Mental processes “inside the head” subject of study
– Knowledge as symbolic, mental constructions
– Explicit storage of (absolute) knowledge in the minds

• Constructivism
– Knowledge as constructed entity, needs to be constructed by

the learner, cannot be just transmitted (unlike in The Matrix!)

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 23

Cognitive Architecture

• SM: More than enough, very short – typically less than 1sec, up to 2.5
• STM: 7 +/- 2 “chunks” (digits), up to 18sec, “true cognition” or conscious thought
• LTM: 1 billion bits for 50 years

http://evolution.massey.ac.nz/assign2/HBB/modmem1.html

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 24

LTM
http://evolution.massey.ac.nz/assign2/HBB/modmem1.html

Procedural: “unconscious effects of learning such as skills and behavioural responses.”
Episodic: What you “remember”
Semantic: What you “know”

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 25

Computer Languages

Object Oriented Local

Imperative

Structured

C++, Java

Declarative

C, Fortran Prolog,
SQL

Web based

OWL/SWRL

Note: This classification is not complete; not disjoint!

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 26

Procedural vs. Declarative Processing

Data Program A Data

Data

Program B Data

Axioms A

Inference
Engine

Axioms B

Data

Algorithm
• Operations
• Control
(sequencing)

Modification:
• Operations
• Sequencing

Algorithm
• Logic
• Control
(sequencing –
responsibility of
Inference Engine)

Modification:
• Logic

P
R
O
C
E
D
U
R
A
L

D
E
C
L
A
R
A
T
I
V
E

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 27

Program = What + How

• Logical Program = Logical Theory +
Deduction

• What = Logical Theory (domain specific)

• How = Deduction (generic)
• Programmer needs to provide only logic

(what)

• Logical Program has formal semantics
– Therefore, it is harnessed for formal verification
– Important for accreditation of software controlled

radios (safety, liveness properties)

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 28

Example

• Lists
append(First, Second, Result)

• append(L1,L2,?L3)
– Result: new list L3 built out of L1, L2

• append(L1,L2,L3)
– Result: “true” or “false” depending on whether L3 is a

combination of L1 and L2 (verification)

• append(?L1,L2,L3)
– Result: L1 that is a sub-list of L3

• Flexibility due to the ability to use the
append operation in many different
ways – one definition instead of four

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 29

Example

• Numerical constraints: X < Y
• Procedural: if a+b < c*d then … else …

– Can read in the variables a, b, c, d, but cannot
input the expression

• Declarative:
– Develop domain ontology, add rules
– Collect input data (annotated w/Ontology)
– Input any expression for query

• Numerical
• Logical

– (a < b) & ~(b>c) OR c*a = d …
– Get answers to your query

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 30

Logical Program “knows” Things

Input Data

Axioms
Inference
Engine D

E
C
L
A
R
A
T
I
V
E

Derived
Data

Query

Logical Program can be queried

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 31

Declarative vs. Imperative

• Declarative programming advantages
– Clear formal semantics (formal verification)
– Programmer productivity (only “what” not “how”)
– Querying/flexibility (without knowing “how”)
– Metaprogramming (programs “understand” their

own structure, can manipulate themselves)
• The price for this is performance

– Being addressed by language developers as we
speak

– More on “complexity” later

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Declarative vs. Procedural

• Declarative languages seem to be a
better fit for the CR Requirements:
– Awareness: not only facts, but also

consequences
• Currently operating within 700MHz band –

what’s the implication?
• Reflection – knowing its own variables (most

declarative and some procedural support)

– React to surprise
• Knowledge not available at design time

27 October, 2008 32

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

CR, Interoperability and Constructivism

• The theories of cognitivism and constructivism are
well suited to the problem of transfer of structural
knowledge between cognitive radios.

• One radio (the teacher) can convey the knowledge of
its capabilities to another cognitive radio (the learner)
by expressing it in terms of base ontology that is
shared among CRs.

• The important aspect is that the learner’s architecture
might differ from that of the teacher. Consequently
the learner has to interpret the teacher’s knowledge
and then reconstruct it using its own components and
architecture

27 October, 2008 33

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Interoperability Scenario
• Assumptions

– CR nodes share the same base ontology
– CR nodes have a way of communicating with each other;

have fall back procedure in case communication between
them fails

– CR nodes can query for and respond to queries for specific
facts in their knowledge/databases

– CR nodes can reason about facts in their knowledge base
and facts learned from other nodes through queries

– A CR node can query for an arbitrary ontology concept. The
queried node responds by transferring a fragment of its
ontology base related to that concept. The first node can
then incorporate that knowledge into its own ontology and
can generate software components based on that
knowledge.

– If an unknown ontology concept is expressed in terms of
other unknown concepts, the querying can continue
recursively until the concept can be expressed in terms of
concepts known to the querying node or in terms of base
ontology.

27 October, 2008 34

Proceedings of the SDR '08
Technical Conference and Product
Exposition. Copyright © 2008 The

Example Interaction Sequence (1/2)

Node A Node B

<query> error bit rate, channel
equalizer coefficients</query>

�


<response>error bit rate = …, channel
equalizer coefficients = {…}</response>

[Node A uses the data received from
Node B and its own parameters and
decides to switch to QAM16]

<request>change modulation to
QAM16</request>

�


<query>QAM16 modulator</query>

<response>QAM16 modulator is a
composite component which consists
of quadrature modulator, …,
etc.</response>

�

27 October, 2008 35

Proceedings of the SDR '08
Technical Conference and Product
Exposition. Copyright © 2008 The

Example Interaction Sequence (2/2)

Node A Node B


<query>quadrature modulator </query>

<response>quadrature modulator
is a composite component which
consists of 2 multipliers, 1 adder, 1
phase shifter, connected in the
following way: …</response>

�

[Node B builds the model of QAM16 modulator
using collected facts and facts in its knowledge
base. Uses its resoner to prove that such
constructed component is consistent with the
specification received from node A.]


<request ack>changing to QAM16</request ack>

or

<request nack>cannot change to QAM16<request
nack>

27 October, 2008 36

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Example (1/2)

• The proposed scenario requires that composite
components unknown to a CR could be constructed
from other simpler components.

• The component construction algorithm at a certain
point has to employ its reasoner to prove that the
constructed entity is in fact the desired component.

• Initial research efforts directed towards finding a way
to define an OWL class for a composite component
(such as quadrature modulator) in terms of other
OWL classes representing basic components (such
as adder, multiplier, phase shifter etc.)

27 October, 2008 37

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Example (2/2)

• Quadrature Modulator (QM) – perhaps too simplistic,
but manageable in a short course

27 October, 2008 38

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Ontology: A Small Piece

27 October, 2008 39

Class, subclass, individual, property (object, datatype), domain,
range, subproperty, fact (triple), restriction, constraints

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Ontology in OWL (1/2)

27 October, 2008 40

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Ontology in OWL (2/2)

27 October, 2008 41

Good news: You don’t need to type this OWL code!

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Protégé - Classes

27 October, 2008 42

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Protégé - Properties

27 October, 2008 43

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Protégé – OWL Code

27 October, 2008 44

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Ontology – Class Hierarchy

• The experiment used very limited set of classes – the minimum
needed to demonstrate the concept.

27 October, 2008 45

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Ontology - Properties

• The domains and ranges of the limited set of properties used in

the experiment are shown in the diagram below.

27 October, 2008 46

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Ontology (Annotation): Individuals

27 October, 2008 47

CR should be able to represent itself in this way and use this
representation for telling other radios about itself.

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Insufficient Expressiveness of OWL

• Back to the example: CR1 asks CR2 to use QM and gives
description of QM class (earlier slide).

• CR2 needs to reconstruct such a component from its own
elements and prove it satisfies description of QM.

• The quadrature modulator has two multipliers. In OWL we
can express that a particular class (QuadratureModulator)
is in a relationship with another class (such as Multiplier)
using a property (in this case hasSubComponent). We
cannot however distinguish the relationship with one of the
multipliers from the relationship with the other one.

• Similarly in OWL we can express the existence of the
relationship between QuadratureModulator and InputPort,
but there’s no way to distinguish between particular
relationships with input ports I, Q and C.

27 October, 2008 48

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 49

Can’t represent “uncleOf” in OWL
• Uncle is father’s brother

uncleOf(?X,?Y) :-
father(?Z,?Y), brotherOf(?X,?Z).

• OWL does not have a construct for composing properties
(SWRL does)

Y

Z X

uncleOf

fatherOf

brotherOf

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 50

SWRL

• W3C’s Semantic Web Rule Language
• Extends representational power of OWL

by adding implication in the form of
Horn Clauses (i.e., a form of if-then
rules)

• Leverages the descriptive capabilities of
OWL DL

• Leverages the rule and variable syntax
of RuleML

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 51

SWRL: N-ary Relations
• Can’t represent

attack (Attacker, Attacked, Time)
• Instead, need to reify the relation, e.g.,

event (Attacker, AttackEvent)
timeOfAttack (AttackEvent, Time)
victim (AttackEvent, Attacked)

• Have to introduce additional Class and three Properties: AttackEvent,
event, timeOfAttack, victim

• Problem: Verbose! Multiplicity of choices of reification

Attacker Attacked

Time

attack

timeOfAttack

Attacker

Attacked

Time

Attacked

AttackEvent

victim

event

Can’t do this! Solution

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Horn Clauses

27 October, 2008 52

¬A1 ∨ ¬A2 ∨ …. ∨ ¬An ∨ B

A1 ∧ A2 ∧ …. ∧ An ⇒ B

B :- A1 , A2 , …. , An

uncleOf(?Z,?Y) :- fatherOf(?X,?Y)∧ brother(?X,?Z).

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Augmenting OWL with Rules

• To express scenarios, like the one with describing component
structure, OWL has to be augmented with Rules in order to be
able to express more complicated relationships among classes.

27 October, 2008 53

hasQMConnections(?QM) :-
Module(?QM),
hasSubComponent(?QM, ?M1),
type(?M1, Multiplier),
hasInputPort(?M1, ?InPortM1),
hasInputPort(?QM, I),
isConnected(I,InPortM1), …,
hasSubComponent(?QM, M2),
!=(M1,M2), …

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

BaseVISor Reasoner
• Note that these rules are built “on top of” an ontology. Need an

inference engine that can process such rules.
• BaseVISor is a forward-chaining inference engine developed by

VIStology, Inc.
• Based on the Rete network optimized for the processing of RDF

triples.
• Incorporates axioms and consistency checks for R-entailment

which supports all of the RDF/RDFS and a part of OWL-DL and
OWL-Full semantics.

• For the price of not supporting all of the OWL-DL, BaseVISor
provides P-SPACE performance for ground RDF graphs
(complexity will be discussed later in this tutorial).

• BaseVISor is available (free for research purposes) at:

http://www.vistology.com/BaseVISor

27 October, 2008 54

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

BaseVISor Rule Language (1/2)

• Facts defined by triples consisting of
subject, predicate and object

<triple>

<subject resource=”ll:QuadratureModulator/>

<predicate resource=”ll:hasComponent”/>

<object resource=”ll:Multiplier”/>

</triple>

27 October, 2008 55

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

BaseVISor Rule Language (2/2)
• Rules consist of body and head elements.
<rule name="hasMultiplier rule">

<body>
<triple>

<subject variable="comp" />
<predicate resource="ll:hasSubComponent" />
<object variable="mul" />

</triple>
<triple>

<subject variable="mul" />
<predicate resource="rdf:type" />
<object resource="ll:Multiplier" />

</triple>
</body>
<head>

<assert>
<triple>

<subject variable="comp"/>
<predicate resource="#hasMultiplier "/>
<object variable="mul" />

</triple>
</assert>

</head>
</rule>

27 October, 2008 56

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Open vs. Closed World Reasoning

• OWL uses the Open World Assumption (OWA)
• Logical Negation: facts that have not been explicitly asserted to be true

are not presumed to be false, they simply are unknown.
• Monotonic inference: only unknown facts can be proven to be false or

true.
• Closed World Assumption (CWA): Everything that is true is known.
• Negation as Failure (NAF): facts that are not known to be true, are false

(e.g., flight schedule).
• Non-monotonic inference: new facts must disprove previously known

facts (true or false).
• Both OWA and CWA are useful in real life:

– OWA only: If none of the policies for “can transmit” hold, can’t
conclude “cannot transmit”

– CWA only: If don’t know a CR has a QM, then conclude “it does not
have a QM”

• OWL supports “closed domain assumption” (class limited to a specific
set of individuals)

27 October, 2008 57

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Quadrature Modulator Expressed in
OWL and Rules

• Graphical representation of the rules’
structure.

27 October, 2008 58

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Port-Component Relationship in Open
World Reasoning

• We can express a relationship between a component
(e.g. mul1) and its input port (e.g. mul1_in1) by
defining a rule for an exclusive input port. Such a rule
has to state two things:
– That there is a relationship between mul1_in1 and mul1
– It is the only relationship for mul1_in1

• If we create a rule for non-exclusive input port (i.e. an
input in relationship with more than one component),
then we can use that rule to define exclusive input
port simply by excluding all relationships that are
non-exclusive

• Semantic Web community is working on the problem
of co-existence of OWL and Rules

• For now, the burden is on the implementer of CR

27 October, 2008 59

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Example: Exclusive vs. Non-Exclusive Port

27 October, 2008 60

isExclusiveInputPortOf(P,C) :- inputPortOf(P,C),
not(isNonExclusiveInputPortOf(P,C)).

isNonExclusiveInputPortOf(P,C) :- inputPortOf(P,C),
inputPortOf(P,D), not(C=D).

• The “not” is a NAF negation
• Without this would not be able to prove that a given
component satisfies the class description since it
might have more components (incomplete knowledge).

• Implementer’s responsibility to insure consistency
• retraction of non-monotonic inferences
• re-start the inference process
• insure no non-monotonic inference (no not’s)

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

So What Have We Accomplished?

• Define a Class of complex components
• Prove that a given component is or is not an

instance of that class
• In other words, given that a CR node A sends a

description of a Class of component to CR B that
B does not know, B is able to decide whether
one of the components that either exists in its
library, or a component that it constructs, is or is
not an implementation of the Class that A wants
B to use

• Note: This applies to the “same structure” only

27 October, 2008 61

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Relevant Work

• D. Preuveneers and Y. Berbers [3]
– Describe components in OWL

– Only at “instance level”

• Cannot compare classes of components
• Did not specify classes
• Thus could not formulate the problem

27 October, 2008 62

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Limitations of Structure Based Approach
• Equivalent software modules can have very different internal structures,

for example
– f(a,b,c,d) = (a+b)(c+d) is equivalent to
– f(x,y,v,u) = (xv + xu + yv + yu).

• The same functional modules operating on different data types are
seen as two different structures as the structure-based approach
doesn’t allow for easy separation of the abstract functionality from the
underlying data type

• The lack of “understanding” of the functionality might lead to
implementation inefficiencies. For example if a node has a specialized
unit for multiply-add operation it might not “realize” that it could use it in
place of an adder and a multiplier in a composite module described in
terms of base components (see next slide).

• There is no obvious way to express dynamics – time dependencies and
constrains.

27 October, 2008 63

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

• If a CR node is given a recipe for
the quadrature modulator
expressed in simple components
(as shown in the top picture),
unless that node “understands”
the desired functionality it will not
be able to infer an equivalent but
more efficient implementation of
such module (as shown in the
bottom picture). Structurally those
two modules are different,
functionally – the same.

Limitations of structure based approach

27 October, 2008 64

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Functionality
• Can express “equivalent property” in OWL, but no mechanism

for proving equivalence
• Rules can define a procedure for computing values of a

function, but cannot express that two functions are equivalent.
• Use more expressive language for describing components. For

instance, chose Metaslang which supports composition and
category theory constructs like morphism and colimit.

• Can investigate how to express the fact that two syntactically
different components are semantically the same.

• Moreover, we can use Metaslang to capture common parts of
different components.

• Use a tool (Specware) that supports the use of Metaslang
allowing abstract specifications of radio components and their
further refinement through morphisms and colimit operations.

• Use a theorem prover (SNARK) to prove conjectures on
functional equivalences of components

• Problem: computational complexity

27 October, 2008 65

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Specware

• Specware is Kestrel Institute’s framework implementing
some of their research results in application of category
theory in formalized software development.

• Specware supports systematic construction of software from
abstract specifications to executable code through a series of
refinements.

• An automated theorem prover (such as SRI’s SNARK) can
be used in each of the refinement steps to prove its
correctness.

• If this process is followed rigorously, the resulting code is
correct (i.e. it strictly adheres to the axioms defined in the
abstract specification).

27 October, 2008 66

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Simple Specification in Metaslang

BinRel = spec

type E

op le : E*E -> Boolean

endspec

Can import BinRel and then add additional constraint s:

PreOrder = spec

import BinRel

axiom reflexivity is

fa(x) x le x = true

axiom transitivity is

fa(x,y,z)

(x le y) && (y le z) => (x le z)

endspec

27 October, 2008 67

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Specification Morphism
Antisymmetry = spec

type X

op binOp : X*X -> Boolean

axiom antisymmetry is fa(x,y)

binOp(x,y) && binOp(y,x) => x = y

endspec

m_BinRel_Antisymmetry =
morphism BinRel-> Antisymmetry

{ E +-> X, le+->binOp }

27 October, 2008 68

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Specification Diagram

BinRelDiag = diagram {
n1 +-> BinRel,
n2 +-> PreOrder,
n3 +-> Antisymmetry,
e1: n1->n2 +-> morphism BinRel -> PreOrder {},
e2: n1->n3 +-> m_BinRel_Antisymmetry

}

PreOrde
r

BinRel

AntiSymmetry

m_BinRel_Antisymmetrytrivial morphism

27 October, 2008 69

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Colimit

PartialOrder = colimit BinRelDiag

PreOrde
r

BinRel

AntiSymmetry

m_BinRel_Antisymmetrytrivial morphism

PartialOrder

27 October, 2008 70

All theorems from BinRel, PreOrder and AntiSymmetry
carry over to PartialOrder.

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Abstraction and Commonality of
Components

• In the structure-based interoperability approach it is difficult
to separate abstract functionality from underlying data type.

• For example a multiply-add unit processing real samples
represented by floating point numbers will be composed quite
differently than a unit processing pairs of integers
representing complex samples.

• In structure-based scheme the commonality of those two
modules is lost as they are treated as two completely
different entities.

• Specware supports abstract specification and its refinement
through morphism and colimit operation.

27 October, 2008 71

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Abstract Specification with Refinements

Samples = spec
type Sample
...
op Sample.multiply:

Sample*Sample->Sample
op Sample.add:

Sample*Sample->Sample
...

endspec

IntSamples = spec
import Samples
type Sample = Integer
...
def Sample.multiply(x,y) = x*y
def Sample.add(x,y) = x+y
def Sample.minus(x) = -x
...

endspec

CplxIntSamples = spec

import Samples

type Sample = { re:Integer, im:Integer}

...

def Sample.multiply(x,y) =

{ re = (x.re*y.re - x.im*y.im),
im = (x.re*y.im + x.im*y.re) }

def Sample.add(x,y) =

{ re = (x.re+y.re), im = (x.im+y.im) }

...

endspec

MorphInt =

morphism Samples -> IntSamples {}

MorphCplxInt =

morphism Samples -> CplxIntSamples {}

27 October, 2008 72

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Specification of Adder with Refinements
through Spec Substitution

Adder= spec

import SampleSpec#Samples

op Adder.Func: Sample*Sample -> Sample

def Adder.Func(x,y) = Sample.add(x,y)

endspec

Adder_Int = Adder[MorphInt]

Adder_CplxInt = Adder[MorphCplxInt]

• An abstract specification of Adder is refined to two
concrete specifications through spec substitution
(square brackets) operation, which is a simplified
colimit.

27 October, 2008 73

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Functional Equivalence

• The use of theorem provers makes it possible to prove that
two software modules are equivalent even when they differ in
the structure.

• In Specware one can create conjectures about important
properties of the specification. Those conjectures can be
later proved by the inference engine.

• The limitation of SNARK is its ability to reason in the first
order logic only. More advanced refinements requiring higher
order logic might not be provable with SNARK even though
they are correct.

27 October, 2008 74

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Funcs = spec
import Adder
import Multiplier
op Funcs.Func1: Sample*Sample*Sample -> Sample
def Funcs. Func1 (a,b,c) =

Multiplier.Func(a, Adder.Func(b,c))
op Funcs. Func2 : Sample*Sample*Sample -> Sample
def Funcs.Func2(a,b,c) =

Adder.Func(Multiplier.Func(a,b),
Multiplier.Func(a,c))

conjecture Funcs_eq_conj is
fa(a:Sample, b:Sample, c:Sample)

Func1(a,b,c) = Func2(a,b,c)
endspec

p0 = prove Funcs_eq_conj in Funcs options
"(use-resolution t) (use-paramodulation t)"

Example: Equivalent Functions

a*b + a*c

a*(b+c)

27 October, 2008 75

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Temporal Logic Elements
• In practical implementations of CR algorithms timing constraints

have to be considered when constructing composite modules.
• Temporal logics try to tackle different aspects of time in complex

system without introducing time explicitly. In our experiments we
used a simple concept from Linear Temporal Logic – the operator X
(neXt).

• In discrete time systems (as all sample-based systems are) the
operator X is simply a delay element.

• Operator X is not a function as understood by functional languages
– it uses a side effect (remembered value) to compute the returned
value.

• Since Metaslang is a functional language it cannot implement the X
operator. That limitation however does not prevent us from defining
the X operator as an abstract operation with some axioms thus
enabling reasoning about it.

27 October, 2008 76

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Example - Delay Specification

27 October, 2008 77

UnitDelaySpec = spec
import Samples
op UnitDelay.Func: Sample -> Sample
axiom UnitDelay_commutativity is
fa(f:(Sample->Sample), x:Sample)
UnitDelay.Func(f(x)) = f(UnitDelay.Func(x))

axiom UnitDelay_commutativity2 is
fa(f:(Sample*Sample->Sample), x:Sample, y:Sample)
UnitDelay.Func(f(x,y)) = f(UnitDelay.Func(x), UnitDelay.Func(y))

endspec

Note: Quantification over functions!
AdderDelay = spec
import UnitDelaySpec
op Adder.Func: Sample*Sample -> Sample
def Adder.Func(x,y) = UnitDelay.Func(Sample.add(x, y))

endspec

MultiplierDelay = spec
import UnitDelaySpec

op Multiplier.Func: Sample*Sample -> Sample
def Multiplier.Func(x,y) = UnitDelay.Func(Sample.multiply(x,y))

endspec

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Behavioral Equivalence
MACSpec = spec

import UnitDelaySpec
op MAC.Func: Sample*Sample*Sample -> Sample
def MAC.Func(m1, m2, a) =

UnitDelay.Func(
Sample.add(

UnitDelay.Func(Sample.multiply(m1, m2)),
UnitDelay.Func(a)))

endspec

CompositeMACSpec = spec
import AdderDelay
import MultiplierDelay
import MACSpec
op CompositeMAC.Func: Sample*Sample*Sample -> Sampl e
def CompositeMAC.Func(m1, m2, a) =

Adder.Func(Multiplier.Func(m1,m2), UnitDelay.Func(a))

conjecture CompositeMAC_conj is
fa(m1:Sample, m2:Sample, a:Sample)

CompositeMAC.Func(m1, m2, a) = MAC.Func(m1, m2, a)
endspec

p0 = prove CompositeMAC_conj in CompositeMACSpec opti ons
"(use-resolution t) (use-paramodulation t)"

27 October, 2008 78

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Conclusions so far
• We applied elements of category theory to Cognitive Radio

interoperability problem.
• Demonstrated the feasibility of this approach as we were

able to overcome the shortcomings of the structure-based
approach we proposed previously.

• Current theorem provers that are necessary for this solution
are relatively slow (need investment!)

• The fact that Metaslang is a functional language limited our
success with the application of elements of temporal logic to
software component application. We were unable to generate
source code for modules using the X operator. We were able
however to use its abstract definition and axioms in proving
functional equivalence of module specifications.

27 October, 2008 79

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Problem Complexity

The time complexity of a problem is the number of steps that it takes to
solve an instance of the problem, as a function of the size of the input ,
(usually measured in bits) using the most efficient algorithm .

For sufficiently large n: log n < n < n log n < n2 < n3 < 2n

Since we consider the worst case, we really take into account only order of
the function – big-Oh notation:

O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < O(2n)

Examples: O(g(n))
Sequential search: O(n)
Binary search: O(log n)
Merge sort: O(n log n)

27 October, 2008 80

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

TSP: Traveling Salesman
Problem

Problem: Given the coordinates of n cities, find the shortest closed
tour which visits each city exactly once.

Brute force (enumeration of all possible tours): O(n!)

Assume: n=10 takes 1 sec
Result: n=20 would take 20!/10! = 20,000 years

27 October, 2008 81

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Faster CPUs?
Time

complexity
function

Size of Largest Problem Instance solvable in 1 Hour

With present
computer

With computer
100 times faster

With computer
1000 times
faster

n N1 100N1 1000N1
n2 N2 10 N2 31.6 N2
n3 N3 4.64 N3 10 N3
2n N4 N4+6.64 N4+9.97
3n N5 N5+4.19 N5+6.29

If a TSP for 300 cities solvable in a reasonable time limit, a 1000 faster
CPU would not be able to solve a 302 city TSP!

27 October, 2008 82

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Decision (Recognition) and
Optimization Problems

Optimization problems: minimize/maximize a cost function given constraints

Decision (recognition) problems: require a “yes” or “no” answer
- Special case of optimization (no cost function)
- For each optimization problem there is a decision version
- Complexity results also hold for the original optimization problem

Example: TSP Decision Problem:
Is there a closed tour passing each city only once, with total length ≤ L?

- Have a TSP solution – then just compare it to L
- Have a TSP-DP solution – use binary search to find the optimal
solution

27 October, 2008 83

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

The SAT Problem (satisfiability)

Problem: Given a Boolean formula in Conjunctive Normal Form (CNF), is it
satisfiable? That is, is there a set of "true-false" values to be assigned to the
various variables, such that the compound proposition is true?

Example:

(x1 OR x2 OR x3) and (x1 OR ¬x2) and (x2 OR ¬x3) and (x3 OR ¬x1) and
(¬x1 OR ¬x2 OR ¬x3)

27 October, 2008 84

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

P and NP

P – recognition problems for which a polynomial time algorithm exists

NP – Non-deterministic Polynomial – both encoding and verification of
solution are polynomial, even if the solution is guessed

Example: Integer Programming Problem

Given an m x n integer matrix A and an integer m-vector b,
is there a n-vector x, with elements 0 or 1, such that Ax=b ?

If we have a potential solution, it’s easy to check whether it is a solution
or not (a valid certificate exists)

NP – class of “reasonable” problems.
P is subset of NP

27 October, 2008 85

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Polynomial Reducibility

Problem A reduces in polynomial-time to another problem B, if and only if:
1.there is an algorithm for A which uses a subroutine for B, and
2.each call to the subroutine for B counts as a single step, and
3.the algorithm for A runs in polynomial-time.

Write: A ∝ B

If A ∝ B and B is in P, then A is in P
If A ∝ B then B is at least as “hard” as A

Example:
TSP ∝ TSP Decision Problem
SAT ∝ Integer Programming Decision Problem

27 October, 2008 86

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

NP-Completeness

A problem is NP-complete if:
- it belongs to class NP
- all other problems in NP are reducible to it

Theorem: SAT is NP-complete

Cook’s Theorem:
Let A be a recognition problem.
Then, the following propositions are equivalent:
1. A ∈ NP
2. A is polynomially solvable by a non-deterministic algorithm
3. A polynomially transforms to SAT (A ∝ SAT)

27 October, 2008 87

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

NP-hard

A problem Pr is NP-hard if SAT ∝ Pr

Example:
SAT ∝ Integer Programming Problem, thus it is NP-hard

Note: NP-complete problems are NP-hard, but the opposite
does no have to be true

27 October, 2008 88

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Still Other Classes
EXPTIME – problems solvable (deterministically) in O(2 p(n)) time,

where p – polynomial
Note: complexity guaranteed to be exponential, unlike in NP

NEXPTIME – problems solvable by a non-deterministic algorithm
in O(2 p(n)) time, where p – polynomial

UNDECIDABLE – if there is no algorithm that can always give the correct
answer.

Example: The Halting Problem: Given a description of an algorithm
and its initial input, determine whether the algorithm, when
executed on this input, ever halts (the alternative is that it runs
forever without halting).

Note: Individual instances of the problem can be solvable!

27 October, 2008 89

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Complexity Classes
0-1-NPC - #AC0 - #L - #L/poly - #P - #W[t] - +EXP - +L - +L/poly - +P - +SAC1 - A0PP - AC - AC0 - AC0[m] - ACC0 - AH - AL -
AlgP/poly - AM - AM-EXP - AM intersect coAM - AM[polylog] - AmpMP - AmpP-BQP - AP - AP - APP - APP - APX - AUC-
SPACE(f(n)) - AVBPP - AvE - AvP - AW[P] - AWPP - AW[SAT] - AW[*] - AW[t] - βP - BH - BPE - BPEE - BPHSPACE(f(n)) - BPL -
BP•NP - BPP - BPPcc - BPPKT - BPP-OBDD - BPPpath - BPQP - BPSPACE(f(n)) - BPTIME(f(n)) - BQNC - BQNP - BQP - BQP/log -
BQP/poly - BQP/qlog - BQP/qpoly - BQP-OBDD - BQPtt/poly - BQTIME(f(n)) - k-BWBP - C=AC0 - C=L - C=P - CFL - CLOG - CH -
Check - CkP - CNP - coAM - coC=P - cofrIP - Coh - coMA - coModkP - compIP - compNP - coNE - coNEXP - coNL - coNP - coNPcc -
coNP/poly - coNQP - coRE - coRNC - coRP - coSL - coUCC - coUP - CP - CSIZE(f(n)) - CSL - CZK - D#P -Δ2P -δ-BPP -δ-RP - DET
- DiffAC 0 - DisNP - DistNP - DP - DQP - DSPACE(f(n)) - DTIME(f(n)) - DTISP(t(n),s(n)) - Dyn-FO - Dyn-ThC0 - E - EE - EEE -
EESPACE - EEXP - EH - ELEMENTARY - ELkP - EPTAS - k-EQBP - EQP - EQTIME(f(n)) - ESPACE - ExistsBPP - ExistsNISZK -
EXP - EXP/poly - EXPSPACE - FBQP - Few - FewP - FH - FNL -FNL/poly - FNP - FO(t(n)) - FOLL - FP - FPNP[log] - FPR - FPRAS -
FPT - FPTnu - FPTsu - FPTAS - FQMA - frIP - F-TAPE(f(n)) - F-TIME(f(n)) - GA - GAN-SPACE(f(n)) - GapAC0 - GapL - GapP -
GC(s(n),C) - GI - GPCD(r(n),q(n)) - G[t] - HkP - HVSZK - IC[log,poly] - IP - IPP - L - LIN - LkP - LOGCFL - LogFew - LogFewNL -
LOGNP - LOGSNP - L/poly - LWPP - MA - MA' - MAC0 - MA-E - MA-EXP - mAL - MaxNP - MaxPB - MaxSNP - MaxSNP0 - mcoNL
- MinPB - MIP - MIP*[2,1] - MIPEXP - (Mk)P - mL - mNC1 - mNL - mNP - ModkL - ModkP - ModP - ModZkL - mP - MP - MPC -
mP/poly - mTC0 - NC - NC0 - NC1 - NC2 - NE - NE/poly - NEE - NEEE - NEEXP - NEXP - NEXP/poly - NIQSZK - NISZK - NISZKh -
NL - NL/poly - NLIN - NLOG - NP - NPC - NPcc - NPC - NPI - NP intersect coNP - (NP intersect coNP)/poly -NPMV - NPMV-sel -
NPMVt - NPMVt-sel - NPO - NPOPB - NP/poly - (NP,P-samplable) - NPR - NPSPACE - NPSV - NPSV-sel - NPSVt - NPSVt-sel - NQP -
NSPACE(f(n)) - NT - NTIME(f(n)) - OCQ - OptP - P - P/log - P/poly - P#P - P#P[1] - PAC0 - PBP - k-PBP - PC - Pcc - PCD(r(n),q(n)) - P-
close - PCP(r(n),q(n)) - PermUP - PEXP - PF - PFCHK(t(n)) - PH - PHcc - Φ2P - PhP -Π2P - PINC - PIO - PK - PKC - PL - PL1 - PLinfinity -
PLF - PLL - PLS - PNP - PNP[k] - PNP[log] - P-OBDD - PODN - polyL - PostBQP - PP - PP/poly - PPA - PPAD - PPADS - PPP - PPP-
PPSPACE - PQUERY - PR - PR - PrHSPACE(f(n)) - PromiseBPP - PromiseBQP - PromiseP - PromiseRP - PrSPACE(f(n)) - P-Sel - PSK -
PSPACE - PT1 - PTAPE - PTAS - PT/WK(f(n),g(n)) - PZK - QAC0 - QAC0[m] - QACC0 - QAM - QCFL - QCMA - QH - QIP - QIP(2) -
QMA - QMA+ - QMA(2) - QMA log - QMAM - QMIP - QMIPle - QMIPne - QNC0 - QNCf

0 - QNC1 - QP - QPSPACE - QSZK - R - RE -
REG - RevSPACE(f(n)) - RHL - RL - RNC - RP - RPP - RSPACE(f(n)) - S2P - S2-EXP•PNP - SAC - SAC0 - SAC1 - SAPTIME - SBP - SC
- SEH - SelfNP - SFk - Σ2P - SKC - SL - SLICEWISE PSPACE - SNP - SO-E - SP - SP - span-P - SPARSE - SPL - SPP - SUBEXP -
symP - SZK - SZKh - TALLY - TC 0 - TFNP -Θ2P - TreeBQP - TREE-REGULAR - UAP - UCC - UE - UL - UL/poly - UP - US - VNCk -
VNPk - VPk - VQPk - W[1] - WAPP - W[P] - WPP - W[SAT] - W[*] - W[t] - W*[t] - XOR-MIP*[2,1] - XP - XPuniform - YACC - ZPE -
ZPP - ZPTIME(f(n))

27 October, 2008 90

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

The Complexity Zoo

The Complexity Zoo: http://www.complexityzoo.com/#nexp
Zookeeper: Scott Aaronson
407 classes and counting ...

27 October, 2008 91

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

OWL in the Zoo

Language Logic Complexity

OWL Lite SHOIN(D) EXPTIME

OWL DL SHIF(D) NEXPTIME

OWL Full Subset of FOL Undecidable

DL+SWRL Subset of FOL Undecidable

27 October, 2008 92

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Phase Transitions and
Undecidability

27 October, 2008 93

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Summary of Languages

27 October, 2008 94

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Approach: Logic
• Treat potential objects and relations as theories of the world

• Theories are the subject of logic (well defined and understood)

• They describe possibilities or potentiality (e.g., the fact that we know a
theory of “car”, doesn’t mean there’s a car in this room)

• Add collected data to the theory - theory specialization

• Formulate any queries – in formal logic these are conjectures

• Use a general purpose theorem prover to prove conjectures

• Use the trace of the proof as an answer to the query

• Objects can be complex (compositions of simpler objects)

• Ideally, theories for complex situations are compositions of simple
theories

• Combining theories using colimit of category theory

9527 October, 2008

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 96

The “Layer Cake” (Tim Berners-Lee)

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 97

Language Constructs: OWL Lite
• Class
• rdf:Property
• rdfs:subClassOf
• rdfs:subPropertyOf
• rdfs:domain
• rdfs:range
• Individual
• equivalentClass
• equivalentProperty
• sameAs
• differentFrom
• allDifferent
• inverseOf

• TransitiveProperty
• SymmetricProperty
• FunctionalProperty
• InverseFunctionalProperty
• allValuesFrom
• someValuesFrom
• minCardinality (only 0 or 1)
• maxCardinality (only 0 or 1)
• cardinality (only 0 or 1)
• intersectionOf
• Imports
• priorVersion
• …more

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 98

Language Constructs: DL & Full

• one of
• disjointWith
• equivalentClass

(applied to class expressions)

• rdfs:subClassOf
(applied to class expressions)

• unionOf
• intersectionOf
• complementOf

Arbitrary Cardinality
• minCardinality
• maxCardinality
• cardinality

• hasValue

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 99

Differences

• OWL Lite
– simplest; simple constraints
– but easy to develop tools

• OWL DL (for Description Logics)
– more complex and expressive
– still decidable

• OWL Full
– expressive
– no computational guarantees

• But for Cognitive Radio we need Rules,
Functions and Behaviors!

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 100

Examples of reasoning

• Inferring classifications (if subClass is not stated explicitly, yet
necessary and sufficient conditions exist)

– Relevance to fusion: classification
– Query: Is Air Base a subclass of Repair Facility?

• Infer “type” relation: Given an individual, which classes is it member of?
– Relevance to fusion: object classification, situation types
– Example: given features of a flying object, determine it’s an F16, and

consequently an aircraft
– Example: given info on parts in stock and demand, determine whether this

is the case of “nominal”, “marginal” or “critical” situation type
• Inferring identity – is this individual sameAs another?

– Relevance to fusion: association
– Infer that two reports about an aircraft are about the same one

• Inferring relations (properties) from ontology
– Relevance to fusion: situation awareness
– This aircraft belongs to the same squadron as another

• Inferring relations from rules
– Infer that a specific part at airbase for aircraft is critical, marginal, nominal

Proceedings of the SDR '08
Technical Conference and Product
Exposition. Copyright © 2008 The

R - Rules

A -
Instances of
Ontology

T - Concepts
Expressed by the Ontology

R Box: policies (rules)
A Box: instances of the ontology
T Box: concepts defined in the ontology

101

OWL + Rules

27 October, 2008

Proceedings of the SDR '08
Technical Conference and Product
Exposition. Copyright © 2008 The

A box
R box

A box
R box

T
box

RC of B1 RC of H1

Simulation

10227 October, 2008

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Policies (Rachel Li)
Functional Capabilities
• Determining which radios are connected

from the base
• Finding and identifying peer radios;
• Identifying and authenticating compatible

reconfigurable radios;
• Forming a satisfactory network extension

route to the infrastructure from each
affected radio using non-interfering
frequencies for each “hop”;

• Adjusting the network topology as
responders arrive and depart from the
area where coverage is unavailable;

• Preserving the level of security of the
baseline network in the network
extensions;

• Providing either full duplex (simultaneous
receive and transmit) operation or
including a “store and forward” capability
for user voice and/or data
communications.

Rules include:
1. check the signal strength to determine

the connectivity status;
2. check whether the received packet is

destined to itself;
3. query of neighbor’s information when a

radio is disconnected from the base;
4. send back an answer message when a

radio receives a query from others;
5. process the answer message and update

the routing table;
6. send a route reply message traversing

back along the desired path to the
starting hop when a radio finds a path to
the base;

7. store and forward the data packet to the
next hop;

8. send back an end-to-end
acknowledgement when the data packet
arrives at the destination.

13 rules implemented for the
Network Extension Use Case

27 October, 2008 103

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Summary

• If you expect that your CR will need to modify its
behavior in run time, the declarative language
approach seems to be the way to go

• Decide which language you need
– As simple as possible, but not simpler than that!

• If not expecting any change/flexibility of the
application, don’t use the O-B approach

• Be prepared to deal with lots of detail in the
implementation of policies (rules)

• Be prepared to deal with the issue of computational
complexity

27 October, 2008 104

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 105

Summary

• Challenge: Develop “universals” (ontology)
for the radio/networking domain

• Join the Internet (business model and
services)

• A community-wide coordinated effort needed
• SDR Forum seems to be the right community

for this task
• MLM Work Group has already started the

effort
• Advantages to all players – manufacturers,

ISPs, operators and USERS!

Proceedings of the SDR '08 Technical Conference and Product Exposition.
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Language Standardization Efforts
• MLM Working Group of the Software Defined Radio Forum

(SDRF)
• IEEE SCC41 P1900.5: Policy Language and Architectures for

Managing Cognitive Radio for Dynamic Spectrum Access
Applications Working Group:
http://grouper.ieee.org/groups/scc41/5/index.htm

• DARPA and performers on DTN, WANN and WNaN programs
• E3
• IEEE 802.21
• VITA 49
• Regulators (expected participation)
• Others Welcome!

10627 October, 2008

