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Outline
• What is a Cognitive Radio (CR)?
• A scenario
• Semantic Web, ontology, ontologies
• Semantics, Semantic Webs
• Cognition and Cognitive Radio
• Classification of languages – procedural vs. declarative
• Interoperability scenario/problem
• Solving the interoperability with ontologies/OWL
• Adding Rules – representation of structure
• Adding functions – representation of functionality
• Behaviors
• Computational complexity
• Summaries
• Language standardization efforts
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Cognitive Radio Requirements

• Be aware of its own state and the state of the 
environment

• Tell other radios and network of what it knows
and what it wants

• Reflect, i.e., be able to draw conclusions from 
the facts that it is aware of

• React to surprise, i.e., react to the 
circumstances it has not seen before.

Note: there are many other requirements …

27 October, 2008 3
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A Scenario for CR Application

27 October, 2008 4

H2:Intermediate Radio
(automatically reconfigured as 
repeater)

H1:On scene 
officer

Base: Dispatch/Emergency 
Operations

H3: Street level Officer

No communications 
directly from subway 
to dispatch

Links enabled 
automatically
based on cognitive 
capability

Above 
Ground

Below 
Ground

Source: Use Cases for MLM Language in Modern Wireless Networks. MLM Work Group, SDRF.
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Two Conversations
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Send ambulance …

Are you connected to Base?
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Another Example

Software
Radio 1

Software
Radio 2

Reasoner 1 Reasoner 2Ontology

PC PC

query

query: What is the rmsDelay, excessDelay and equalizerError in your last Buffer?

answer: rmsDelay = 1.0078370372505556; excessDelay = 1.062759005498691; 
equalizerError = 851.5498431539809

answer

Depending on these values, the transmitter can: select the size of the alphabet,
e.g., QAM2 or QAM4 or QAM16, increase equalizer length, increase power …
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A Framework for Use of Ontologies in Cognitive Radios
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Cog Radios can also 
obtain and reason 
about information from 
sensors, e.g., GPS
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Solution Ingredients

• If the “connected to Base” question was the only question, then 
we could hard-code it into the process.

• But then the capabilities would be limited to the encoded 
question!

• How can we add more flexibility for questions/answers?

Ingredients exist (Semantic Web Technology):
• Ontologies to define a description-and-query language
• Ontology description language (OWL) for computer processing
• SPARQL – Query Language
• Formal reasoners (theorem provers) to derive answers to queries, e.g., 

Racer, Pellet, BaseVISor, Jena reasoners, KAON2, Fact++, Prolog, …
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Semantic Web

• Semantics + Web
• Semantics: meaning plus inference
• Web

– WWW

– One web page
– Distributed databases

– One database with simplified schema 
(triples)

– Any source of information with semantics

27 October, 2008 9
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What is Ontology (in philosophy)?

1. A science or study of being: specifically, a branch of 
metaphysics relating to the nature and relations of 
being; a particular system according to which 
problems of the nature of being are investigated; 
first philosophy.

2. A theory concerning the kinds of entities and 
specifically the kinds of abstract entities that are to 
be admitted to a language system.

- Webster's Third New International Dictionary
- www.formalontology.it/

• Study of fundamental categories of object, state of affairs, part, 
whole, the relations between parts and the whole and their 
laws of dependence

• Study of logical features of predication and of the various 
theories of universals
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What is Ontology (in AI)?

• An ontology is an explicit specification of a 
conceptualization. (Tom Gruber)

• What exists is that which can be represented.
• Knowledge of a domain represented in declarative 

formalism, objects of a domain, universe of 
discourse.

• Definitions that associate the names of entities in the 
universe of discourse (e.g. classes, relations, 
functions, or other objects) with human-readable text 
describing what the names mean, and formal axioms 
that constrain the interpretation and well-formed use 
of these terms. 

• The statement of a logical theory.
• Note: Microsoft recognizes only the philosophy 

version of Ontology!
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Philosophy + AI + Engineering

OntologyOntology

Formal 
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object, class
part/whole
time, state

Formal 
Ontology

object, class
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time, state

FormalizationFormalization
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Ontology
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Semantics

• Meaning, but what does it mean to have 
a “meaning”?

• Answer: It’s mainly in classifications and 
relations

• Example (next page)

27 October, 2008 13
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20 Questions

• Is it a thing? Yes.
• Is it an institution? Yes.
• Is it government owned? No.
• Is it a school? Yes.
• Is it a university? Yes.
• Is it located in Boston? Yes.
• Is it near a river? No.
• Is it near MFA? Yes.
• Bingo: Northeastern!

27 October, 2008 14
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Terminology � Ontology

• Is it a thing ? Yes.
• Is it an institution ? Yes.
• Is it government owned ? No.
• Is it a school ? Yes.
• Is it a university ? Yes.
• Is it located in Boston ? Yes.
• Is it near a river ? No.
• Is it near MFA? Yes.
• Bingo: Northeastern !
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Ontology

27 October, 2008 16
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Annotation
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In Web Ontology Language (OWL)

<xm<?xml version="1.0"?>
<rdf:RDF

xmlns="http://www.owl-
ontologies.com/Ontology1203277937.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"

xml:base="http://www.owl-
ontologies.com/Ontology1203277937.owl">

<owl:Ontology rdf:about=""/>
<owl:Class rdf:ID="School">
<rdfs:subClassOf>
<owl:Class rdf:ID="Inst"/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="University">
<rdfs:subClassOf rdf:resource="#School"/>

</owl:Class>
<owl:Class rdf:ID="City"/>
<owl:Class rdf:ID="River"/>
<owl:Class rdf:ID="Museum">
<rdfs:subClassOf rdf:resource="#Inst"/>

</owl:Class>
<owl:ObjectProperty rdf:ID="locatedIn">
<rdfs:domain rdf:resource="#Inst"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="near">
<rdfs:domain>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Inst"/>
<owl:Class rdf:about="#River"/>

</owl:unionOf>
</owl:Class>

</rdfs:domain>
<rdfs:range>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#River"/>
<owl:Class rdf:about="#Inst"/>

</owl:unionOf>
</owl:Class>

</rdfs:range>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="ownership">

<rdfs:domain rdf:resource="#Inst"/>
</owl:ObjectProperty>
<River rdf:ID="CharlesRiver"/>
<Inst rdf:ID="Private"/>
<City rdf:ID="Boston"/>
<Museum rdf:ID="MFA"/>
<Inst rdf:ID="Gov"/>
<University rdf:ID="NEU">

<near rdf:resource="#MFA"/>
<locatedIn rdf:resource="#Boston"/>
<ownership rdf:resource="#Private"/>

</University>
</rdf:RDF>27 October, 2008 18
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Querying and Inference

• “Semantics” means we can infer facts that 
are not explicit in the representation

• Does NEU have students?
– Yes, since every school has students

• Is NEU in Massachusetts?
– Yes, since Boston is in Massachusetts

• Is NEU near Symphony Hall?
– Yes, since MFA is near Symphony Hall

• Give me all Colleges of NEU
– Technological Entrepreneurship, Engineering, 

CIS, Arts & Sciences, …

27 October, 2008 19
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Semantic Webs

• Web of pages (from www to SW)
• Web of data (from databases to RDF 

stores)
• Web of services (from SOA to Semantic 

Web Services)
• Web of actors (humans, agents and all 

of the above)
• Web of Cognitive Radios

27 October, 2008 20
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Towards Cognitive Radio

• Premise: Humans possess cognitive 
skills

• If Cog Radios are to possess some 
cognitive skills, it might be worthwhile to 
mimic some of the humans’ cognitive 
skills in the radios
– Philosophical views of human cognition
– Architectural aspects of cognition

– Procedural vs. declarative languages
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Philosophy of Cognition

• Behaviorism (mainly 50’s, 60’s and earlier)
– Observable behaviors, response to environment
– Input-output reflexive behaviors
– Focus on “low-level” learning experiments (Pavlov’s dogs 

salivated after hearing the bell)
– No explicit reference to mental processes/reasoning

• Cognitivism
– Mental processes “inside the head” subject of study
– Knowledge as symbolic, mental constructions
– Explicit storage of (absolute) knowledge in the minds

• Constructivism
– Knowledge as constructed entity, needs to be constructed by 

the learner, cannot be just transmitted (unlike in The Matrix!)
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Cognitive Architecture

• SM: More than enough, very short – typically less than 1sec, up to 2.5
• STM: 7 +/- 2 “chunks” (digits), up to 18sec, “true cognition” or conscious thought
• LTM: 1 billion bits for 50 years

http://evolution.massey.ac.nz/assign2/HBB/modmem1.html 
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LTM
http://evolution.massey.ac.nz/assign2/HBB/modmem1.html 

Procedural: “unconscious effects of learning such as skills and behavioural responses.”
Episodic: What you “remember”
Semantic: What you “know”
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Computer Languages

Object Oriented Local

Imperative

Structured

C++, Java

Declarative

C, Fortran Prolog,
SQL

Web based 

OWL/SWRL

Note: This classification is not complete; not disjoint!
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Procedural vs. Declarative Processing

Data Program A Data

Data

Program B Data

Axioms A

Inference
Engine

Axioms B

Data

Algorithm
• Operations
• Control 
(sequencing)

Modification:
• Operations
• Sequencing

Algorithm
• Logic
• Control 
(sequencing –
responsibility of 
Inference Engine)

Modification:
• Logic

P
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C
E
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A
R
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I
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Program = What + How

• Logical Program = Logical Theory + 
Deduction

• What = Logical Theory (domain specific)

• How = Deduction (generic)
• Programmer needs to provide only logic 

(what)

• Logical Program has formal semantics
– Therefore, it is harnessed for formal verification
– Important for accreditation of software controlled 

radios (safety, liveness properties)
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Example

• Lists
append(First, Second, Result)

• append(L1,L2,?L3)
– Result: new list L3 built out of L1, L2

• append(L1,L2,L3)
– Result: “true” or “false” depending on whether L3 is a 

combination of L1 and L2 (verification)

• append(?L1,L2,L3)
– Result: L1 that is a sub-list of L3

• Flexibility due to the ability to use the 
append operation in many different 
ways – one definition instead of four
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Example

• Numerical constraints: X < Y
• Procedural: if a+b < c*d then … else …

– Can read in the variables a, b, c, d, but cannot 
input the expression

• Declarative:
– Develop domain ontology, add rules
– Collect input data (annotated w/Ontology)
– Input any expression for query

• Numerical
• Logical

– (a < b) & ~(b>c) OR c*a = d …
– Get answers to your query
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Logical Program “knows” Things

Input Data

Axioms
Inference
Engine D

E
C
L
A
R
A
T
I
V
E

Derived
Data

Query

Logical Program can be queried
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Declarative vs. Imperative

• Declarative programming advantages
– Clear formal semantics (formal verification)
– Programmer productivity (only “what” not “how”)
– Querying/flexibility (without knowing “how”)
– Metaprogramming (programs “understand” their 

own structure, can manipulate themselves)
• The price for this is performance

– Being addressed by language developers as we 
speak

– More on “complexity” later
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Declarative vs. Procedural

• Declarative languages seem to be a 
better fit for the CR Requirements:
– Awareness: not only facts, but also 

consequences
• Currently operating within 700MHz band –

what’s the implication?
• Reflection – knowing its own variables (most 

declarative and some procedural support)

– React to surprise
• Knowledge not available at design time

27 October, 2008 32
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CR, Interoperability and Constructivism

• The theories of cognitivism and constructivism are 
well suited to the problem of transfer of structural 
knowledge between cognitive radios.

• One radio (the teacher) can convey the knowledge of 
its capabilities to another cognitive radio (the learner) 
by expressing it in terms of base ontology that is 
shared among CRs.

• The important aspect is that the learner’s architecture 
might differ from that of the teacher. Consequently 
the learner has to interpret the teacher’s knowledge 
and then reconstruct it using its own components and 
architecture

27 October, 2008 33
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Interoperability Scenario
• Assumptions

– CR nodes share the same base ontology
– CR nodes have a way of communicating with each other; 

have fall back procedure in case communication between 
them fails

– CR nodes can query for and respond to queries for specific 
facts in their knowledge/databases

– CR nodes can reason about facts in their knowledge base 
and facts learned from other nodes through queries

– A CR node can query for an arbitrary ontology concept. The 
queried node responds by transferring a fragment of its 
ontology base related to that concept. The first node can 
then incorporate that knowledge into its own ontology and 
can generate software components based on that 
knowledge.

– If an unknown ontology concept is expressed in terms of 
other unknown concepts, the querying can continue 
recursively until the concept can be expressed in terms of 
concepts known to the querying node or in terms of base 
ontology.

27 October, 2008 34
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Example Interaction Sequence (1/2)

Node A Node B

<query> error bit rate, channel 
equalizer coefficients</query>

�


<response>error bit rate = …, channel 
equalizer coefficients = {…}</response>

[Node A uses the data received from 
Node B and its own parameters and 
decides to switch to QAM16]

<request>change modulation to 
QAM16</request>

�


<query>QAM16 modulator</query>

<response>QAM16 modulator is a 
composite component which consists 
of quadrature modulator, …, 
etc.</response>

�

27 October, 2008 35
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Example Interaction Sequence (2/2)

Node A Node B


<query>quadrature modulator </query>

<response>quadrature modulator 
is a composite component which 
consists of 2 multipliers, 1 adder, 1 
phase shifter, connected in the 
following way: …</response>

�

[Node B builds the model of QAM16 modulator 
using collected facts and facts in its knowledge 
base. Uses its resoner to prove that such 
constructed component is consistent with the 
specification received from node A.]


<request ack>changing to QAM16</request ack>

or

<request nack>cannot change to QAM16<request 
nack>

27 October, 2008 36
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Example (1/2)

• The proposed scenario requires that composite 
components unknown to a CR could be constructed 
from other simpler components.

• The component construction algorithm at a certain 
point has to employ its reasoner to prove that the 
constructed entity is in fact the desired component.

• Initial research efforts directed towards finding a way 
to define an OWL class for a composite component 
(such as quadrature modulator) in terms of other 
OWL classes representing basic components (such 
as adder, multiplier, phase shifter etc.) 

27 October, 2008 37
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Example (2/2)

• Quadrature Modulator (QM) – perhaps too simplistic, 
but manageable in a short course

27 October, 2008 38
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Ontology: A Small Piece

27 October, 2008 39

Class, subclass, individual, property (object, datatype), domain,
range, subproperty, fact (triple), restriction, constraints
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Ontology in OWL (1/2)

27 October, 2008 40
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Ontology in OWL (2/2)

27 October, 2008 41

Good news: You don’t need to type this OWL code!
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Protégé - Classes 

27 October, 2008 42
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Protégé - Properties

27 October, 2008 43
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Protégé – OWL Code

27 October, 2008 44
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Ontology – Class Hierarchy

• The experiment used very limited set of classes – the minimum 
needed to demonstrate the concept.

27 October, 2008 45
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Ontology - Properties

• The domains and ranges of the limited set of properties used in 

the experiment are shown in the diagram below.

27 October, 2008 46
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Ontology (Annotation): Individuals

27 October, 2008 47

CR should be able to represent itself in this way and use this
representation for telling other radios about itself.
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Insufficient Expressiveness of OWL

• Back to the example: CR1 asks CR2 to use QM and gives 
description of QM class (earlier slide).

• CR2 needs to reconstruct such a component from its own 
elements and prove it satisfies description of QM.

• The quadrature modulator has two multipliers. In OWL we 
can express that a particular class (QuadratureModulator) 
is in a relationship with another class (such as Multiplier) 
using a property (in this case hasSubComponent). We 
cannot however distinguish the relationship with one of the 
multipliers from the relationship with the other one.

• Similarly in OWL we can express the existence of the 
relationship between  QuadratureModulator and InputPort, 
but there’s no way to distinguish between particular 
relationships with input ports I, Q and C.

27 October, 2008 48
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Can’t represent “uncleOf” in OWL
• Uncle is father’s brother

uncleOf(?X,?Y) :-
father(?Z,?Y), brotherOf(?X,?Z).

• OWL does not have a construct for composing properties 
(SWRL does)

Y

Z X

uncleOf

fatherOf

brotherOf
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SWRL

• W3C’s Semantic Web Rule Language
• Extends representational power of OWL 

by adding implication in the form of 
Horn Clauses (i.e., a form of if-then 
rules)

• Leverages the descriptive capabilities of 
OWL DL

• Leverages the rule and variable syntax 
of RuleML
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SWRL: N-ary Relations
• Can’t represent

attack (Attacker, Attacked, Time)
• Instead, need to reify the relation, e.g.,

event (Attacker, AttackEvent)
timeOfAttack (AttackEvent, Time)
victim (AttackEvent, Attacked)

• Have to introduce additional Class and three Properties: AttackEvent, 
event, timeOfAttack, victim 

• Problem: Verbose! Multiplicity of choices of reification

Attacker Attacked

Time

attack

timeOfAttack

Attacker

Attacked

Time

Attacked

AttackEvent

victim

event

Can’t do this! Solution
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Horn Clauses

27 October, 2008 52

¬A1 ∨ ¬A2 ∨ …. ∨ ¬An ∨ B

A1 ∧ A2 ∧ …. ∧ An ⇒ B

B :- A1 , A2 , …. , An

uncleOf(?Z,?Y) :- fatherOf(?X,?Y)∧ brother(?X,?Z).
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Augmenting OWL with Rules

• To express scenarios, like the one with describing component 
structure, OWL has to be augmented with Rules in order to be 
able to express more complicated relationships among classes.

27 October, 2008 53

hasQMConnections(?QM) :-
Module(?QM), 
hasSubComponent(?QM, ?M1), 
type(?M1, Multiplier), 
hasInputPort(?M1, ?InPortM1), 
hasInputPort(?QM, I), 
isConnected(I,InPortM1), …, 
hasSubComponent(?QM, M2), 
!=(M1,M2), …
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BaseVISor Reasoner
• Note that these rules are built “on top of” an ontology. Need an 

inference engine that can process such rules.
• BaseVISor is a forward-chaining inference engine developed by 

VIStology, Inc. 
• Based on the Rete network optimized for the processing of RDF 

triples.
• Incorporates axioms and consistency checks for R-entailment 

which supports all of the RDF/RDFS and a part of OWL-DL and 
OWL-Full semantics.

• For the price of not supporting all of the OWL-DL, BaseVISor 
provides P-SPACE performance for ground RDF graphs 
(complexity will be discussed later in this tutorial).

• BaseVISor is available (free for research purposes) at:

http://www.vistology.com/BaseVISor
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BaseVISor Rule Language (1/2)

• Facts defined by triples consisting of 
subject, predicate and object

<triple>

<subject resource=”ll:QuadratureModulator/>

<predicate resource=”ll:hasComponent”/>

<object resource=”ll:Multiplier”/>

</triple>
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BaseVISor Rule Language (2/2)
• Rules consist of body and head elements.
<rule name="hasMultiplier rule">

<body>
<triple>

<subject variable="comp" />
<predicate resource="ll:hasSubComponent" />
<object variable="mul" />

</triple>
<triple>

<subject variable="mul" />
<predicate resource="rdf:type" />
<object resource="ll:Multiplier" />

</triple>
</body>
<head>

<assert>
<triple>

<subject variable="comp"/>
<predicate resource="#hasMultiplier "/>
<object variable="mul" />

</triple>
</assert>

</head>
</rule>
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Open vs. Closed World Reasoning

• OWL uses the Open World Assumption (OWA)
• Logical Negation: facts that have not been explicitly asserted to be true 

are not presumed to be false, they simply are unknown.
• Monotonic inference: only unknown facts can be proven to be false or 

true.
• Closed World Assumption (CWA): Everything that is true is known.
• Negation as Failure (NAF): facts that are not known to be true, are false 

(e.g., flight schedule).
• Non-monotonic inference: new facts must disprove previously known 

facts (true or false).
• Both OWA and CWA are useful in real life:

– OWA only: If none of the policies for “can transmit” hold, can’t 
conclude “cannot transmit”

– CWA only: If don’t know a CR has a QM, then conclude “it does not 
have a QM”

• OWL supports “closed domain assumption” (class limited to a specific 
set of individuals)
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Quadrature Modulator Expressed in 
OWL and Rules

• Graphical representation of the rules’
structure.
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Port-Component Relationship in Open 
World Reasoning

• We can express a relationship between a component 
(e.g. mul1) and its input port (e.g. mul1_in1) by 
defining a rule for an exclusive input port. Such a rule 
has to state two things:
– That there is a relationship between mul1_in1 and mul1
– It is the only relationship for mul1_in1

• If we create a rule for non-exclusive input port (i.e. an 
input in relationship with more than one component), 
then we can use that rule to define exclusive input 
port simply by excluding all relationships that are 
non-exclusive

• Semantic Web community is working on the problem 
of co-existence of OWL and Rules

• For now, the burden is on the implementer of CR
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Example: Exclusive vs. Non-Exclusive Port

27 October, 2008 60

isExclusiveInputPortOf(P,C) :- inputPortOf(P,C), 
not(isNonExclusiveInputPortOf(P,C)).

isNonExclusiveInputPortOf(P,C) :- inputPortOf(P,C), 
inputPortOf(P,D), not(C=D).

• The “not” is a NAF negation
• Without this would not be able to prove that a given 
component satisfies the class description since it
might have more components (incomplete knowledge).

• Implementer’s responsibility to insure consistency
• retraction of non-monotonic inferences
• re-start the inference process
• insure no non-monotonic inference (no not’s)
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So What Have We Accomplished?

• Define a Class of complex components
• Prove that a given component is or is not an 

instance of that class
• In other words, given that a CR node A sends a 

description of a Class of component to CR B that 
B does not know, B is able to decide whether 
one of the components that either exists in its 
library, or a component that it constructs, is or is 
not an implementation of the Class that A wants 
B to use

• Note: This applies to the “same structure” only
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Relevant Work

• D. Preuveneers and Y. Berbers [3] 
– Describe components in OWL

– Only at “instance level”

• Cannot compare classes of components
• Did not specify classes
• Thus could not formulate the problem
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Limitations of Structure Based Approach
• Equivalent software modules can have very different internal structures, 

for example
– f(a,b,c,d) = (a+b)(c+d) is equivalent to
– f(x,y,v,u) = (xv + xu + yv + yu).

• The same functional modules operating on different data types are 
seen as two different structures as the structure-based approach 
doesn’t allow for easy separation of the abstract functionality from the 
underlying data type

• The lack of “understanding” of the functionality might lead to 
implementation inefficiencies. For example if a node has a specialized 
unit for multiply-add operation it might not “realize” that it could use it in 
place of an adder and a multiplier in a composite module described in 
terms of base components (see next slide).

• There is no obvious way to express dynamics – time dependencies and 
constrains.
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• If a CR node is given a recipe for 
the quadrature modulator 
expressed in simple components 
(as shown in the top picture), 
unless that node “understands”
the desired functionality it will not 
be able to infer an equivalent but 
more efficient implementation of 
such module (as shown in the 
bottom picture). Structurally those 
two modules are different, 
functionally – the same.

Limitations of structure based approach
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Functionality
• Can express “equivalent property” in OWL, but no mechanism 

for proving equivalence
• Rules can define a procedure for computing values of a 

function, but cannot express that two functions are equivalent.
• Use more expressive language for describing components. For 

instance, chose Metaslang which supports composition and 
category theory constructs like morphism and colimit.

• Can investigate how to express the fact that two syntactically 
different components are semantically the same.

• Moreover, we can use Metaslang to capture common parts of 
different components.

• Use a tool (Specware) that supports the use of Metaslang
allowing abstract specifications of radio components and their 
further refinement through morphisms and colimit operations.

• Use a theorem prover (SNARK) to prove conjectures on 
functional equivalences of components

• Problem: computational complexity
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Specware

• Specware is Kestrel Institute’s framework implementing 
some of their research results in application of category 
theory in formalized software development.

• Specware supports systematic construction of software from 
abstract specifications to executable code through a series of 
refinements.

• An automated theorem prover (such as SRI’s SNARK) can 
be used in each of the refinement steps to prove its 
correctness.

• If this process is followed rigorously, the resulting code is 
correct (i.e. it strictly adheres to the axioms defined in the 
abstract specification).
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Simple Specification in Metaslang

BinRel = spec

type E

op le : E*E -> Boolean

endspec

Can import BinRel and then add additional constraint s:

PreOrder = spec

import BinRel

axiom reflexivity is 

fa(x) x le x = true

axiom transitivity is

fa(x,y,z)

( x le y ) && ( y le z ) => ( x le z )

endspec
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Specification Morphism
Antisymmetry = spec

type X

op binOp : X*X -> Boolean

axiom antisymmetry is fa(x,y)

binOp(x,y) && binOp(y,x) => x = y

endspec

m_BinRel_Antisymmetry = 
morphism BinRel-> Antisymmetry 

{ E +-> X, le+->binOp }

27 October, 2008 68



Proceedings of the SDR '08 Technical Conference and Product Exposition. 
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Specification Diagram

BinRelDiag = diagram {
n1 +-> BinRel,
n2 +-> PreOrder,
n3 +-> Antisymmetry,
e1: n1->n2 +-> morphism BinRel -> PreOrder {},
e2: n1->n3 +-> m_BinRel_Antisymmetry

}

PreOrde
r

BinRel

AntiSymmetry

m_BinRel_Antisymmetrytrivial morphism
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Colimit

PartialOrder = colimit BinRelDiag

PreOrde
r

BinRel

AntiSymmetry

m_BinRel_Antisymmetrytrivial morphism

PartialOrder
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All theorems from BinRel, PreOrder and AntiSymmetry
carry over to PartialOrder. 
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Abstraction and Commonality of 
Components

• In the structure-based interoperability approach it is difficult 
to separate abstract functionality from underlying data type. 

• For example a multiply-add unit processing real samples 
represented by floating point numbers will be composed quite 
differently than a unit processing pairs of integers 
representing complex samples. 

• In structure-based scheme the commonality of those two 
modules is lost as they are treated as two completely 
different entities.

• Specware supports abstract specification and its refinement
through morphism and colimit operation.
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Abstract Specification with Refinements

Samples = spec
type Sample
...
op Sample.multiply: 

Sample*Sample->Sample
op Sample.add: 

Sample*Sample->Sample
...

endspec

IntSamples = spec
import Samples
type Sample = Integer
...
def Sample.multiply(x,y) = x*y
def Sample.add(x,y) = x+y
def Sample.minus(x) = -x
...

endspec

CplxIntSamples = spec

import Samples

type Sample = { re:Integer, im:Integer}

...

def Sample.multiply(x,y) = 

{ re = ( x.re*y.re - x.im*y.im ),
im = ( x.re*y.im + x.im*y.re ) }

def Sample.add(x,y) = 

{ re = (x.re+y.re), im = (x.im+y.im) }

...

endspec

MorphInt = 

morphism Samples -> IntSamples {}

MorphCplxInt = 

morphism Samples -> CplxIntSamples {}
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Specification of Adder with Refinements 
through Spec Substitution

Adder= spec

import SampleSpec#Samples

op Adder.Func: Sample*Sample -> Sample

def Adder.Func(x,y) = Sample.add(x,y)

endspec

Adder_Int = Adder[MorphInt]

Adder_CplxInt = Adder[MorphCplxInt]

• An abstract specification of Adder is refined to two 
concrete specifications through spec substitution 
(square brackets) operation, which is a simplified 
colimit.
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Functional Equivalence

• The use of theorem provers makes it possible to prove that 
two software modules are equivalent even when they differ in 
the structure.

• In Specware one can create conjectures about important 
properties of the specification. Those conjectures can be 
later proved by the inference engine. 

• The limitation of SNARK is its ability to reason in the first 
order logic only. More advanced refinements requiring higher 
order logic might not be provable with SNARK even though 
they are correct.
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Funcs = spec
import Adder
import Multiplier
op Funcs.Func1: Sample*Sample*Sample -> Sample
def Funcs. Func1 (a,b,c) = 

Multiplier.Func( a, Adder.Func(b,c) )
op Funcs. Func2 : Sample*Sample*Sample -> Sample
def Funcs.Func2(a,b,c) = 

Adder.Func( Multiplier.Func(a,b),
Multiplier.Func(a,c) )

conjecture Funcs_eq_conj is 
fa(a:Sample, b:Sample, c:Sample)

Func1(a,b,c) = Func2(a,b,c)
endspec

p0 = prove Funcs_eq_conj in Funcs options 
"(use-resolution t) (use-paramodulation t)"

Example: Equivalent Functions

a*b + a*c

a*(b+c)
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Temporal Logic Elements
• In practical implementations of CR algorithms timing constraints 

have to be considered when constructing composite modules. 
• Temporal logics try to tackle different aspects of time in complex 

system without introducing time explicitly. In our experiments we 
used a simple concept from Linear Temporal Logic – the operator X 
(neXt).

• In discrete time systems (as all sample-based systems are) the 
operator X is simply a delay element. 

• Operator X is not a function as understood by functional languages 
– it uses a side effect (remembered value) to compute the returned 
value.

• Since Metaslang is a functional language it cannot implement the X 
operator. That limitation however does not prevent us from defining 
the X operator as an abstract operation with some axioms thus 
enabling reasoning about it.

27 October, 2008 76



Proceedings of the SDR '08 Technical Conference and Product Exposition. 
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

Example - Delay Specification
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UnitDelaySpec = spec
import Samples
op     UnitDelay.Func: Sample -> Sample
axiom UnitDelay_commutativity is
fa( f:( Sample->Sample ), x:Sample )
UnitDelay.Func( f(x) ) = f( UnitDelay.Func(x) )

axiom UnitDelay_commutativity2 is
fa( f:( Sample*Sample->Sample ), x:Sample, y:Sample )
UnitDelay.Func( f(x,y) ) = f( UnitDelay.Func(x), UnitDelay.Func(y) )

endspec

Note: Quantification over functions!
AdderDelay = spec
import UnitDelaySpec
op Adder.Func: Sample*Sample -> Sample
def Adder.Func(x,y) = UnitDelay.Func( Sample.add( x, y ) )

endspec

MultiplierDelay = spec
import UnitDelaySpec

op Multiplier.Func: Sample*Sample -> Sample
def Multiplier.Func(x,y) = UnitDelay.Func( Sample.multiply(x,y) )

endspec
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Behavioral Equivalence
MACSpec = spec

import UnitDelaySpec
op MAC.Func: Sample*Sample*Sample -> Sample
def MAC.Func(m1, m2, a) = 

UnitDelay.Func( 
Sample.add( 

UnitDelay.Func( Sample.multiply(m1, m2) ),
UnitDelay.Func( a ) ) )

endspec

CompositeMACSpec = spec
import AdderDelay
import MultiplierDelay
import MACSpec
op CompositeMAC.Func: Sample*Sample*Sample -> Sampl e
def CompositeMAC.Func(m1, m2, a) = 

Adder.Func( Multiplier.Func(m1,m2), UnitDelay.Func( a) )

conjecture CompositeMAC_conj is
fa( m1:Sample, m2:Sample, a:Sample )

CompositeMAC.Func( m1, m2, a ) = MAC.Func( m1, m2, a )
endspec

p0 = prove CompositeMAC_conj in CompositeMACSpec opti ons 
"(use-resolution t) (use-paramodulation t)" 
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Conclusions so far
• We applied elements of category theory to Cognitive Radio 

interoperability problem.
• Demonstrated the feasibility of this approach as we were 

able to overcome the shortcomings of the structure-based 
approach we proposed previously.

• Current theorem provers that are necessary for this solution 
are relatively slow (need investment!)

• The fact that Metaslang is a functional language limited our 
success with the application of elements of temporal logic to 
software component application. We were unable to generate 
source code for modules using the X operator. We were able 
however to use its abstract definition and axioms in proving 
functional equivalence of module specifications.
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Problem Complexity

The time complexity of a problem is the number of steps that it takes to 
solve an instance of the problem, as a function of the size of the input , 
(usually measured in bits) using the most efficient algorithm .

For sufficiently large n: log n < n < n log n < n2 < n3 < 2n

Since we consider the worst case, we really take into account only order of 
the function – big-Oh notation:

O(log n) < O(n ) < O(n log n) < O(n2) < O(n3) < O(2n)

Examples: O(g(n))
Sequential search: O(n)
Binary search: O(log n)
Merge sort: O(n log n)
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TSP: Traveling Salesman 
Problem

Problem: Given the coordinates of n cities, find the shortest closed 
tour which visits each city exactly once.

Brute force (enumeration of all possible tours): O(n!)

Assume: n=10 takes 1 sec
Result: n=20 would take 20!/10! = 20,000 years
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Faster CPUs?
Time 

complexity 
function

Size of Largest Problem Instance solvable in 1 Hour

With present 
computer

With computer 
100 times faster

With computer 
1000 times 
faster

n N1 100N1 1000N1
n2 N2 10 N2 31.6 N2
n3 N3 4.64 N3 10 N3
2n N4 N4+6.64 N4+9.97
3n N5 N5+4.19 N5+6.29

If a TSP for 300 cities solvable in a reasonable time limit, a 1000 faster
CPU would not be able to solve a 302 city TSP!
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Decision (Recognition) and 
Optimization Problems

Optimization problems: minimize/maximize a cost function given constraints

Decision (recognition) problems: require a “yes” or “no” answer
- Special case of optimization (no cost function)
- For each optimization problem there is a decision version
- Complexity results also hold for the original optimization problem

Example: TSP Decision Problem:
Is there a closed tour passing each city only once, with total length ≤ L?

- Have a TSP solution – then just compare it to L
- Have a TSP-DP solution – use binary search to find the optimal 
solution
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The SAT Problem (satisfiability)

Problem: Given a Boolean formula in Conjunctive Normal Form (CNF), is it 
satisfiable? That is, is there a set of "true-false" values to be assigned to the 
various variables, such that the compound proposition is true?

Example:

(x1 OR x2 OR x3) and (x1 OR ¬x2) and (x2 OR ¬x3) and (x3 OR ¬x1) and
(¬x1 OR ¬x2 OR ¬x3)
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P and NP

P – recognition problems for which a polynomial time algorithm exists

NP – Non-deterministic Polynomial – both encoding and verification of
solution are polynomial, even if the solution is guessed

Example: Integer Programming Problem

Given an m x n integer matrix A and an integer m-vector b,
is there a n-vector x, with elements 0 or 1, such that Ax=b ?

If we have a potential solution, it’s easy to check whether it is a solution
or not (a valid certificate exists)

NP – class of “reasonable” problems.
P is subset of NP
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Polynomial Reducibility

Problem A reduces in polynomial-time to another problem B, if and only if:
1.there is an algorithm for A which uses a subroutine for B, and
2.each call to the subroutine for B counts as a single step, and
3.the algorithm for A runs in polynomial-time.

Write:  A ∝ B

If A ∝ B and B is in P, then A is in P
If A ∝ B then B is at least as “hard” as A

Example:
TSP  ∝ TSP Decision Problem
SAT  ∝ Integer Programming Decision Problem
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NP-Completeness

A problem is NP-complete if:
- it belongs to class NP
- all other problems in NP are reducible to it

Theorem: SAT is NP-complete

Cook’s Theorem:
Let A be a recognition problem. 
Then, the following propositions are equivalent:
1. A ∈ NP
2. A is polynomially solvable by a non-deterministic algorithm
3. A polynomially transforms to SAT (A ∝ SAT)
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NP-hard

A problem Pr is NP-hard if SAT  ∝ Pr

Example:
SAT  ∝ Integer Programming Problem, thus it is NP-hard

Note: NP-complete problems are NP-hard, but the opposite 
does no have to be true 
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Still Other Classes
EXPTIME – problems solvable (deterministically) in O(2 p(n) ) time, 

where p – polynomial
Note: complexity guaranteed to be exponential, unlike in NP

NEXPTIME – problems solvable by a non-deterministic algorithm
in O(2 p(n) ) time,  where p – polynomial

UNDECIDABLE – if there is no algorithm that can always give the correct
answer. 

Example: The Halting Problem: Given a description of an algorithm
and its initial input, determine whether the algorithm, when
executed on this input, ever halts (the alternative is that it runs
forever without halting).

Note: Individual instances of the problem can be solvable!
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Complexity Classes
0-1-NPC - #AC0 - #L - #L/poly - #P - #W[t] - +EXP - +L - +L/poly - +P - +SAC1 - A0PP - AC - AC0 - AC0[m] - ACC0 - AH - AL -
AlgP/poly - AM - AM-EXP - AM intersect coAM - AM[polylog] - AmpMP - AmpP-BQP - AP - AP - APP - APP - APX - AUC-
SPACE(f(n)) - AVBPP - AvE - AvP - AW[P] - AWPP - AW[SAT] - AW[*] - AW[t] - βP - BH - BPE - BPEE - BPHSPACE(f(n)) - BPL -
BP•NP - BPP - BPPcc - BPPKT - BPP-OBDD - BPPpath - BPQP - BPSPACE(f(n)) - BPTIME(f(n)) - BQNC - BQNP - BQP - BQP/log -
BQP/poly - BQP/qlog - BQP/qpoly - BQP-OBDD - BQPtt/poly - BQTIME(f(n)) - k-BWBP - C=AC0 - C=L - C=P - CFL - CLOG - CH -
Check - CkP - CNP - coAM - coC=P - cofrIP - Coh - coMA - coModkP - compIP - compNP - coNE - coNEXP - coNL - coNP - coNPcc -
coNP/poly - coNQP - coRE - coRNC - coRP - coSL - coUCC - coUP - CP - CSIZE(f(n)) - CSL - CZK - D#P -Δ2P -δ-BPP -δ-RP - DET 
- DiffAC 0 - DisNP - DistNP - DP - DQP - DSPACE(f(n)) - DTIME(f(n)) - DTISP(t(n),s(n)) - Dyn-FO - Dyn-ThC0 - E - EE - EEE -
EESPACE - EEXP - EH - ELEMENTARY - ELkP - EPTAS - k-EQBP - EQP - EQTIME(f(n)) - ESPACE - ExistsBPP - ExistsNISZK -
EXP - EXP/poly - EXPSPACE - FBQP - Few - FewP - FH - FNL -FNL/poly - FNP - FO(t(n)) - FOLL - FP - FPNP[log] - FPR - FPRAS -
FPT - FPTnu - FPTsu - FPTAS - FQMA - frIP - F-TAPE(f(n)) - F-TIME(f(n)) - GA - GAN-SPACE(f(n)) - GapAC0 - GapL - GapP -
GC(s(n),C) - GI - GPCD(r(n),q(n)) - G[t] - HkP - HVSZK - IC[log,poly] - IP - IPP - L - LIN - LkP - LOGCFL - LogFew - LogFewNL -
LOGNP - LOGSNP - L/poly - LWPP - MA - MA' - MAC0 - MA-E - MA-EXP - mAL - MaxNP - MaxPB - MaxSNP - MaxSNP0 - mcoNL 
- MinPB - MIP - MIP*[2,1] - MIPEXP - (Mk)P - mL - mNC1 - mNL - mNP - ModkL - ModkP - ModP - ModZkL - mP - MP - MPC -
mP/poly - mTC0 - NC - NC0 - NC1 - NC2 - NE - NE/poly - NEE - NEEE - NEEXP - NEXP - NEXP/poly - NIQSZK - NISZK - NISZKh -
NL - NL/poly - NLIN - NLOG - NP - NPC - NPcc - NPC - NPI - NP intersect coNP - (NP intersect coNP)/poly -NPMV - NPMV-sel -
NPMVt - NPMVt-sel - NPO - NPOPB - NP/poly - (NP,P-samplable) - NPR - NPSPACE - NPSV - NPSV-sel - NPSVt - NPSVt-sel - NQP -
NSPACE(f(n)) - NT - NTIME(f(n)) - OCQ - OptP - P - P/log - P/poly - P#P - P#P[1] - PAC0 - PBP - k-PBP - PC - Pcc - PCD(r(n),q(n)) - P-
close - PCP(r(n),q(n)) - PermUP - PEXP - PF - PFCHK(t(n)) - PH - PHcc - Φ2P - PhP -Π2P - PINC - PIO - PK - PKC - PL - PL1 - PLinfinity -
PLF - PLL - PLS - PNP - PNP[k] - PNP[log] - P-OBDD - PODN - polyL - PostBQP - PP - PP/poly - PPA - PPAD - PPADS - PPP - PPP-
PPSPACE - PQUERY - PR - PR - PrHSPACE(f(n)) - PromiseBPP - PromiseBQP - PromiseP - PromiseRP - PrSPACE(f(n)) - P-Sel - PSK -
PSPACE - PT1 - PTAPE - PTAS - PT/WK(f(n),g(n)) - PZK - QAC0 - QAC0[m] - QACC0 - QAM - QCFL - QCMA - QH - QIP - QIP(2) -
QMA - QMA+ - QMA(2) - QMA log - QMAM - QMIP - QMIPle - QMIPne - QNC0 - QNCf

0 - QNC1 - QP - QPSPACE - QSZK - R - RE -
REG - RevSPACE(f(n)) - RHL - RL - RNC - RP - RPP - RSPACE(f(n)) - S2P - S2-EXP•PNP - SAC - SAC0 - SAC1 - SAPTIME - SBP - SC 
- SEH - SelfNP - SFk - Σ2P - SKC - SL - SLICEWISE PSPACE - SNP - SO-E - SP - SP - span-P - SPARSE - SPL - SPP - SUBEXP -
symP - SZK - SZKh - TALLY - TC 0 - TFNP -Θ2P - TreeBQP - TREE-REGULAR - UAP - UCC - UE - UL - UL/poly - UP - US - VNCk -
VNPk - VPk - VQPk - W[1] - WAPP - W[P] - WPP - W[SAT] - W[*] - W[t] - W*[t] - XOR-MIP*[2,1] - XP - XPuniform - YACC - ZPE -
ZPP - ZPTIME(f(n)) 
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The Complexity Zoo

The Complexity Zoo: http://www.complexityzoo.com/#nexp
Zookeeper: Scott Aaronson
407 classes and counting ...

27 October, 2008 91



Proceedings of the SDR '08 Technical Conference and Product Exposition. 
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

OWL in the Zoo

Language Logic Complexity

OWL Lite SHOIN(D) EXPTIME

OWL DL SHIF(D) NEXPTIME

OWL Full Subset of FOL Undecidable

DL+SWRL Subset of FOL Undecidable
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Phase Transitions and 
Undecidability
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Summary of Languages
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Approach: Logic
• Treat potential objects and relations as theories of the world

• Theories are the subject of logic (well defined and understood)

• They describe possibilities or potentiality (e.g., the fact that we know a 
theory of “car”, doesn’t mean there’s a car in this room)

• Add collected data to the theory - theory specialization

• Formulate any queries – in formal logic these are conjectures

• Use a general purpose theorem prover to prove conjectures

• Use the trace of the proof as an answer to the query

• Objects can be complex (compositions of simpler objects)

• Ideally, theories for complex situations are compositions of simple   
theories

• Combining theories using colimit of category theory
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The “Layer Cake” (Tim Berners-Lee)



Proceedings of the SDR '08 Technical Conference and Product Exposition. 
Copyright © 2008 The SDR Forum Inc. All Rights Reserved

27 October, 2008 97

Language Constructs: OWL Lite
• Class
• rdf:Property
• rdfs:subClassOf
• rdfs:subPropertyOf
• rdfs:domain
• rdfs:range
• Individual
• equivalentClass
• equivalentProperty
• sameAs
• differentFrom
• allDifferent
• inverseOf

• TransitiveProperty
• SymmetricProperty
• FunctionalProperty
• InverseFunctionalProperty
• allValuesFrom
• someValuesFrom
• minCardinality (only 0 or 1)
• maxCardinality (only 0 or 1)
• cardinality (only 0 or 1)
• intersectionOf
• Imports
• priorVersion
• …more
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Language Constructs: DL & Full

• one of
• disjointWith
• equivalentClass

(applied to class expressions)

• rdfs:subClassOf
(applied to class expressions)

• unionOf
• intersectionOf
• complementOf

Arbitrary Cardinality
• minCardinality
• maxCardinality
• cardinality

• hasValue
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Differences

• OWL Lite
– simplest; simple constraints
– but easy to develop tools

• OWL DL (for Description Logics)
– more complex and expressive
– still  decidable

• OWL Full
– expressive
– no computational guarantees

• But for Cognitive Radio we need Rules, 
Functions and Behaviors!
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Examples of reasoning

• Inferring classifications (if subClass is not stated explicitly, yet 
necessary and sufficient conditions exist)

– Relevance to fusion: classification
– Query: Is Air Base a subclass of Repair Facility?

• Infer “type” relation: Given an individual, which classes is it member of?
– Relevance to fusion: object classification, situation types
– Example: given features of a flying object, determine it’s an F16, and 

consequently an aircraft
– Example: given info on parts in stock and demand, determine whether this 

is the case of “nominal”, “marginal” or “critical” situation type
• Inferring identity – is this individual sameAs another?

– Relevance to fusion: association
– Infer that two reports about an aircraft are about the same one

• Inferring relations (properties) from ontology
– Relevance to fusion: situation awareness
– This aircraft belongs to the same squadron as another

• Inferring relations from rules
– Infer that a specific part at airbase for aircraft is critical, marginal, nominal
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R - Rules

A -
Instances of 
Ontology

T  - Concepts 
Expressed by the Ontology

R Box: policies (rules)
A Box: instances of the ontology
T Box: concepts defined in the ontology
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OWL + Rules
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A box
R box

A box
R box

T 
box

RC of B1 RC of H1

Simulation
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Policies (Rachel Li)
Functional Capabilities
• Determining which radios are connected 

from the base
• Finding and identifying peer radios; 
• Identifying and authenticating compatible 

reconfigurable radios; 
• Forming a satisfactory network extension 

route to the infrastructure from each 
affected  radio using non-interfering 
frequencies for each “hop”;

• Adjusting the network topology as 
responders arrive and depart from the 
area where coverage is unavailable;

• Preserving the level of security of the 
baseline network in the network 
extensions;

• Providing either full duplex (simultaneous 
receive and transmit) operation or 
including a “store and forward” capability 
for user voice and/or data 
communications.

Rules include:
1. check the signal strength to determine 

the connectivity status; 
2. check whether the received packet is 

destined to itself; 
3. query of neighbor’s information when a 

radio is disconnected from the base; 
4. send back an answer message when a 

radio receives a query from others; 
5. process the answer message and update 

the routing table;  
6. send a route reply message traversing 

back along the desired path to the 
starting hop when a radio finds a path to 
the base; 

7. store and forward the data packet to the 
next hop; 

8. send back an end-to-end 
acknowledgement when the data packet 
arrives at the destination. 

13 rules implemented for the 
Network Extension Use Case
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Summary

• If you expect that your CR will need to modify its 
behavior in run time, the declarative language 
approach seems to be the way to go

• Decide which language you need
– As simple as possible, but not simpler than that!

• If not expecting any change/flexibility of the 
application, don’t use the O-B approach

• Be prepared to deal with lots of detail in the 
implementation of policies (rules)

• Be prepared to deal with the issue of computational 
complexity
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Summary

• Challenge: Develop “universals” (ontology) 
for the radio/networking domain

• Join the Internet (business model and 
services)

• A community-wide coordinated effort needed
• SDR Forum seems to be the right community 

for this task
• MLM Work Group has already started the 

effort
• Advantages to all players – manufacturers, 

ISPs, operators and USERS!
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Language Standardization Efforts
• MLM Working Group of the Software Defined Radio Forum 

(SDRF)
• IEEE SCC41 P1900.5: Policy Language and Architectures for 

Managing Cognitive Radio for Dynamic Spectrum Access 
Applications Working Group: 
http://grouper.ieee.org/groups/scc41/5/index.htm 

• DARPA and performers on DTN, WANN and WNaN programs
• E3
• IEEE 802.21
• VITA 49
• Regulators (expected participation)
• Others Welcome!
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