
Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

SCA BASED IMPLEMENTATION OF STANAG 4285

IN A JOINT EFFORT UNDER THE NATO RTO/IST PANEL

Sarvpreet Singh, M. Adrat, S. Couturier, M. Antweiler Martin Phisel, Steve Bernier

Research Establishment for Applied Science (FGAN) Communication Research Centre (CRC)

 Wachtberg, Germany Ottawa, Canada

 singh@fgan.de martin.phisel@crc.ca

ABSTRACT

The NATO RTO/IST Regular Task Group on Software

Defined Radio (RTG on SDR) is working on the portability

and interoperability of waveforms in a Software

Communications Architecture (SCA) based environment

using the STANAG 4285 as a test waveform. This paper

presents several SCA based realizations of this waveform at

different granularity levels (number of divisions). The paper

discusses the overheads incurred by dividing the SCA based

transmitter resource into two and four resources. It shows

that the overheads increase linearly with the increase in the

number of resource divisions. An important result from the

analysis is that, an SCA resource should perform

considerable signal processing to overcome the overheads

associated for its functioning. It is also seen that there are

some fixed overheads for running an SCA resource along

with some variable costs, depending on the amount of data

processed by the waveform.

1. INTRODUCTION

It is anticipated that the future SDRs in the military domain

will be based on the Software Communications Architecture

(SCA) [1]. Since the SCA is a US development, only limited

knowledge and experience is available to the other NATO

nations till now. Thus, in mid 2007 a Regular Task Group

on Software Defined Radio (RTG on SDR) has been

established under the umbrella of the NATO RTO/IST panel

(Research and Technology Organization / Information

System Technology) [2]. The group consists of experts from

industry, universities and governmental organizations of

around 10 NATO nations. The focus on technical expertise

and the possibility of sharing experiences on SCA and SDR

in the international cooperation is unique and of value to its

members. The key objectives of this group are:

� the SCA based implementation of waveforms,

� demonstrating their portability on various platforms,

� and finally, demonstrating the interoperability of the

different realizations.

During this three step process, the group also aims to share

their learning experiences among all group members. In this

paper, we will present some of the results which have been

achieved at FGAN so far, focusing on the SCA based

implementations. In Section 2, we will briefly review the

SCA development tool suite being used by us as well as the

test waveform. The group agreed to work on a common

waveform called the STANAG 4285 [3]. In Section 3, we

will describe the different implementations at different

granularity levels. In Section 4, we will present some

profiling results of these granular implementations. In

Section 5, we will compare the profiling results of

implementations at different configurations and discuss their

cost overheads.

2. DEVELOPMENT TOOLS & WAVEFORM

2.1. SCA Development Tool Suite

The tool used for the development of SCA based waveform

for this work was the SCARI Software Suite [4] developed

by the Communication Research Centre (CRC), Canada.

The complete tool suite consists of a full featured JTRS

SCA Core Framework 2.2, a component development

library (CDL), and the SCA Architect modeling tool. The

SCA Architect is an IDE (Integrated Development

Environment) provided as a plug-in for the Eclipse

Framework. The tool allows us to create graphical models of

various elements, to perform real time validations, to

generate code responsible for implementing SCA

specifications to the elements, and to assemble the various

elements into applications and nodes.

 Since code can be generated from models, the tool

allows the waveform developers to focus more on

implementing the specific functionality of a waveform and

frees the developers from the constraints of the SCA.

2.2. STANAG 4285 Waveform

The waveform used for the work presented in this paper is

the STANAG 4285 [3]. It is a NATO standard for HF

communication. STANAG 4285 offers six modes between

75 bits/sec and 2.4 kbit/sec. The individual modes can be set

by the three configuration parameters: Code Rate (for

encoding), Interleaver Size (for interleaving) and PSK

Scheme (for modulation).

 The block diagram in Fig. 1 shows two parts: Frame

Collection and Frame Processing. The Frame Collection
This research project was performed under contract with the Technical

Center for Information Technology and Electronics (WTD-81), Germany.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

part is a kind of state machine, and the first state we see is

the ‘AGC’ (Automatic Gain Control). It provides

prerequisite information for the AGC at the receiver to

maintain a fairly constant input signal level. The next state is

the 'SOM' (Start Of Message) which gives information

regarding where the message starts. The 'User Data' state

comes next which defines the actual data. The 'EOM' (End

Of Message) state gives information about where the

message ends. And the 'Flush Bits' state is used to terminate

all the processing functions to a defined state (Ex: to fill in

the interleaver with zeros). Each of these states can be

switched to perform the Frame Processing.

Fig 1: Block diagram of STANAG 4285 transmitter

 We can switch between the states and pass the

respective data to FEC, Interleaving, and Coding for Frame

Processing. In the Frame Processing part, the 'FEC'

component is used for the error correction with code rate 1/2

and memory 6 convolutional code with generator

polynomial G(133, 177)8. Higher code rates like 2/3 for the

2.4 kbit/sec mode are achieved by puncturing. Lower code

rates like 1/16 for the 75 bit/sec mode are achieved by

repetition coding. The 'Interleaving' component is

responsible for data permutation to break up burst error

events (both 'long' and 'short'). The 'Modulation' component

includes scrambling and filtering in addition to modulation.

3. SCA BASED IMPLEMENTATIONS

3.1. Basic Implementation: TX as one SCA Resource

The functionality of the STANAG 4285 waveform is

provided by one of the RTO/IST RTG on SDR members,

Telefunken Racoms. The functionality is implemented in

ANSI-C in two parts, namely the transmitter (TX) and the

receiver (RX). To use this functionality in a C++ based SCA

environment resource, separate libraries are compiled from

the C-code for TX and RX. For the basic implementation,

two SCA based resources are implemented using the CRC

tools, one each for TX and RX. The respective libraries are

called from the SCA based resources to perform the signal

processing part of the waveform. To keep the working

simple, we use a text of characters which is encoded by TX

and in turn decoded by RX. The flow of data from TX

resource to RX resource is in the form of IQ-values through

SCA ports. The communication is handled by CORBA.

3.2. TX split into two SCA Resources

To increase the granularity of the application, a decision is

made to separate the TX resource further into sub resources.

Since the goal of the RTO/IST RTG on SDR is to achieve

easy portability of the waveforms, we need several resources

of the waveform which can then be shared with other

participating nations of the group to test portability and

interoperability. The functionality of TX code is separated

into two parts: Frame Collection and Frame Processing (see

Fig. 1). Separate libraries are made for both the separated

functionalities, to be used with the SCA resources. Two new

SCA resources are then implemented using the CRC tools

and the library calls are made from the respective resources.

The RX resource is reused from the previously made

application.

3.3. TX split into four SCA Resources

To achieve higher granularity TX is separated to a higher

level. Reusing the resource responsible for Frame

Collection, the Frame Processing functionality is divided

further into three parts handling different responsibilities.

The first part is responsible for FEC encoding, the second

part for interleaving and the third part for modulation. Once

again, the CRC tools are used for making three new SCA

based resources for each of the above mentioned

functionalities. Like with previous resources, the code

responsible for performing the functionalities is compiled as

a library to be used with the SCA resources.

3.4. Summary of different Implementations

Table 1 gives the summary of different implementations

with the number and name of resources as discussed earlier

in this section. The table also provides us the notations for

the resources used in Section 5.

Table 1: Resource Implementations with notations

Implementations Resources

TX as 1 Resource Basic Implementation [1 TX]

TX split in

2 Resources

F
ra

m
e

C
o

ll
ec

ti
o

n

[2
 T

X
 (

1
)]

 F
ra

m
e

P
ro

ce
ss

in
g

[2
 T

X
 (

2
)]

TX split in

4 Resources

F
ra

m
e

C
o

ll
ec

ti
o

n

[4
 T

X
 (

1
)]

F
E

C

E
n

co
d

in
g

[4
 T

X
 (

2
)]

In
te

rl
ea

v
in

g

[4
 T

X
 (

3
)]

M
o

d
u

la
ti

o
n

[4
 T

X
 (

4
)]

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

4. APPLICATION PROFILING

4.1. Profiling Tools

The different implementations were profiled to see their

individual overheads on the system. The profiling tool called

Callgrind, available from the Valgrind [5] tool suite was

used to profile the TX resources for the different test

implementations.

 To perform profiling, a text of characters was read from

a text file and then used by TX for encoding. The profiling

results presented in this section are for 5080 characters

encoded by the 75 bits/sec mode with a 'long' Interleaver.

The profiling results include the waveform specific

overheads of STANAG 4285 for transmitting the EOM,

SOM, flush bits associated to the 5080 characters. Thus, we

first calculate the total number of effective bits processed.

This includes 32 bits each for the SOM and EOM and 870

flush bits in addition to the 40640 bits of the actual message

(5080 char = 40640 bits). Therefore, the total number of bits

comes out to be 41574. Now, according to the 75 bits/sec

mode of STANAG 4285 with a ‘long’ interleaver, 8 bits (1

Byte) are transmitted per frame. Therefore, the total number

of frames are 5197 (approx).

Table 2: Determination of a Number of Frames

B
it

s/
se

c

S
O

M

U
se

r
D

a
ta

E
O

M

F
lu

sh
 B

it
s

T
o

ta
l

B
it

s

B
it

s/
F

ra
m

e

N
u

m
b

er

 o
f

 F
ra

m
es

75 32 1200 32 870 2134 8 267

75 32 40640 32 870 41574 8 5197

75 32 81280 32 870 82214 8 10277

75 32 162560 32 870 163494 8 20437

 All the profiling results in Section 5 will be determined

as a function of the number of processed frames. Table 2

 shows the calculation for the ‘Number of Frames’ for

different amount of processed data. Only the second row is

used in this section. The values from other rows are used

and discussed in Section 5.

4.2. First Profiling Results

From the results presented in [6], we know that the overhead

cost of CORBA on SCA based components is not significant

as compared to the cost of signal processing itself. In this

paper however, we investigate the overhead incurred on

splitting a single SCA based resource into multiple SCA

based resources keeping in mind the long term goal of

portability. The reason for this investigation is also based on

the fact that in future we will be implementing different

component resources on different processors depending

upon the requirement imposed by the functionality of that

particular resource. Thus, it is important to know the

overheads incurred to achieve this. Although the STANAG

4285 waveform is a much simpler waveform (used for

academic purposes) which can be implemented on a single

GPP, we use it as a reference to implement more complex

waveforms which require different parts to be implemented

on different processors.

 A point to note here is that only TX components were

profiled to gain information on the overheads incurred by

the splitting up of single resource to multiple resources. The

overhead cost of the ‘Assembly Controller’ is not discussed.

Another point worth mentioning here is that the protocol

used for the CORBA communication between the resources

in our simulations is TCP. Since TCP is not the fastest

available transport protocol, smaller latency can be achieved

by using better and faster transport protocols [7]. Real-time

CORBA products offer several off-the-shelf pluggable

transports and the possibility to implement new ones [8]. It

is acknowledged that using a different, more optimized

transport could provide better performances and thus affect

positively the fixed cost associated with CORBA.

 Some terms used with respect to the profiling tool are

defined first:

� The 'Cost' of a function …

is defined by the event counts of a particular function.

This means the number of instructions/data accesses.

It also tells us of the instructions that do/do not

reference memory.

� The 'Self Cost' …

 is the cost of the function itself.

� The 'Inclusive Cost' …

is the cost of all functions called by a particular

function. This can also be called the cumulative cost.

In the following sections we focus on the ‘Self Cost’.

Whenever we use the term ‘cost’ in the following sections,

we refer to the ‘Self Cost’.

4.3. Basic Implementation: TX as one SCA Resource

After analyzing the profiling data for ‘1 TX’, we find that

the total instruction fetch cost of this resource is 486.82

thousand. The total number of functions involved in the

complete processing of the resource is found to be 3988.

Table 3 shows the functions executed in the resource with

their respective self cost percentage. The table shows the

signal processing function cost of the ‘Executable’, other

function costs to run the ‘Executable’ and the overhead costs

contributed by TAO, SCA, ACE, C/C++, ld.so on the

implementation. We can see that the 'Modulation'

component has the highest relative self cost of 65.51% in

comparison to the total cost. This functionality is

responsible for implementing the modulating, scrambling

and filtering scheme for the transmitter. The 'Interleaving'

and ‘Encoding’ functionality contributed to a self cost of

1.97% and 0.05% respectively. The 'Frame Processing'

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

function contributed 0.31% to the self cost. In addition to

calling the ‘Interleaving’ and ‘Encoding’ functionality, the

'Frame Processing' itself performs the calculation of bit

streams from the encoded 32 bit values calculated by the

'Encoder'. The 'Frame Collection' basically works as a state

machine. And its functionality of including the AGC prefix,

calculating the EOM and SOM and including the flush bits

contributed to a low value of 0.01% in self cost. 6.3% is the

self cost in order to run the signal processing functions in the

‘Executable’.The rest of the self cost from the remaining

3983 functions are contributed by the TAO calls, CORBA

function calls, SCA specifications and other standard C/C++

functions like malloc, strcpy, memcpy etc.

Table 3: Self Cost Table for TX as 1 resource

Functions Self Cost (%) 1 TX

Modulation (in Exe) 65.51

Interleaving (in Exe) 1.97

FEC Encoding (in Exe) 0.05

Frame Processing (in Exe) 0.31

Frame Collection (in Exe) 0.01

Other Functions (in Exe) 6.39

Overhead (TAO, SCA, …..) 25.76

4.4. TX split into two SCA Resources

The profiling results for the two resource implementation

are shown in Table 4. It can be seen that the first resource,

‘2 TX (1)’ which is responsible for the 'Frame Collection'

does not put a significant overhead on the functionality of

the resource. The self cost is found to be 0.09% and an

additional cost of 0.81% to execute the functionality. The

total instruction fetch cost of the resource is 52.15 thousand.

The major contributors to self cost of this resource are the

TAO orb, CORBA function calls in addition to other

standard C/C++ functions.

Table 4: Self Cost Table for TX as 2 resources

 Self Cost (%)

 Functions

2
 T

X
(1

)

(F
ra

m
e

C
o

ll
ec

ti
o

n
)

2
 T

X
(2

)

(F
ra

m
e

P
ro

ce
ss

in
g

)

Modulation (in Exe) - 64.69

Interleaving (in Exe) - 1.94

FEC Encoding (in Exe) - 0.04

Frame Processing (in Exe) - 0.30

Frame Collection (in Exe) 0.09 -

Other Functions (in Exe) 0.81 6.32

Overhead (TAO, SCA, …..) 99.10 26.71

 The reason for the high percentage (99.10%) of self cost

for TAO orb, CORBA, C/C++ function calls is contributed

to the fact that the signal processing functionality of this

resource is not significant. The resource should perform

significant signal processing to exceed the fixed costs. Thus,

the relative values of the non signal processing functions are

high for this resource. Moreover, out of the above

mentioned major overhead contributing functions, the cost

of some functionalities remains fixed for all resources. This

is explained in more detail in Section 5.

 For the second resource, ‘2 TX (2)’ performing the

'Frame Processing' we get similar cost values for the

functions as for the single resource. Table 4 also shows the

self cost of the major cost contributor functions by both

resources. The total instruction fetch cost of the resource is

493.31 thousand. We are aware of the fact that the ‘2 TX

(2)’ has a higher self cost than the ‘1 TX’ (486.82 thousand).

The reason for this also is given in the Section 5.

4.5. TX split into four SCA Resources

For the four resource implementation, the results for the first

resource, ‘4 TX (1)’ which is responsible for ‘Frame

Collection’ is again similar to the one mentioned above

because it is reused. The resource, ‘4 TX (2)’ which is

responsible for ‘Encoding’ also does not show any

significant values for its data processing functions. The total

self cost for this resource is found to be 56.54 thousand.

Table 5: Self Cost Table for TX as 4 resources

 Self Cost (%)

Functions

4
 T

X
 (

1
)

(F
ra

m
e

C
o

ll
ec

ti
o

n
)

4
 T

X
 (

2
)

 (
E

n
co

d
in

g
)

4
 T

X
 (

3
)

 (
In

te
rl

ea
v

in
g

)

4
 T

X
 (

4
)

 (
M

o
d

u
la

ti
o

n
)

Modulation (in Exe) - - - 60.87

Interleaving (in Exe) - - 10.11 -

FEC Encoding (in Exe) 0.62 - -

Frame Processing (in Exe) - - - -

Frame collection (in Exe) 0.09 - - -

Other Functions (in Exe) 0.81 3.25 12.13 8.3

Overhead (TAO, SCA, …) 99.10 96.13 77.76 30.83

 In the resource, ‘4 TX (3)’ performing the

‘Interleaving’, the percentage self cost is 10.11%. The total

self cost for this resource is found to be 112.1 thousand.

Moreover, we see that the resource performing the

modulation is using the maximum consumption with the

percentage self cost of 60.87%. The total self cost in this

case is 524.3 thousand. Again, the reason for this high self

cost is given in the next section. We can again see that the

relative cost of ‘Overhead’ is high for the first three

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

resources. The reason again is the low cost incurred by the

signal processing functionality of these resources.

5. PERFORMANCE COMPARISON

In this section we take up profiling information from various

tests and compare them. We performed several profiling

tests of the implementations with different amount of

processing data to give us a clearer picture of the

comparisons. After examining the data from the profiling

results, we classify the total cost of running an

implementation on the basis of ELF (Executable and

Linking format) objects. The major contributions towards

the total cost made by the ELFs were under the Executable,

ACE, TAO, SCA, C/C++ and ld.so. ‘ld.so’ is the dynamic

library loader to find and load the shared libraries for the

binaries. ACE and TAO are responsible for the CORBA

costs. One might argue that C/C++ and ‘ld.so’ are not SCA

overheads but we will see from the discussion in this section

that the qualitative conclusions remain the same but

quantitative terms might slightly change due to them.

 We performed several tests for processing 150, 5080,

10160, 20320 characters respectively with all the three

implementations (1 TX, 2 TX, 4 TX). For a better

understanding of the vast amount of collected profiled data,

we made graphs for each implementation displaying the

costs involved for them. Fig. 2 shows the cost of different

contributors with different amount of processed data for

different implementations. The profiled cost value can be

seen as triangles, circles, squares etc. in these figures for

different number of frames (different amount of processed

data). The number of frames are calculated and used from

Table 2. Thus, the x-axis in these figures shows the number

of frames and the y-axis show the self cost. We will now

discuss the results for each implementation.

5.1. One TX Resource Cost Comparison

In the upper left part of Fig. 2, we see different curves

representing different cost contributors to the

implementation. The dotted curves are for the overheads due

to TAO, ACE, SCA, C/C++, ld.so. When we compare the

solid cost curve of ‘Executable’ with the dashed curve of the

sum of these overhead costs, we can observe that the cost

overhead is less if we process more data. We can see that for

processing 150 characters (267 Frames); the cost of the

‘Executable’ is slightly less than the sum of all overhead

costs (cmp. Table 3). But when we process more data, we

see that the overhead cost is exceeded. Thus, at 150

characters (267 Frames) we see about 50% ‘Executable’ cost

and 50% overhead cost in contrast to the 75% ‘Executable’

cost and 25% overhead cost for higher number of frames. It

is worth to be mentioned that the costs of all overheads

slightly increases with the amount of processed data. The

only exception is the costs of “ld.so” which is fairly constant

for all number of frames. Another point to note here is that

there is a significant overload by C/C++ and TAO.

Moreover, the costs for the overload do not start from zero.

There is a substantial overload as soon as few frames are

processed.

5.2. Two TX Resources Cost Comparison

The upper right part of Fig 2 shows the cost graphs for the

‘2 TX’ resource implementation. The left graph shows the

costs for ‘2 TX (1)’ and the right one shows for ‘2 TX (2)’.

We can see that the total overhead cost shown by the dashed

Fig. 2: Profiling results for the individual SCA resources of the different implementations 1 TX, 2 TX, 4 TX

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

curve for ‘2 TX (1)’ is high and the cost of ‘Executable’

negligibly small. The overhead becomes even higher at

higher amount of data being processed i.e. at higher number

of frames. The reason is that the slope of total overhead

costs is higher than the cost of ‘Executable’. Thus, we arrive

at a very important result i.e. making a resource like ‘2 TX

(1)’ is not worthy enough because the overhead costs of this

resource always exceed the signal processing cost. The

overhead increase even more as more frames are processed.

The results for the ‘2 TX (2)’ on the other hand are similar

to the ‘1 TX’ as this is the major signal processing cost

contributor resource in the implementation.

5.3. Four TX Resources Cost Comparison

The lower part of Fig 2 shows the cost graphs for the ‘4 TX’

resource implementation. Again, we see that the total

overhead costs of ‘4 TX (1)’, ‘4 TX (2)’, ‘4 TX (3)’ is

higher than their signal processing cost i.e. cost of their

‘Executable’. The ‘4 TX (4)’ responsible for performing

modulation has a higher cost of its ‘Executable’ the total

overhead costs. This shows that the splitting the resource

this way also is not efficient as the first three resources are

contributing to higher cost overheads in the implementation.

5.4. Overall Cost Comparison

The left side of Fig. 3 shows us a summation of the results of

the above sections in the form of six curves. The solid

curves represent the total “Executable” cost and the dashed

curves represent the total overhead cost for each of the three

implementations. Thus, the lower solid curve shows the cost

of “Executable” for 1 TX and for 2 TX ((1) + (2)). Both

costs are nearly the same because the separation of 1 TX

into FrameCollection (2 TX (1)) and FrameProcessing (2

TX (2)) required only minor changes in the original C-code.

From the signal processing point of view the cost of

“Executable” for splitting the ‘1 TX’ to ‘2 TX (1)’ and ‘2

TX (2)’ is almost negligible. The upper solid curve shows

the total cost of “Executable” for 4 TX (4 TX (1) + 4 TX (2)

+ 4 TX (3) + 4 TX (4)). Here the costs are higher because

the separation of FrameProcessing into “FEC”,

“Interleaving” and “Modulation” made a reorganization of

the C-code necessary which leads to higher signal

processing costs. The dashed curves show the total overhead

costs for the respective implementations. Here we can

observe that the total overhead costs increases due to the

splitting of resource. Thus, we observe after extrapolating

this graph (with the same pattern) that for an implementation

with more than 5 TX resources will result in higher overhead

costs in comparison to the cost of the ‘Executable’.

 The right side of Fig. 3 shows the comparison of the

relative overhead cost with the number of frames processed.

An important result which comes forward from it is that the

relative overhead cost is higher for processing less number

of frames. But it is lower and almost constant for processing

larger number of frames. We can also see that the relative

cost for more number of resource implementation is higher.

Fig. 3: Comparison of profiling results for the different

implementations 1 TX, 2 TX, 4TX

 Similar results came forward by processing the same

data at other modes (e.g. 2.4 kbits/sec). The results showed

higher cost of the ‘Executable’ because of more signal

processing. There was higher overhead due to CORBA as

larger packets were being transmitted between resources.

6. CONCLUSION

The paper presents the details of the profiling analysis of

various SCA based implementations. The test waveform for

all the implementations used was STANAG 4285. We see

that the division of an SCA based resource creates

overheads. All the overhead costs and the ‘Executable’ costs

increase almost linearly. Most overheads have some fixed

costs and the variable costs depend on the number of frames

processed. We also see that the resources should not be

made small and not in large numbers. In other words, the

signal processing done by a resource should be significant to

overcome the costs of non signal processing functionality.

7. REFERENCES

[1] “SCA” http://sca.jpeojtrs.mil/
[2] “RTO Group” http://www.rta.nato.int/
[3] NATO, Military Agency for Standardization (MAS),

“STANAG 4285: Characteristics of 1200/2400/3600 Bits Per
Second Single Tone Modulators/Demodulators for HF Radio
Links”, 1989.

[4] “SCARI Software Suite 2007” http://www.crc.ca/
[5] “Valgrind Tool Suite” http://valgrind.org/
[6] Philip J. Balister, Max Robert, Jeffery H.Reed, “Impact of the

use of CORBA for Inter-Component Communication in SCA
Based Radio”, SDR Forum, 2006.

[7] Steve Bernier, “SCA Myths and Realities”, SMi Annual
Software Radio Conference, London, UK, 2006.

[8] Giovanni Middioni, “CORBA over VMEbus Transport for
Software Defined Radios” http://motorola.com/

	Home
	Papers By Alpha
	Papers By Session

