
 
GCELL – AN SPE SCHEDULER AND ASYNCHRONOUS RPC MECHANISM 

FOR THE CELL BROADBAND ENGINE

Eric A. Blossom (Blossom Research, LLC, Reno, NV, eb@comsec.com)

ABSTRACT

The Cell Broadband Engine is one of today's most potent 
floating point signal processing platforms.  Effectively a 9-
way heterogeneous SIMD system on a single die, the Cell is 
capable of 200 GFLOPS peak.

In  some  domains,  such  as  image  processing,  the 
partitioning  of  work  across  the  SPEs  may  be  trivial. 
However,  the  SDR and  cognitive  radio  realms  often  see 
time-varying work loads, with varying degrees of available 
parallelism.  gcell solves  the  problem  of  efficiently 
distributing potentially small tasks across the SPEs by using 
a distributed SPE-centric scheduler that pulls work to SPEs 
as they become available.  In addition gcell provides high-
performance DMA of arguments to and from the SPEs, task 
completion notification to client processes, and binding and 
rendezvous between PPE and SPE code. Benchmarks show 
near  linear  speed-up  from  1  to  16  SPEs  on  2-way  Cell 
blades.

1. INTRODUCTION

Currently,  in  order  to  support  high-complexity,  high-
bandwidth  signals,  e.g.,  digital  waveforms  with  signal 
bandwidths  greater  than  3  MHz,  typically  a  Field 
Programmable  Gate  Array  (FPGA)  is  required  [1,  2,  3]. 
Digital  Signal  Processors  (DSPs)  and  General  Purpose 
Processors  (GPPs)  simply  do  not  have  the  needed 
processing  power.   Unfortunately,  it  is  generally  more 
difficult to develop signal processing algorithms for FPGAs, 
and even more difficult to perform rapid reconfiguration at 
run-time.   However,  by  taking  advantage  of  vector 
processors  built  into GPPs,  we can improve performance. 
Two examples of this are the SSE family of instructions for 
the x86 processors and the VMX (aka AltiVec) instructions 
for the PowerPC processors.

In this work, we focus on an even higher-performing 
GPP platform: the IBM Cell Broadband Engine (CBE) [4]. 
The CBE contains a PowerPC processor (PPE) supporting 
VMX  extensions, along with eight Synergistic Processing 
Elements  (SPEs).   The  SPEs  are  single-instruction, 
multiple-data  (SIMD)  processors  capable  of  performing 
vector  operations  in  a  single  clock  cycle.   The  PPE  and 
SPEs are connected to each other, high-speed memory and 
I/O via the Element Interconnect Bus (EIB).

Recently work has begun to port the GNU Radio SDR 
to  the  CBE,  and  to  compile  critical  signal  processing 
components for the SPEs.  As part of that effort, we have 
created  the  gcell library[5,  6];   gcell efficiently  maps the 
time-varying workloads typical of SDR and cognitive radio 
across the Cell SPEs.  As described in sections 2 and 3, the 
Cell is capable of outstanding integer and single-precision 
floating point  performance,  but  its  architecture provides  a 
number of challenges and opportunities.  gcell  provides an 
easy to use interface that handles the dynamic assignment of 
jobs to SPEs, decouples the expression of parallelism in the 
user  application from the number of  SPEs that  are being 
managed, achieves near-linear speedup from 1 to 12 SPEs 
for jobs that require 100 s to execute, and handles all the 
details required to ensure optimal DMA transfers between 
the PPE and SPEs regardless of alignment and size. 

Section 2 provides an overview of the Cell Broadband 
Engine.  Section 3 highlights the key issues in getting good 
performance out of the Cell.  The  gcell API is covered in 
Section 4.  Section 5 explains how gcell is implemented on 
the PPE and SPEs, and outlines the key data structures and 
techniques  that  allow  us  to  achieve  good  performance. 
Section 6 discusses performance.  Section 7 looks at related 
work, while 8 discusses future directions. 

2. CELL BROADBAND ENGINE

The  CBE  processor  is  a  single-chip  multiprocessor  with 
nine  processor  elements  operating  on  a  shared,  coherent 
memory, as shown in Figure 1.  The first processor element, 
the  PPE,  is  a  traditional  64-bit  PowerPC  processor  core 
supporting the VMX multimedia extensions.  The PPE is a 
dual-issue,  in-order-execution  design,  with  two-way 
simultaneous  multithreading.   Many  instructions  are 
microcoded  or  not  fully  pipelined  [7].   Compared  to  an 
equivalently  clocked  PowerPC  970MP,  the  PPE  is  quite 
slow.
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The  second  type  of  processor  element,  the  SPE,  is 
optimized  for  high-performance  SIMD processing.   Each 
SPE  includes  256  KB  of  low-latency  local  store  (LS) 
memory.  For each of the 128 128-bit registers available to 
an SPE, load and store operations from local store require 6 
cycles to complete at a clock speed of 3.2 GHz.  128-bit 
registers allow four 32-bit operations per clock tick.  With 
the  exception  of  double-precision  floating  point,  all 
instructions are fully pipelined and can issue on each cycle. 
(The IBM QS22 fully pipelines double-precision.)  The SPE 
contains  two  pipelines,  the  “even”  and  “odd”  pipes. 
Instructions are statically assigned to one of the two pipes: 
integer, floating point, and logical instructions to the even 
pipe;  loads,  stores  and  shuffles  to  the  odd  pipe.   If 
instructions are appropriately  aligned in memory,  all  data 
dependencies are fulfilled,  and no structural hazards exist, 
the  SPE can issue  two instructions  per  clock,  one  to  the 
even  pipe and one to the odd pipe.   This gives  a single-
precision operation rate of

  3.2e9 cycles/s * 4 FLOPS/cycle = 12.8 GFLOPS per SPE  

or 102.4 GFLOPS per CBE.  When executing the single-
precision  fused  multiply-accumulate  instruction,  an  SPE 
executes  8  FLOPS per  cycle,  giving a peak  rate  of  25.6 
GFLOPS per SPE or 204.8 GFLOPS per CBE.

2.1 DMA

Although loads and stores on the SPE can only access the 
local store, an SPE can transfer data between its LS and the 
main  memory  of  the  system (or  the  LS of  another  SPE) 
using  its  associated  DMA  controller,  the  Memory  Flow 
Controller (MFC).  Unlike most DMA controllers, the MFC 
deals in “Effective Addresses” (EA), IBM terminology for 
something very much like a virtual address.  Code running 
on the SPE executes in user mode and may directly program 
the MFC for “puts” or “gets” from LS to EA space. Each 

MFC supports up to 16 simultaneous DMA operations, and 
each operation is associated with a user-specified 5-bit tag. 
By  default  the  hardware  is  free  to  reorder  transfers  to 
maximize throughput.  When necessary, you can order the 
transfers that share a given tag by using the fence or barrier 
DMA modifiers.

Besides  DMA,  the  CBE  provides  two  additional 
facilities  for  interprocessor  communication:  mailbox 
channels and signal notification channels.  Each SPE has 2 
outbound mailboxes and 1 inbound mailbox.  Each mailbox 
implements  a  short  queue  of  32-bit  messages.   Signaling 
channels are similar, though they have a maximum depth of 
one and writes to them may be configured to overwrite or 
bitwise-or the current contents.

2.2 EIB
 
While the EIB does provide a common bus from which all 
devices  may  access  main  memory,  it  is  not  a  traditional 
random  access  model.  The  local  store  on  each  SPE  is 
managed  manually  by moving  blocks  in  and  out  only  as 
instructed by the application; there is no need for any kind 
of cache concurrency traffic on the EIB.  This allows the 
bus to scale effectively to a large number of cores.

Moreover, the EIB is not a broadcast bus at all; it's a 
double-wide, bi-directional, pipelined bus in which data is 
transferred one hop per two processor cycles in the shortest 
path  from source  to  destination  around  a  ring.  Transfers 
may be pipelined, so we can achieve the full transfer rate of 
25.6 GB/s along any non-overlapped path on the ring [8]. 
With the appropriate software mappings, this design enables 
the  CBE  to  function  as  a  high-speed  ring  of  pipelined 
processors. This flexibility is ideal for a highly-configurable 
SDR  platform.  The  scheduler  can  simply  lay  out 
independent  tasks  on  arbitrary  processor  cores  working 
from main memory, or — for increased throughput — map 
the  computation  and  data  flows  onto  adjacent  physical 
processors  on  the  ring,  bypassing  the  PPE  and  main 
memory altogether.

This hybrid architecture is able to achieve many of the 
benefits  from  both  the  random  access  and  pipelined 
multiprocessing models and provides an excellent platform 
for building highly flexible signal processing chains.

3. CBE CHALLENGES

Existing POSIX code can be trivially ported to the CBE by 
recompiling for  the  PowerPC.   However,  this  leaves  you 
with  an  implementation  that  runs,  but  has  mediocre 
performance.  To extract any kind of reasonable throughput 
from the CBE, performance critical code must be moved to 
the  SPEs.  There  are  several  ways  hybrid   PPE-SPE 
programs can be structured.  One is to write the bulk of the 
application to run on the SPEs and then do only a trivial 
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amount on the PPE.  Variations on pipelining are possible, 
where  data  is  moved  directly  from SPE to  SPE without 
going through main memory or involving the PPE.  This has 
high  throughput  and  low  latency,  but  load  balancing  is 
critical  and  SPE to  SPE transfers  are  hard  to  orchestrate 
with dynamically varying workloads.  Another variation is 
to keep the data on the SPEs, then DMA the code to the 
them as needed.  Probably the  most common arrangement 
for  existing  programs  is  the  “off-load”  model,  where 
computationally intensive operations are handed off to SPEs 
for  execution,  while  the  bulk  of  the  program  runs 
unmodified on the PPE.

In our experience,  obtaining anything near theoretical 
performance on an SPE requires coding in SIMD intrinsics 
(C or C++ built-in functions that map 1-to-1 to SPE SIMD 
instructions) or for ultimate performance, coding directly in 
SPE  assembly.  (Coding  in  assembly  gives  you  explicit 
control  over  instruction  alignment  and  pairing  which  are 
essential to achieve dual-dispatch in inner loops.)

The SPE also requires explicit branch prediction using 
“branch hint” instructions.  A non-hinted taken branch, or 
an incorrectly hinted branch results in a 19 cycle stall.  The 
other bind is that to be effective, a hint must be issued about 
15 cycles before the branch instruction is executed.  Finally, 
there can be at most a single branch hint active at any time. 
The end result of this is that your inner loop — if correctly 
hinted — flies, while outer loops pay the not-hinted taken-
branch penalty.

The good news about coding for the SPE is that it has a 
straight-forward  execution  model  with  a  few  easily 
understood rules,  deterministic  timing of instructions,  and 
128 registers that make it easy to hide load and execution 
latencies.  Coding for the SPE feels very much like running 
on “bare metal.”

4. API

gcell implements  a  generic  off-load  and  asynchronous 
remote  procedure  call  (RPC)  mechanism for  handing  off 
potentially small jobs for execution on an SPE.  It consists 
of a small kernel  (~10 KB) that runs on the SPEs, and a 
PPE-based  library  that  allows  jobs  to  be  asynchronously 
submitted for execution on any of the available SPEs.

There  are two primary abstractions:  the  job manager 
and the  job.  At initialization time,  user  code creates  the 
manager,  specifying  the  number  of  SPEs  that  it  should 
allocate and manage (1 to 16 on current hardware) and the 
code that should run on them.

Jobs are described  by a  small  structure  that  tells  the 
gcell runtime the procedure that is to be invoked on the SPE 
and the arguments that are to be passed into and out out of 
it. The procedure is represented in the job descriptor by an 
opaque handle.   The  job manager  lookup_proc method 
returns  a  handle  given a string that  names the procedure. 

Depending  on their  size,  input  and  output  arguments  are 
handled either as direct arguments or EA arguments. Direct 
arguments  are scalars such as integers,  floats,  or complex 
numbers, and are contained in the job descriptor itself.  EA 
arguments  are  used  to  pass  vectors  or  other  large  data 
structures  between  the  PPE  and  SPE.   For  each  EA 
argument, you specify its address, length and whether it is 
to be copied to or from the SPE.

Once a job descriptor is filled in, you simply call the 
manager's  submit_job method  to  queue  the  job  for 
execution  on  one  of  the  SPEs.   submit_job returns 
immediately after queuing the job.   When you're ready to 
wait for a job or set of jobs to complete, call the wait_job 
or wait_jobs method, indicating whether you want to wait 
for  any or  all of  the  specified  jobs  to  complete  before 
returning.

As  a  concrete  example  of  usage,  GNU  Radio's 
multiprocessor-aware  scheduler  allows  each  signal 
processing block to freely submit and wait for  gcell jobs. 
Beyond  the  per-block  parallelism,  it  is  often  possible  to 
expose  additional  parallelism  with  minimal  effort.   For 
example, the FFT signal processing block's work method is 
often  called  with  sufficient  data  items  to  allow  multiple 
FFTs to be evaluated. Instead of iterating over the vectors of 
data  serially  — calling  the  underlying  FFT  primitive  on 
each one — the gcell version of the block iterates over the 
vectors,  submits a job for each one, then waits for them all 
to complete.

5. INTERNALS

To implement the API,  gcell must handle 7 primary tasks: 
submitting  jobs  for  execution,  assigning  jobs  to  SPEs, 
DMA'ing  input  arguments  to  the  SPE,  running  the  SPE 
procedure,  DMA'ing  output  arguments  back  to  the  PPE, 
notifying  the  PPE that  the  job is  done,  and notifying the 
user code that the job is done.

5.1 Job Submission
 
Job submission is  low-overhead.   A brief  sanity  check is 
performed on the job descriptor, then it's added to the end of 
a global queue that's shared between the PPEs and the SPEs. 
The queue and the job descriptors live in EA memory; the 
queue is protected by a spin lock that's implemented using 
the  load-with-reservation  and  store-conditional  atomic 
primitives available on the PPE and SPE.

5.2 Assignment of Jobs to SPEs
 
Idle  SPEs  pull  jobs  to  themselves  by  polling  the  global 
queue.  As part of the dequeuing operation, the SPE ends up 
with a local store copy of the job descriptor.  Contention is 
minimized  by  using  randomized  exponential  back-off, 
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where the back-off parameters are a function of the number 
of SPEs being managed.  (We've also tried using the Lock-
Line Reservation Lost event on the SPE, but contrary to our 
expectations,  found  that  it  didn't  perform  as  well  as 
exponential back-off.)

5.3 Input Arguments
 
The  direct  input  arguments  are  contained  in  the  job 
descriptor,  thus  we  already  have  them.   The  input  EA 
arguments, however, must still be DMA'ed into LS from EA 
memory.  The MFC  is capable of very slow 1, 2, 4 or 8 
byte DMA transfers, or relatively fast transfers that are 16-
byte  aligned  and have  lengths  that  are  a  multiple  of  16-
bytes.  For the highest throughput, however, DMA transfers 
must be 128-byte aligned, with lengths a multiple of 128-
bytes.  128-byte aligned transfers (the size of a cache line on 
the CBE, and the transfer unit on the EIB) achieve twice the 
throughput  of  16-byte  aligned  transfers  that  are  not  also 
128-byte  aligned.   Since  the  gcell kernel  on  the  SPE is 
responsible  for  LS  buffer  allocation  for  the  incoming 
arguments, it can always satisfy the 128-byte alignment and 
length constraints by allocating a buffer no greater than 127 
bytes  larger  than  the  user  specified  length,  starting  the 
DMA at the user provided EA address rounded down to a 
multiple of 128, and rounding up the net transfer length to a 
multiple of 128. (Although this may copy additional bytes 
on either side of the user specified EA argument, the extra 
bytes go into the padding allocated as part of the alignment 
procedure,  and  do  not  impact  the  user  SPE code  that  is 
about to be called.)  In a  similar manner,  LS buffers  are 
allocated for output EA arguments.

5.4 Invoking the SPE Procedure
 
To understand how we locate and call an SPE procedure, it's 
useful  to understand  the  mechanism used  to register  SPE 
procedures with  gcell.   All SPE routines callable by  gcell 
have  the  same  signature  and  are  registered  using  the 
GC_DECLARE_PROC macro:

  #include <gc_declare_proc.h>

  static void
  my_spe_proc(const gc_job_direct_args_t *input,
              gc_job_direct_args_t *output,
              const gc_job_ea_args_t *eaa)
  {
    // compute something wonderful...
  }
  
  GC_DECLARE_PROC(my_spe_proc, "my_spe_proc");

Behind  the  scenes,  GC_DECLARE_PROC initializes  a  data 
structure  that  contains  the name of  your procedure  and a 

pointer to it. The trick is that the structure is contained in a 
special  section  of  the  SPE  ELF  object  file  called 
.gcell.proc_def.  When you link your SPE object files 
together  to  form  an  SPE  executable,  all  the  structures 
initialized  by  GC_DECLARE_PROC end  up  in a contiguous 
array in the initialized data of the executable. This array of 
structures is loaded into the SPE along with the rest of the 
executable. The PPE has access to the table as well, since it 
has  a  handle  to  the  SPE  program.  The  job  manager 
lookup_proc method searches the table for the name you 
specified, returning the index if found.  On the SPE side, the 
gcell kernel  knows the address of the table in local store. 
Thus, the SPE procedure is called by indexing into a table 
of function pointers.

5.5 Output Arguments
 
Once the SPE procedure returns, any output EA arguments 
must  be  copied  from  LS  back  to  EA  memory.   These 
transfers are double-buffered and require a bit more finesse 
than  the  input  case,  since  we  can't  write  outside  of  the 
bounds of the EA argument buffer.  We correctly handle EA 
arguments  of  any alignment  and size,  but  performance  is 
better if your arguments are 16-byte aligned and a multiple 
of 16-bytes long.

5.6 Notifying PPE of Job Completion

The PPE needs to be told when an SPE completes a job. 
Our first implementation simply wrote the completed job id 
into an interrupt mailbox connected to the PPE.  We noticed 
however,  that the SPEs spent a lot of time blocked in the 
mailbox write waiting for the PPE to empty its side of the 
mailbox.   The  current  implementation  uses  two  double 
buffered arrays of  job ids in EA space per SPE and an LS 
working copy.  When a job completes, the job id is written 
into the next free slot in the working copy.  When we can 
write a message without blocking, or the working copy is 
full, we DMA the working copy to EA memory and send a 
message to the PPE telling it which array to check.  This 
decouples the SPE and PPE, allowing the SPE to dequeue 
and process additional jobs independent of the load on the 
PPE.

5.7 Notifying User of Job Completion
 
The  final  task  on  the  PPE  side  is  to  keep  track  of  the 
completed  jobs  and  to  wake  clients  blocked  in  the 
wait_job or wait_jobs methods.  The job manager uses 
an  event  handling  thread  to  process  job  completion 
messages from the SPEs and to notify waiting clients.  The 
coordination  between  the  client  threads  and  the  event 
handler  takes  place  through  per-client  data  structures 
implemented in thread local storage.
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6. PERFORMANCE

gcell has been benchmarked on Sony Playstation 3's (PS3s) 
and IBM QS21 blade servers  running GNU/Linux. When 
running on top of the Sony hypervisor, PS3s have 6 SPEs 
available.  The  IBM  QS21  2-way  blade  servers  have  16 
SPEs and 2 PPEs.
 Our benchmark consists of an application that submits 
and waits for a total of njobs, typically 500,000, where each 
job waits for a specified period of time (t_delay) on the SPE 
before returning. There are a maximum of 64 jobs in flight 
at any given time. total_elapsed_time is the wall clock time 
between the time the first job is submitted and the final job 
completes. For each combination of number of SPEs used 
and t_delay we compute a speedup factor (total useful work 
divided by the total elapsed time):

Results are plotted in Figure 2. When using between 1 and 8 
SPEs  we  see  near  linear  speedup  for  jobs  with 
t_delay ≥ 50 μs. Jobs with  t_delay ≥ 100 μs are near linear 
out to 12 SPEs, while jobs with  t_delay ≥ 200 μs are near 
linear all the way to 16 SPEs.

7. RELATED WORK

The Sequoia  project  at  Stanford  is  working  on a  general 
solution  to  creating  portable  programs  that  are  explicitly 
aware of the memory hierarchy[9, 10, 11].  Starting with an 
abstract machine model that assumes that there are multiple 
independent memory spaces exposed to the program, they 
are  working on a C-like program language,  compiler  and 
runtime system.  They have implemented versions of  the 
system for Cell processors and distributed memory clusters.

Mercury  Computer   Systems  offers  “MultiCore 
Framework” (MCF), basically an API and set of tools for 
the  Cell  processor  that  is  primarily  oriented  toward 
workloads that can be partitioned by distributing “tiles” of 
the full data set to be processed across the available SPEs 
[12].   This works well  for  large,  highly regular problems 
such as those frequently found in imaging, seismology, or 
radar.   Outside  of  the  ability  to  load  an  entire  new 
application into one or more SPEs, there isn't much support 
for handling dynamically varying work loads.

8. FUTURE DIRECTIONS

We plan to continue to investigate the causes of the scaling 
limits we're seeing, and if possible, work around them.

At  this  time  all  SPEs  run  the  same  code.   As  we 
continue to move additional performance critical functions 
into the SPEs, we expect to dynamically load code into the 
SPEs,  as  required,  using  some  variation  on  position-
independent code and a least-recently-used (LRU) plug-in 
manager.  Overlays are an option too.

If  required  by  our  users,  we  will  add  a  facility  to 
partition and handle larger data sets than will fit in the local 
store.  This would be built on top of the existing interface, 
and  provide  a  way  to  handle  problems  amenable  to  the 
“tiling” or “strip mining” approach.

We also  plan  to  investigate  strategies  for  scheduling 
jobs  using  direct  SPE  to  SPE  communications,  thereby 
bypassing the PPE and taking better advantage of the peak 
capacity of the EIB.

9. CONCLUSION

In  this  paper  we've  taken  a  look  at  the  Cell  Broadband 
Engine, the characteristics that make it attractive for SDR, 
the challenges in using it, and the gcell library as a way to 
exploit it.  We believe that using gcell we can implement a 
real-time  transceiver  system  that  supports  bandwidths  on 
the  order  of  20  MHz.   This  would  allow  SDR-based 
implementations  of  wideband,  high-rate,  commercial 
waveforms on commodity hardware.
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