

GCELL – AN SPE SCHEDULER AND ASYNCHRONOUS RPC MECHANISM

FOR THE CELL BROADBAND ENGINE

Eric A. Blossom (Blossom Research, LLC, Reno, NV, eb@comsec.com)

ABSTRACT

The Cell Broadband Engine is one of today's most potent
floating point signal processing platforms. Effectively a 9-
way heterogeneous SIMD system on a single die, the Cell is
capable of 200 GFLOPS peak.

In some domains, such as image processing, the
partitioning of work across the SPEs may be trivial.
However, the SDR and cognitive radio realms often see
time-varying work loads, with varying degrees of available
parallelism. gcell solves the problem of efficiently
distributing potentially small tasks across the SPEs by using
a distributed SPE-centric scheduler that pulls work to SPEs
as they become available. In addition gcell provides high-
performance DMA of arguments to and from the SPEs, task
completion notification to client processes, and binding and
rendezvous between PPE and SPE code. Benchmarks show
near linear speed-up from 1 to 16 SPEs on 2-way Cell
blades.

1. INTRODUCTION

Currently, in order to support high-complexity, high-
bandwidth signals, e.g., digital waveforms with signal
bandwidths greater than 3 MHz, typically a Field
Programmable Gate Array (FPGA) is required [1, 2, 3].
Digital Signal Processors (DSPs) and General Purpose
Processors (GPPs) simply do not have the needed
processing power. Unfortunately, it is generally more
difficult to develop signal processing algorithms for FPGAs,
and even more difficult to perform rapid reconfiguration at
run-time. However, by taking advantage of vector
processors built into GPPs, we can improve performance.
Two examples of this are the SSE family of instructions for
the x86 processors and the VMX (aka AltiVec) instructions
for the PowerPC processors.

In this work, we focus on an even higher-performing
GPP platform: the IBM Cell Broadband Engine (CBE) [4].
The CBE contains a PowerPC processor (PPE) supporting
VMX extensions, along with eight Synergistic Processing
Elements (SPEs). The SPEs are single-instruction,
multiple-data (SIMD) processors capable of performing
vector operations in a single clock cycle. The PPE and
SPEs are connected to each other, high-speed memory and
I/O via the Element Interconnect Bus (EIB).

Recently work has begun to port the GNU Radio SDR
to the CBE, and to compile critical signal processing
components for the SPEs. As part of that effort, we have
created the gcell library[5, 6]; gcell efficiently maps the
time-varying workloads typical of SDR and cognitive radio
across the Cell SPEs. As described in sections 2 and 3, the
Cell is capable of outstanding integer and single-precision
floating point performance, but its architecture provides a
number of challenges and opportunities. gcell provides an
easy to use interface that handles the dynamic assignment of
jobs to SPEs, decouples the expression of parallelism in the
user application from the number of SPEs that are being
managed, achieves near-linear speedup from 1 to 12 SPEs
for jobs that require 100 s to execute, and handles all the
details required to ensure optimal DMA transfers between
the PPE and SPEs regardless of alignment and size.

Section 2 provides an overview of the Cell Broadband
Engine. Section 3 highlights the key issues in getting good
performance out of the Cell. The gcell API is covered in
Section 4. Section 5 explains how gcell is implemented on
the PPE and SPEs, and outlines the key data structures and
techniques that allow us to achieve good performance.
Section 6 discusses performance. Section 7 looks at related
work, while 8 discusses future directions.

2. CELL BROADBAND ENGINE

The CBE processor is a single-chip multiprocessor with
nine processor elements operating on a shared, coherent
memory, as shown in Figure 1. The first processor element,
the PPE, is a traditional 64-bit PowerPC processor core
supporting the VMX multimedia extensions. The PPE is a
dual-issue, in-order-execution design, with two-way
simultaneous multithreading. Many instructions are
microcoded or not fully pipelined [7]. Compared to an
equivalently clocked PowerPC 970MP, the PPE is quite
slow.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

mailto:eb@comsec.com

The second type of processor element, the SPE, is
optimized for high-performance SIMD processing. Each
SPE includes 256 KB of low-latency local store (LS)
memory. For each of the 128 128-bit registers available to
an SPE, load and store operations from local store require 6
cycles to complete at a clock speed of 3.2 GHz. 128-bit
registers allow four 32-bit operations per clock tick. With
the exception of double-precision floating point, all
instructions are fully pipelined and can issue on each cycle.
(The IBM QS22 fully pipelines double-precision.) The SPE
contains two pipelines, the “even” and “odd” pipes.
Instructions are statically assigned to one of the two pipes:
integer, floating point, and logical instructions to the even
pipe; loads, stores and shuffles to the odd pipe. If
instructions are appropriately aligned in memory, all data
dependencies are fulfilled, and no structural hazards exist,
the SPE can issue two instructions per clock, one to the
even pipe and one to the odd pipe. This gives a single-
precision operation rate of

 3.2e9 cycles/s * 4 FLOPS/cycle = 12.8 GFLOPS per SPE

or 102.4 GFLOPS per CBE. When executing the single-
precision fused multiply-accumulate instruction, an SPE
executes 8 FLOPS per cycle, giving a peak rate of 25.6
GFLOPS per SPE or 204.8 GFLOPS per CBE.

2.1 DMA

Although loads and stores on the SPE can only access the
local store, an SPE can transfer data between its LS and the
main memory of the system (or the LS of another SPE)
using its associated DMA controller, the Memory Flow
Controller (MFC). Unlike most DMA controllers, the MFC
deals in “Effective Addresses” (EA), IBM terminology for
something very much like a virtual address. Code running
on the SPE executes in user mode and may directly program
the MFC for “puts” or “gets” from LS to EA space. Each

MFC supports up to 16 simultaneous DMA operations, and
each operation is associated with a user-specified 5-bit tag.
By default the hardware is free to reorder transfers to
maximize throughput. When necessary, you can order the
transfers that share a given tag by using the fence or barrier
DMA modifiers.

Besides DMA, the CBE provides two additional
facilities for interprocessor communication: mailbox
channels and signal notification channels. Each SPE has 2
outbound mailboxes and 1 inbound mailbox. Each mailbox
implements a short queue of 32-bit messages. Signaling
channels are similar, though they have a maximum depth of
one and writes to them may be configured to overwrite or
bitwise-or the current contents.

2.2 EIB

While the EIB does provide a common bus from which all
devices may access main memory, it is not a traditional
random access model. The local store on each SPE is
managed manually by moving blocks in and out only as
instructed by the application; there is no need for any kind
of cache concurrency traffic on the EIB. This allows the
bus to scale effectively to a large number of cores.

Moreover, the EIB is not a broadcast bus at all; it's a
double-wide, bi-directional, pipelined bus in which data is
transferred one hop per two processor cycles in the shortest
path from source to destination around a ring. Transfers
may be pipelined, so we can achieve the full transfer rate of
25.6 GB/s along any non-overlapped path on the ring [8].
With the appropriate software mappings, this design enables
the CBE to function as a high-speed ring of pipelined
processors. This flexibility is ideal for a highly-configurable
SDR platform. The scheduler can simply lay out
independent tasks on arbitrary processor cores working
from main memory, or — for increased throughput — map
the computation and data flows onto adjacent physical
processors on the ring, bypassing the PPE and main
memory altogether.

This hybrid architecture is able to achieve many of the
benefits from both the random access and pipelined
multiprocessing models and provides an excellent platform
for building highly flexible signal processing chains.

3. CBE CHALLENGES

Existing POSIX code can be trivially ported to the CBE by
recompiling for the PowerPC. However, this leaves you
with an implementation that runs, but has mediocre
performance. To extract any kind of reasonable throughput
from the CBE, performance critical code must be moved to
the SPEs. There are several ways hybrid PPE-SPE
programs can be structured. One is to write the bulk of the
application to run on the SPEs and then do only a trivial

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Figure 1: Cell Broadband Engine Overview [7]

amount on the PPE. Variations on pipelining are possible,
where data is moved directly from SPE to SPE without
going through main memory or involving the PPE. This has
high throughput and low latency, but load balancing is
critical and SPE to SPE transfers are hard to orchestrate
with dynamically varying workloads. Another variation is
to keep the data on the SPEs, then DMA the code to the
them as needed. Probably the most common arrangement
for existing programs is the “off-load” model, where
computationally intensive operations are handed off to SPEs
for execution, while the bulk of the program runs
unmodified on the PPE.

In our experience, obtaining anything near theoretical
performance on an SPE requires coding in SIMD intrinsics
(C or C++ built-in functions that map 1-to-1 to SPE SIMD
instructions) or for ultimate performance, coding directly in
SPE assembly. (Coding in assembly gives you explicit
control over instruction alignment and pairing which are
essential to achieve dual-dispatch in inner loops.)

The SPE also requires explicit branch prediction using
“branch hint” instructions. A non-hinted taken branch, or
an incorrectly hinted branch results in a 19 cycle stall. The
other bind is that to be effective, a hint must be issued about
15 cycles before the branch instruction is executed. Finally,
there can be at most a single branch hint active at any time.
The end result of this is that your inner loop — if correctly
hinted — flies, while outer loops pay the not-hinted taken-
branch penalty.

The good news about coding for the SPE is that it has a
straight-forward execution model with a few easily
understood rules, deterministic timing of instructions, and
128 registers that make it easy to hide load and execution
latencies. Coding for the SPE feels very much like running
on “bare metal.”

4. API

gcell implements a generic off-load and asynchronous
remote procedure call (RPC) mechanism for handing off
potentially small jobs for execution on an SPE. It consists
of a small kernel (~10 KB) that runs on the SPEs, and a
PPE-based library that allows jobs to be asynchronously
submitted for execution on any of the available SPEs.

There are two primary abstractions: the job manager
and the job. At initialization time, user code creates the
manager, specifying the number of SPEs that it should
allocate and manage (1 to 16 on current hardware) and the
code that should run on them.

Jobs are described by a small structure that tells the
gcell runtime the procedure that is to be invoked on the SPE
and the arguments that are to be passed into and out out of
it. The procedure is represented in the job descriptor by an
opaque handle. The job manager lookup_proc method
returns a handle given a string that names the procedure.

Depending on their size, input and output arguments are
handled either as direct arguments or EA arguments. Direct
arguments are scalars such as integers, floats, or complex
numbers, and are contained in the job descriptor itself. EA
arguments are used to pass vectors or other large data
structures between the PPE and SPE. For each EA
argument, you specify its address, length and whether it is
to be copied to or from the SPE.

Once a job descriptor is filled in, you simply call the
manager's submit_job method to queue the job for
execution on one of the SPEs. submit_job returns
immediately after queuing the job. When you're ready to
wait for a job or set of jobs to complete, call the wait_job
or wait_jobs method, indicating whether you want to wait
for any or all of the specified jobs to complete before
returning.

As a concrete example of usage, GNU Radio's
multiprocessor-aware scheduler allows each signal
processing block to freely submit and wait for gcell jobs.
Beyond the per-block parallelism, it is often possible to
expose additional parallelism with minimal effort. For
example, the FFT signal processing block's work method is
often called with sufficient data items to allow multiple
FFTs to be evaluated. Instead of iterating over the vectors of
data serially — calling the underlying FFT primitive on
each one — the gcell version of the block iterates over the
vectors, submits a job for each one, then waits for them all
to complete.

5. INTERNALS

To implement the API, gcell must handle 7 primary tasks:
submitting jobs for execution, assigning jobs to SPEs,
DMA'ing input arguments to the SPE, running the SPE
procedure, DMA'ing output arguments back to the PPE,
notifying the PPE that the job is done, and notifying the
user code that the job is done.

5.1 Job Submission

Job submission is low-overhead. A brief sanity check is
performed on the job descriptor, then it's added to the end of
a global queue that's shared between the PPEs and the SPEs.
The queue and the job descriptors live in EA memory; the
queue is protected by a spin lock that's implemented using
the load-with-reservation and store-conditional atomic
primitives available on the PPE and SPE.

5.2 Assignment of Jobs to SPEs

Idle SPEs pull jobs to themselves by polling the global
queue. As part of the dequeuing operation, the SPE ends up
with a local store copy of the job descriptor. Contention is
minimized by using randomized exponential back-off,

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

where the back-off parameters are a function of the number
of SPEs being managed. (We've also tried using the Lock-
Line Reservation Lost event on the SPE, but contrary to our
expectations, found that it didn't perform as well as
exponential back-off.)

5.3 Input Arguments

The direct input arguments are contained in the job
descriptor, thus we already have them. The input EA
arguments, however, must still be DMA'ed into LS from EA
memory. The MFC is capable of very slow 1, 2, 4 or 8
byte DMA transfers, or relatively fast transfers that are 16-
byte aligned and have lengths that are a multiple of 16-
bytes. For the highest throughput, however, DMA transfers
must be 128-byte aligned, with lengths a multiple of 128-
bytes. 128-byte aligned transfers (the size of a cache line on
the CBE, and the transfer unit on the EIB) achieve twice the
throughput of 16-byte aligned transfers that are not also
128-byte aligned. Since the gcell kernel on the SPE is
responsible for LS buffer allocation for the incoming
arguments, it can always satisfy the 128-byte alignment and
length constraints by allocating a buffer no greater than 127
bytes larger than the user specified length, starting the
DMA at the user provided EA address rounded down to a
multiple of 128, and rounding up the net transfer length to a
multiple of 128. (Although this may copy additional bytes
on either side of the user specified EA argument, the extra
bytes go into the padding allocated as part of the alignment
procedure, and do not impact the user SPE code that is
about to be called.) In a similar manner, LS buffers are
allocated for output EA arguments.

5.4 Invoking the SPE Procedure

To understand how we locate and call an SPE procedure, it's
useful to understand the mechanism used to register SPE
procedures with gcell. All SPE routines callable by gcell
have the same signature and are registered using the
GC_DECLARE_PROC macro:

 #include <gc_declare_proc.h>

 static void
 my_spe_proc(const gc_job_direct_args_t *input,
 gc_job_direct_args_t *output,
 const gc_job_ea_args_t *eaa)
 {
 // compute something wonderful...
 }

 GC_DECLARE_PROC(my_spe_proc, "my_spe_proc");

Behind the scenes, GC_DECLARE_PROC initializes a data
structure that contains the name of your procedure and a

pointer to it. The trick is that the structure is contained in a
special section of the SPE ELF object file called
.gcell.proc_def. When you link your SPE object files
together to form an SPE executable, all the structures
initialized by GC_DECLARE_PROC end up in a contiguous
array in the initialized data of the executable. This array of
structures is loaded into the SPE along with the rest of the
executable. The PPE has access to the table as well, since it
has a handle to the SPE program. The job manager
lookup_proc method searches the table for the name you
specified, returning the index if found. On the SPE side, the
gcell kernel knows the address of the table in local store.
Thus, the SPE procedure is called by indexing into a table
of function pointers.

5.5 Output Arguments

Once the SPE procedure returns, any output EA arguments
must be copied from LS back to EA memory. These
transfers are double-buffered and require a bit more finesse
than the input case, since we can't write outside of the
bounds of the EA argument buffer. We correctly handle EA
arguments of any alignment and size, but performance is
better if your arguments are 16-byte aligned and a multiple
of 16-bytes long.

5.6 Notifying PPE of Job Completion

The PPE needs to be told when an SPE completes a job.
Our first implementation simply wrote the completed job id
into an interrupt mailbox connected to the PPE. We noticed
however, that the SPEs spent a lot of time blocked in the
mailbox write waiting for the PPE to empty its side of the
mailbox. The current implementation uses two double
buffered arrays of job ids in EA space per SPE and an LS
working copy. When a job completes, the job id is written
into the next free slot in the working copy. When we can
write a message without blocking, or the working copy is
full, we DMA the working copy to EA memory and send a
message to the PPE telling it which array to check. This
decouples the SPE and PPE, allowing the SPE to dequeue
and process additional jobs independent of the load on the
PPE.

5.7 Notifying User of Job Completion

The final task on the PPE side is to keep track of the
completed jobs and to wake clients blocked in the
wait_job or wait_jobs methods. The job manager uses
an event handling thread to process job completion
messages from the SPEs and to notify waiting clients. The
coordination between the client threads and the event
handler takes place through per-client data structures
implemented in thread local storage.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

6. PERFORMANCE

gcell has been benchmarked on Sony Playstation 3's (PS3s)
and IBM QS21 blade servers running GNU/Linux. When
running on top of the Sony hypervisor, PS3s have 6 SPEs
available. The IBM QS21 2-way blade servers have 16
SPEs and 2 PPEs.
 Our benchmark consists of an application that submits
and waits for a total of njobs, typically 500,000, where each
job waits for a specified period of time (t_delay) on the SPE
before returning. There are a maximum of 64 jobs in flight
at any given time. total_elapsed_time is the wall clock time
between the time the first job is submitted and the final job
completes. For each combination of number of SPEs used
and t_delay we compute a speedup factor (total useful work
divided by the total elapsed time):

Results are plotted in Figure 2. When using between 1 and 8
SPEs we see near linear speedup for jobs with
t_delay ≥ 50 μs. Jobs with t_delay ≥ 100 μs are near linear
out to 12 SPEs, while jobs with t_delay ≥ 200 μs are near
linear all the way to 16 SPEs.

7. RELATED WORK

The Sequoia project at Stanford is working on a general
solution to creating portable programs that are explicitly
aware of the memory hierarchy[9, 10, 11]. Starting with an
abstract machine model that assumes that there are multiple
independent memory spaces exposed to the program, they
are working on a C-like program language, compiler and
runtime system. They have implemented versions of the
system for Cell processors and distributed memory clusters.

Mercury Computer Systems offers “MultiCore
Framework” (MCF), basically an API and set of tools for
the Cell processor that is primarily oriented toward
workloads that can be partitioned by distributing “tiles” of
the full data set to be processed across the available SPEs
[12]. This works well for large, highly regular problems
such as those frequently found in imaging, seismology, or
radar. Outside of the ability to load an entire new
application into one or more SPEs, there isn't much support
for handling dynamically varying work loads.

8. FUTURE DIRECTIONS

We plan to continue to investigate the causes of the scaling
limits we're seeing, and if possible, work around them.

At this time all SPEs run the same code. As we
continue to move additional performance critical functions
into the SPEs, we expect to dynamically load code into the
SPEs, as required, using some variation on position-
independent code and a least-recently-used (LRU) plug-in
manager. Overlays are an option too.

If required by our users, we will add a facility to
partition and handle larger data sets than will fit in the local
store. This would be built on top of the existing interface,
and provide a way to handle problems amenable to the
“tiling” or “strip mining” approach.

We also plan to investigate strategies for scheduling
jobs using direct SPE to SPE communications, thereby
bypassing the PPE and taking better advantage of the peak
capacity of the EIB.

9. CONCLUSION

In this paper we've taken a look at the Cell Broadband
Engine, the characteristics that make it attractive for SDR,
the challenges in using it, and the gcell library as a way to
exploit it. We believe that using gcell we can implement a
real-time transceiver system that supports bandwidths on
the order of 20 MHz. This would allow SDR-based
implementations of wideband, high-rate, commercial
waveforms on commodity hardware.

10. REFERENCES

[1] M. Cummings and S. Haruyama, “FPGA in the software
radio,” IEEE Communications Magazine, 1999.

[2] C. Dick and H. Pederson, “Design and implementation of
high-performance FPGA signal processing datapaths for
software defined radios,” Embedded Systems Conference,
2001.

[3] J. H. Reed, Software Radio: A Modern Approach to Radio
Engineering. Prentice Hall PTR, 2002.

[4] International Business Machines Corporation, Sony Computer
Entertainment Inc., Toshiba Corporation, Cell Broadband
Engine Architecture, Version 1.01, 2005, 2006.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

speedup=
njobs×t delay

totalelapsed time

Figure 2: Speedup as f(nspes, t_delay)

[5] http://gnuradio.org/trac/browser/gnuradio/trunk/gcell
[6] http://gnuradio.org/trac/wiki
[7] International Business Machines Corporation, Sony Computer

Entertainment Inc., Toshiba Corporation, Cell Broadband
Engine Programming Handbook, Version 1.1, 2006, 2007.

[8] M. Kistler, M. Perrone, and F. Petrini, “Cell Multiprocessor
Communication Network: Built for Speed,” Micro, IEEE,
Vol. 26, No. 3, pp. 10-23.

[9] Fatahalian, K., Knight, T. J., Houston, M., Erez, M., Horn, D.
R., Leem, L., Park, J. Y., Ren, M., Aiken, A., Dally, W. J.,
and Hanrahan, P. 2006. Sequoia: Programming the memory
hierarchy. In Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing.

[10] Knight, T. J., Park, J. Y., Ren, M., Houston, M., Erez, M.,
Fatahalian, K., Aiken, A., Dally, W. J., and Hanrahan, P.
Compilation for Explicitly Managed Memory Hierarchies
PPoPP 2007

[11] http://sequoia.stanford.edu
[12] B. Bouzas, R. Cooper, J. Greene, M. Pepe, and M. Prelle,

“MultiCore Framework: An API for Programming
Heterogeneous Multicore Processors”, in Proc. Of First
Workshop on Software Tools for Multi-Core Systems,
Columbia University, NY, 2006.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

http://www.stanford.edu/group/sequoia/cgi-bin/node/231
http://www.stanford.edu/group/sequoia/cgi-bin/node/71
http://www.stanford.edu/group/sequoia/cgi-bin/node/71
http://gnuradio.org/trac/wiki
http://gnuradio.org/trac/browser/gnuradio/trunk/gcell

	Home
	Papers By Alpha
	Papers By Session

