
Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

A PORTABLE SOFTWARE RADIO USING COMMODITY HARDWARE AND

OPEN-SOURCE SOFTWARE

Michael Dickens, Brian Dunn, and J. Nicholas Laneman

University of Notre Dame, Department of Electrical Engineering, Notre Dame, IN
{mdickens, bdunn2, jnl}@nd.edu ; http://radioware.nd.edu/

ABSTRACT

We summarize the design and implementation of a portable

software radio prototype built primarily using commercial

off-the-shelf components and open-source software. The

device components include a general-purpose processor

(GPP) on a small-form-factor motherboard, radio hardware,

touchscreen and LCD, audio microphone and speaker, and

an internal battery enabling hours of mobile operation.

Significant advances over the past decade have made GPP-

based software radio a viable solution in many areas, and

this work demonstrates that today’s processors are capable

of enabling a new generation of software radio in portable

form-factor devices. Our research group leverages these

prototypes for several funded projects focusing on issues

including interoperable public safety communications,

cognitive wireless networking, and educational initiatives.

1. INTRODUCTION

This article describes the design and development of a

portable software radio prototype that uses as much open-

source hardware and software as possible, and leverages

commercial off-the-shelf (COTS) components. The device

is shown in Figure 1, and operates using GNU Radio

software [1] for signal processing on a small-form-factor

general-purpose processor (GPP)-based computer and an

Ettus USRP (Universal Software Radio Peripheral) [2] for

the air interface. The prototype offers the same capabilities

as GNU Radio running on an Intel Core 2 Duo CPU-based

computer running at 2 GHz with an Ettus USRP attached.

The device can fit inside a box of dimensions 29 cm x 10.5

cm x 21 cm, weighs just under seven pounds, and has

roughly two hours of runtime from a single battery charge.

The bill of materials for construction of a single device

using retail components comes to approximately $3,700.

The prototype described here exemplifies the benefits and

cost savings offered by leveraging open-source and COTS

components, and to the best of our knowledge represents the

first portable software radio of its kind.

 For high-volume applications, hardware radios are

often preferred over software-based implementations.

However, as processing performance and power efficiency

increase there will be more applications for which software

radios are more capable and can be built more cost

effectively than their hardware counterparts. Even today,

there are many applications that benefit from the superior

reconfigurability offered by software-based

implementations, such as when device interoperability is

critical, when the lifetime of a product greatly exceeds that

of the devices with which it needs to communicate, and for

wireless research and development. There are also an

increasing number of applications for which software-based

processing is a feasible alternative and the added

reconfigurability is highly desirable. Given the growing

application-range for software radios, and their relatively

limited presence in industry, we set out to demonstrate that

today’s GPPs are capable of enabling portable

communication devices that offer superior flexibility and

advanced functionality.

Figure 1: Highly reconfigurable portable software radio
prototype implemented using open-source software and
predominantly COTS hardware. The prototype provides
dynamically configurable multi-channel and full-duplex
communications in most frequency bands from 50 MHz
to 2.9 GHz.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

 In the following section we give more specific

objectives, motivate the decision to use GNU Radio as the

software framework for the prototype, and discuss several

alternative platforms that offer similar functionality. In

Section 3 we provide details on what went into the selection

and design of each hardware component along with their

integration into the prototype. In Section 4 we do the same

for software. We conclude in Section 5 with a summary of

our work on the prototype, and a discussion of some broader

implications related to this work and software radio as a

whole.

2. CORE PLATFORM SELECTION

At the early stages of the project, we had two primary goals.

First, we wanted to create a device that could be used as a

wireless research platform to quickly try out new ideas and

provide a more concrete basis for what would otherwise be

purely theoretical work. A key metric of success for this

goal was minimizing the learning curve and development

time often associated with algorithm development and

experimental work in communications. Second, we set out

to demonstrate that comprehensive protocol agility through

software-based processing on a mobile device is not only a

technology of the future, but a viable alternative today.

 A generic software radio consists of the radio hardware,

optional user interfaces, and – most importantly – one or

more signal processors. The primary options for each signal

processor include a field-programmable gate array (FPGA),

a digital signal processor (DSP), and a GPP.

 We based processor selection on the anticipated uses of

the prototype, e.g., by researchers without specialized

programming expertise. As shown in Figure 2, GPP-based

software requires the least programming specialization,

provides the best code-reuse, and can also be readily

modified to include new or additional functionality, e.g.,

upgrading software from a draft to accepted wireless

standard. Another argument for using a GPP is the upgrade

path to newer, more capable processors via direct

replacement of the processor or the motherboard on which

the processor resides. A faster processor allows current code

to execute faster – possibly even in real-time – and for more

sophisticated algorithms to be implemented, simply by

recompiling for the new hardware. We decided that it was

worth the cost in terms of reduced battery life to use a GPP,

in order to achieve the high level of flexibility and ease of

use that we required.

 Proprietary hardware and software has traditionally

been required when building a software radio in order to

overcome some fundamental limitations including radio

frequency (RF) access range, digital data-transport

bandwidth, and signal processing capabilities.

Commercially-available advances in the myriad radio

hardware technologies – antennas and RF front ends,

analog-to-digital and digital-to-analog converters, data-

transport protocols and hardware, signal processors and

small-form-factor computers, and power-management

systems and batteries – and the maturity of freely-available

open-source radio software have significantly mitigated

these limitations. Accordingly, we worked to leverage as

much open-source software and COTS hardware as

possible. The use of a GPP and open-source software for

signal processing are key to achieving both goals by

controlling hardware costs, creating a highly scalable

processor upgrade path, and fostering a collaborative

environment for software development in the wireless

community.

 We identified several baseline requirements to show

that a GPP-based software radio could be built in a portable

form factor offering reasonable runtime while powered from

an internal battery. In order to meet the needs of a funding

agency, it was important that the system be capable of

handling multiple 25 kHz voice channels with typical voice

encoding, and data transmission up to a few hundred

kilobits per second with QAM, PSK, or OFDM modulation.

With respect to software architecture requirements, we

desired cross-platform support for Unix-like operating

systems including Linux and Mac OS X, critical code

written primarily in a compiled, standardized, operating-

system independent programming language such as C++,

and software-based control down to the physical layer.

Finally, we wanted the hardware to be economically priced,

while still offering processing performance on par with

currently available desktop computers.

 It was initially unclear whether we could leverage an

existing software radio platform, or if it would be necessary

to develop a new platform specific to our needs. To build

from an established platform, we looked for mature open-

source projects, focusing on software-based signal

processing independent of any specific operating system.

There were a variety of projects that offered some of the

features we needed. Those best aligned with our goals

included:

 Figure 2: Graphical depiction of the tradeoff

between various properties of signal processors.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

• GNU Radio software and Ettus USRP hardware;

• CalRadio [3];

• High Performance SDR [4];

• KU Agile Radio [5];

• Rice WARP [6];

• Lyrtech Small-Form-Factor SDR [7];

• University of Texas HYDRA [8];

• Virginia Tech Chameleonic Radio [9];

• Virginia Tech Cognitive Engine [10]; and

• Virginia Tech OSSIE [11].

 Many of the platforms did not meet our needs for

several reasons. Some were too expensive or overly

bandwidth-constrained, limiting their usefulness to voice

and audio transport. Others relied exclusively on FPGA-

based signal processing or did not provide sufficiently open-

source software. We found the combination of the GNU

Radio software and Ettus USRP hardware to be the best

candidate, and considered the platform to be sufficiently

mature to use in our devices. In the following sections we

discuss some trade-offs involved in selecting this platform

and describe the hardware and software development

specific to the prototype. Figure 3 shows a conceptual

drawing of the complete software radio platform and each

functional component. The discussion is structured such that

readers who may have different requirements, constraints, or

other considerations may readily map our decision processes

and lessons learned to their environments.

3. HARDWARE INTEGRATION

Even with our decision to use the Ettus USRP for the radio

hardware, there were still a number of issues we had to

address including creation of the enclosure and audio

interface, and selection of the host computer, graphics

display, and power system. The prototype device’s hardware

is comprised of a reconfigurable radio enabling

communication in multiple frequency bands, a host

computer to perform signal processing and control the entire

system, a touchscreen LCD and audio interface for display

and user-control, and a rechargeable battery for portable

operation. The block diagram in Figure 4 illustrates the

system’s basic architecture and depicts high-level interfaces

between components within the system. In the following

sections, we discuss the design and integration of each

hardware component and key interfaces, highlighting the

challenges encountered throughout the process.

3.1. Enclosure

We considered three options for the enclosure: sheet metal,

machined aluminum, and stereolithography (SLA). SLA is

the most widely used rapid-prototyping technique for

producing three-dimensional parts quickly and efficiently –

the process itself takes on the order of hours to complete.

SLA fabrication works by laser-hardening light-sensitive

plastic in consecutive cross-sectional layers of the part being

fabricated, followed by minor cosmetic finishing. Although

SLA can be more expensive than some alternatives, we

chose to fabricate the enclosure using SLA because a more

customized enclosure could be delivered as a turnkey

solution in the shortest amount of time.

Figure 4: Block diagram depicting the

functional relationship between the Ettus

USRP hardware and GNU Radio software.

Figure 3: High-level block diagram of the
prototype’s major hardware elements, including

power, audio, USB, and other data connectivity.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

 The enclosure design is a “clamshell” with the

computer and user interface (LCD, microphone, and

speaker) on the top half, and the Ettus USRP in the bottom

half. Figure 5 shows the open clamshell with internal

components. A grounded sheet of aluminum separates the

top and bottom halves of the enclosure. This sheet helps

shield electromagnetic interference (EMI) between the two

halves and provides a mechanical connection for several

components. The EMI shield is a critical component for

reliable operation of the radio; without adequate isolation

the USRP picks up too much EMI from the SBC,

dramatically degrading performance. The use of a COTS

single-board computer (SBC) and LCD, both discussed

below, were two key factors in determining the device’s

form factor.

3.2. Host Computer

For the purposes of building a few prototypes, a

commercially available SBC can provide flexible and

powerful processing with little capital investment or

development time. A number of vendors offer embedded

processing boards intended for OEM integration. Taking

full advantage of the existing GNU Radio software and

Ettus USRP transceiver required a SBC with a high-end

chipset that was in common use. A lower-end Intel Celeron

processor would have been sufficient for most applications,

but an Intel Core 2 Duo offered superior performance with

only a modest increase in power consumption, if any, over

the Celeron. We chose the Commell LS-371 SBC because it

has one of the best performance-to-size ratios among the

SBCs we evaluated, and it incorporates all of the peripherals

we required – USB 2.0, serial graphics, and audio input /

output.

 The LS-371, like most modern computers, can boot

from a variety of data-transport mechanism. In order to

simplify the enclosure design and save space, we opted to

use the compact flash (CF) memory-slot on the bottom of

the board, recognizing that the throughput would likely be

slower than other boot device connections. Using a stock

LS-371 for testing different boot devices, the primary

difference for our particular application was in boot time, as

covered more in Section 4; applications, once executing, ran

at roughly the same speed.

3.3. Graphics Display

The device includes a display and touchscreen interface that

Figure 5: Internal view of the prototype showing the touchscreen LCD, backlight inverter, and audio interface on the left; the
single-board computer and rechargeable battery in the middle; and, with the RF shield removed, the Ettus USRP, input board,

and touchscreen controller on the right.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

substantially enhances the platform’s functionality.

However, incorporating the graphics display was the source

of several unanticipated challenges, and increased the

design complexity. A simpler approach would have been to

use a character LCD, but that would have limited the user

interface options and made on-device development more

challenging. The ideal solution was a small computer

display that interfaces directly to the LS-371 and a

touchscreen that emulates mouse clicks.

 The main difficulties stemmed from the fact that LCDs

are usually designed for a specific product, and touchscreen

overlays are typically LCD-specific. Additionally, there are

a variety of signaling formats used for internal video

transport, further limiting what off-the-shelf display devices

would work for this application. LCDs smaller than 8.4”

usually have parallel TTL-level inputs, whereas many SBCs

only provide video output over a high-speed serial interface

using low-voltage differential signaling (LVDS). For

simplicity, we chose to use the AUO G065VN01 6.5” VGA

(640x480) LCD – the smallest readily available with an

onboard LVDS interface. Because the G065VN01 does not

have an integrated touchscreen, we incorporated a resistive

touch overly that was designed for a similarly sized LCD. A

touchscreen controller encodes the overlay’s output and

sends the encoded data to the SBC via USB. Developing the

Linux software drivers for the USB controller we chose

presented some additional challenges, which are further

discussed in Section 4.

3.4. Power System

It was essential that the system be portable, necessitating an

internal power source with enough capacity for running

useful experiments in the field. However, the

computationally intensive signal processing performed by

the SBC and Ettus USRP requires more power than a

similar hardware-based wireless device. Because weight

was also of importance, heavier batteries such as lead acid

were inadequate. Lithium-ion (Li-ion) batteries, and more

recent successors such as lithium-polymer (LiPo) batteries

offer one of the best energy-to-weight ratios and lowest self-

discharge rates available today. LiPo technology offers

several additional benefits over Li-ion such as improved

robustness, increased energy density, and flexible housing

that enable more customized form factors. These benefits

led to our decision to use a LiPo battery pack (with internal

protection circuitry) constructed from four 3.7 V cells,

which together weigh about one pound and provide a

capacity of over 6 Ah at 14.8 V.

 The LS-371 provides the 5 V and 12 V power supplies

needed for the Ettus USRP, LCD backlight inverter, and

audio amplifier. Although using the same power supply for

the radio and digital boards results in increased RF noise,

the overall design is much simpler and we found this

solution to be acceptable for many applications. For non-

portable operation, an external power supply can be used via

a standard 2.1 mm center pin DC jack on the back of the

device.

3.4. Audio Interface

The easiest way to provide the necessary audio peripherals

while interfacing with the LS-371 was to design a simple

audio board specific to the prototype’s needs. The audio

board connects directly to the LS-371’s audio header and is

powered by the 5 V supply. It is mounted to the top-front of

the enclosure and contains a built-in microphone, amplifier

for the audio signal to an internal speaker, and logic for an

externally accessible audio port. The audio port provides 3.5

mm stereo line input and output jacks that are automatically

selected when a plug is inserted or removed. A low-noise

adjustable gain amplifier can be switched in and out of the

audio signal path to provide gain for low-level input signals,

such as from an external electret microphone. All of these

features are configured via an onboard DIP switch, allowing

audio operation tailored for varied applications.

4. SOFTWARE INTEGRATION

Even with the decision to use GNU Radio software for the

radio, there were a number of software issues to address

including selection of the operating system for the SBC and

integration of drivers for hardware interfaces. This section

discusses the choices and implementation of software, and

issues that arose and how they were resolved.

4.1. Operating System

In the spirit of keeping the project open-source, we focused

on Linux for the host operating system. As the SBC we

chose was quite new, we had to investigate several Linux

distributions before one was found that functioned reliably.

Among the free mainstream distributions that supported the

SBC, we found that Ubuntu 6.10 offered the highest level of

functionality. After choosing Ubuntu as the host operating

system, we had to integrate USB-based touchscreen

software and deal with boot issues created by our choice of

CF storage.

4.2. Touchscreen Drivers

The kernel-space extension (“kext”) for USB-based

touchscreens could not provide orientation parameters for

our selected touchscreen; this kext is not designed for

calibration. To make use of the touchscreen, we modified

the USB touchscreen kext to add user-space options for

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

swapping the X and Y coordinates and inverting the

resulting X or Y axis – all independent of each other. For

calibration of the incoming touchscreen data with the LCD,

we chose the Evtouch X.Org event driver [13], as it was the

first solution that compiled with minimal changes – even

though at the time it was not designed specifically for

Ubuntu Linux.

4.3. Boot Disk Issues

Compared with booting from an IDE hard drive, booting

from CF was around 4 times slower at roughly 4 minutes.

After reviewing boot logs it was clear that a direct memory

access timeout was stalling the boot process. A search of the

particular error in the Ubuntu web forums resulted in a fix

via adding the boot parameter “ide=nodma” to the GRUB

“menu.lst” file for each boot command, reducing boot time

to around 2.5 minutes.

4.3. Radio Software

GNU Radio provides basic building blocks for a “simple”

analog repeater as well as a “complex” HDTV receiver;

users can also create their own blocks. The software

package as a whole provides a framework for

experimentation, testing, and evaluation of new

communications protocols. GNU Radio is powerful,

scalable, robust software for real-time digital signal

processing.

5. CONCLUSIONS

We have successfully implemented a portable software

radio prototype built primarily using commercial off-the-

shelf components and open-source software. Given the ever-

increasing computational power of GPPs, as well as

continually increasing interest and funding for software

radio and related projects, we believe that GPP-based

software radio will soon provide the processing power,

scalability, and reconfigurability required by current and

future communications problems. Going forward, emerging

applications of software radio [13] offer the possibility of

revolutionizing the wireless industry through cognitive

functionality [14] – allowing radios to dynamically access

spectrum as needed, and moving transmissions elsewhere if

legacy radios communicate using the same spectrum.

6. ACKNOWLEDGMENTS

This work has been supported in part by the US National

Institute of Justice (NIJ) through grant 2006-IJ-CX-K034

and the US National Science Foundation (NSF) under grant

CNS06-26595.

 The authors thank Phil McPhee for mechanical

engineering design work, Brynnage Design

(http://brynnage.com/) for next-day SLA fabrication of the

enclosure, and our Software Radio Group – including Neil

Dodson, Andrew Harms, Ben Keller, Marcin Morys, and

Yaakov Sloman – for their continuing efforts.

7. REFERENCES

[1] GNU Radio Website, 2008. [Online]. Available:

http://www.gnuradio.org/
[2] Ettus Research LLC Website, 2008. [Online]. Available:

http://www.ettus.com/
[3] CalRadio Website, 2008. [Online]. Available:

http://calradio.calit2.net/
[4] High Performance SDR Website, 2008. [Online]. Available:

http://hpsdr.org/
[5] KU Agile Radio Website, 2008. [Online]. Available:

http://agileradio.ittc.ku.edu/
[6] Rice WARP Website, 2008. [Online]. Available:

http://warp.rice.edu/
[7] Lyrtech Small-Form-Factor SDR Website, 2008. [Online].

Available: http://www.lyrtech.com/
[8] University of Texas HYDRA Website, 2008. [Online].

Available:
http://users.ece.utexas.edu/~rheath/research/prototyping/mimoadhoc/

[9] Virginia Tech Chameleonic Radio Website, 2008. [Online].
Available: http://www.ece.vt.edu/swe/chamrad/

[10] Virginia Tech Cognitive Engine Website, 2008. [Online].
Available: http://www.cognitiveradio.wireless.vt.edu/

[11] Virginia Tech OSSIE Website, 2008. [Online]. Available:
http://ossie.wireless.vt.edu/trac/

[12] Evtouch Website, 2008. [Online]. Available:
http://www.conan.de/touchscreen/evtouch.html

[13] J. M. Chapin and W. H. Lehr, “Cognitive Radios for Dynamic
Spectrum Access – The Path to Market Success for Dynamic
Spectrum Access Technology,” IEEE Communications
Magazine, vol. 45, no. 5, pp. 96–103, May 2007.

[14] S. Haykin, “Cognitive Radio: Brain-Empowered Wireless
Communications,” IEEE Journal on Selected Areas in
Communications, vol. 23, no. 2, pp. 201–220, February 2005.

	Home
	Papers By Alpha
	Papers By Session

