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ABSTRACT 

 

We summarize the design and implementation of a portable 

software radio prototype built primarily using commercial 

off-the-shelf components and open-source software. The 

device components include a general-purpose processor 

(GPP) on a small-form-factor motherboard, radio hardware, 

touchscreen and LCD, audio microphone and speaker, and 

an internal battery enabling hours of mobile operation. 

Significant advances over the past decade have made GPP-

based software radio a viable solution in many areas, and 

this work demonstrates that today’s processors are capable 

of enabling a new generation of software radio in portable 

form-factor devices. Our research group leverages these 

prototypes for several funded projects focusing on issues 

including interoperable public safety communications, 

cognitive wireless networking, and educational initiatives.  

 

 

 

 

 

1. INTRODUCTION 

 

This article describes the design and development of a 

portable software radio prototype that uses as much open-

source hardware and software as possible, and leverages 

commercial off-the-shelf (COTS) components. The device 

is shown in Figure 1, and operates using GNU Radio 

software [1] for signal processing on a small-form-factor 

general-purpose processor (GPP)-based computer and an 

Ettus USRP (Universal Software Radio Peripheral) [2] for 

the air interface. The prototype offers the same capabilities 

as GNU Radio running on an Intel Core 2 Duo CPU-based 

computer running at 2 GHz with an Ettus USRP attached. 

The device can fit inside a box of dimensions 29 cm x 10.5 

cm x 21 cm, weighs just under seven pounds, and has 

roughly two hours of runtime from a single battery charge. 

The bill of materials for construction of a single device 

using retail components comes to approximately $3,700. 

The prototype described here exemplifies the benefits and 

cost savings offered by leveraging open-source and COTS 

components, and to the best of our knowledge represents the 

first portable software radio of its kind. 

 For high-volume applications, hardware radios are 

often preferred over software-based implementations. 

However, as processing performance and power efficiency 

increase there will be more applications for which software 

radios are more capable and can be built more cost 

effectively than their hardware counterparts. Even today, 

there are many applications that benefit from the superior 

reconfigurability offered by software-based 

implementations, such as when device interoperability is 

critical, when the lifetime of a product greatly exceeds that 

of the devices with which it needs to communicate, and for 

wireless research and development. There are also an 

increasing number of applications for which software-based 

processing is a feasible alternative and the added 

reconfigurability is highly desirable. Given the growing 

application-range for software radios, and their relatively 

limited presence in industry, we set out to demonstrate that 

today’s GPPs are capable of enabling portable 

communication devices that offer superior flexibility and 

advanced functionality. 

Figure 1: Highly reconfigurable portable software radio 
prototype implemented using open-source software and 
predominantly COTS hardware. The prototype provides 
dynamically configurable multi-channel and full-duplex 
communications in most frequency bands from 50 MHz 
to 2.9 GHz. 
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 In the following section we give more specific 

objectives, motivate the decision to use GNU Radio as the 

software framework for the prototype, and discuss several 

alternative platforms that offer similar functionality. In 

Section 3 we provide details on what went into the selection 

and design of each hardware component along with their 

integration into the prototype. In Section 4 we do the same 

for software. We conclude in Section 5 with a summary of 

our work on the prototype, and a discussion of some broader 

implications related to this work and software radio as a 

whole. 

 

2. CORE PLATFORM SELECTION 

 

At the early stages of the project, we had two primary goals. 

First, we wanted to create a device that could be used as a 

wireless research platform to quickly try out new ideas and 

provide a more concrete basis for what would otherwise be 

purely theoretical work. A key metric of success for this 

goal was minimizing the learning curve and development 

time often associated with algorithm development and 

experimental work in communications. Second, we set out 

to demonstrate that comprehensive protocol agility through 

software-based processing on a mobile device is not only a 

technology of the future, but a viable alternative today. 

 A generic software radio consists of the radio hardware, 

optional user interfaces, and – most importantly – one or 

more signal processors. The primary options for each signal 

processor include a field-programmable gate array (FPGA), 

a digital signal processor (DSP), and a GPP. 

 We based processor selection on the anticipated uses of 

the prototype, e.g., by researchers without specialized 

programming expertise. As shown in Figure 2, GPP-based 

software requires the least programming specialization, 

provides the best code-reuse, and can also be readily 

modified to include new or additional functionality, e.g., 

upgrading software from a draft to accepted wireless 

standard. Another argument for using a GPP is the upgrade 

path to newer, more capable processors via direct 

replacement of the processor or the motherboard on which 

the processor resides. A faster processor allows current code 

to execute faster – possibly even in real-time – and for more 

sophisticated algorithms to be implemented, simply by 

recompiling for the new hardware. We decided that it was 

worth the cost in terms of reduced battery life to use a GPP, 

in order to achieve the high level of flexibility and ease of 

use that we required. 

 Proprietary hardware and software has traditionally 

been required when building a software radio in order to 

overcome some fundamental limitations including radio 

frequency (RF) access range, digital data-transport 

bandwidth, and signal processing capabilities. 

Commercially-available advances in the myriad radio 

hardware technologies – antennas and RF front ends, 

analog-to-digital and digital-to-analog converters, data-

transport protocols and hardware, signal processors and 

small-form-factor computers, and power-management 

systems and batteries – and the maturity of freely-available 

open-source radio software have significantly mitigated 

these limitations. Accordingly, we worked to leverage as 

much open-source software and COTS hardware as 

possible. The use of a GPP and open-source software for 

signal processing are key to achieving both goals by 

controlling hardware costs, creating a highly scalable 

processor upgrade path, and fostering a collaborative 

environment for software development in the wireless 

community. 

 We identified several baseline requirements to show 

that a GPP-based software radio could be built in a portable 

form factor offering reasonable runtime while powered from 

an internal battery. In order to meet the needs of a funding 

agency, it was important that the system be capable of 

handling multiple 25 kHz voice channels with typical voice 

encoding, and data transmission up to a few hundred 

kilobits per second with QAM, PSK, or OFDM modulation. 

With respect to software architecture requirements, we 

desired cross-platform support for Unix-like operating 

systems including Linux and Mac OS X, critical code 

written primarily in a compiled, standardized, operating-

system independent programming language such as C++, 

and software-based control down to the physical layer. 

Finally, we wanted the hardware to be economically priced, 

while still offering processing performance on par with 

currently available desktop computers. 

 It was initially unclear whether we could leverage an 

existing software radio platform, or if it would be necessary 

to develop a new platform specific to our needs. To build 

from an established platform, we looked for mature open-

source projects, focusing on software-based signal 

processing independent of any specific operating system. 

There were a variety of projects that offered some of the 

features we needed. Those best aligned with our goals 

included: 

 Figure 2: Graphical depiction of the tradeoff 

between various properties of signal processors. 
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• GNU Radio software and Ettus USRP hardware; 

• CalRadio [3]; 

• High Performance SDR [4]; 

• KU Agile Radio [5]; 

• Rice WARP [6]; 

• Lyrtech Small-Form-Factor SDR [7]; 

• University of Texas HYDRA [8]; 

• Virginia Tech Chameleonic Radio [9]; 

• Virginia Tech Cognitive Engine [10]; and 

• Virginia Tech OSSIE [11]. 

 Many of the platforms did not meet our needs for 

several reasons. Some were too expensive or overly 

bandwidth-constrained, limiting their usefulness to voice 

and audio transport. Others relied exclusively on FPGA-

based signal processing or did not provide sufficiently open-

source software. We found the combination of the GNU 

Radio software and Ettus USRP hardware to be the best 

candidate, and considered the platform to be sufficiently 

mature to use in our devices. In the following sections we 

discuss some trade-offs involved in selecting this platform 

and describe the hardware and software development 

specific to the prototype. Figure 3 shows a conceptual 

drawing of the complete software radio platform and each 

functional component. The discussion is structured such that 

readers who may have different requirements, constraints, or 

other considerations may readily map our decision processes 

and lessons learned to their environments. 

 

3. HARDWARE INTEGRATION 

 

Even with our decision to use the Ettus USRP for the radio 

hardware, there were still a number of issues we had to 

address including creation of the enclosure and audio 

interface, and selection of the host computer, graphics 

display, and power system. The prototype device’s hardware 

is comprised of a reconfigurable radio enabling 

communication in multiple frequency bands, a host 

computer to perform signal processing and control the entire 

system, a touchscreen LCD and audio interface for display 

and user-control, and a rechargeable battery for portable 

operation. The block diagram in Figure 4 illustrates the 

system’s basic architecture and depicts high-level interfaces 

between components within the system. In the following 

sections, we discuss the design and integration of each 

hardware component and key interfaces, highlighting the 

challenges encountered throughout the process. 

 

3.1. Enclosure 

 

We considered three options for the enclosure: sheet metal, 

machined aluminum, and stereolithography (SLA). SLA is 

the most widely used rapid-prototyping technique for 

producing three-dimensional parts quickly and efficiently – 

the process itself takes on the order of hours to complete. 

SLA fabrication works by laser-hardening light-sensitive 

plastic in consecutive cross-sectional layers of the part being 

fabricated, followed by minor cosmetic finishing. Although 

SLA can be more expensive than some alternatives, we 

chose to fabricate the enclosure using SLA because a more 

customized enclosure could be delivered as a turnkey 

solution in the shortest amount of time. 

Figure 4: Block diagram depicting the 

functional relationship between the Ettus 

USRP hardware and GNU Radio software. 

 

Figure 3: High-level block diagram of the 
prototype’s major hardware elements, including 

power, audio, USB, and other data connectivity. 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

 The enclosure design is a “clamshell” with the 

computer and user interface (LCD, microphone, and 

speaker) on the top half, and the Ettus USRP in the bottom 

half. Figure 5 shows the open clamshell with internal 

components. A grounded sheet of aluminum separates the 

top and bottom halves of the enclosure. This sheet helps 

shield electromagnetic interference (EMI) between the two 

halves and provides a mechanical connection for several 

components. The EMI shield is a critical component for 

reliable operation of the radio; without adequate isolation 

the USRP picks up too much EMI from the SBC, 

dramatically degrading performance. The use of a COTS 

single-board computer (SBC) and LCD, both discussed 

below, were two key factors in determining the device’s 

form factor. 

 

3.2. Host Computer 

 

For the purposes of building a few prototypes, a 

commercially available SBC can provide flexible and 

powerful processing with little capital investment or 

development time. A number of vendors offer embedded 

processing boards intended for OEM integration. Taking 

full advantage of the existing GNU Radio software and 

Ettus USRP transceiver required a SBC with a high-end 

chipset that was in common use. A lower-end Intel Celeron 

processor would have been sufficient for most applications, 

but an Intel Core 2 Duo offered superior performance with 

only a modest increase in power consumption, if any, over 

the Celeron. We chose the Commell LS-371 SBC because it 

has one of the best performance-to-size ratios among the 

SBCs we evaluated, and it incorporates all of the peripherals 

we required – USB 2.0, serial graphics, and audio input / 

output. 

 The LS-371, like most modern computers, can boot 

from a variety of data-transport mechanism. In order to 

simplify the enclosure design and save space, we opted to 

use the compact flash (CF) memory-slot on the bottom of 

the board, recognizing that the throughput would likely be 

slower than other boot device connections. Using a stock 

LS-371 for testing different boot devices, the primary 

difference for our particular application was in boot time, as 

covered more in Section 4; applications, once executing, ran 

at roughly the same speed. 

 

3.3. Graphics Display 

 

The device includes a display and touchscreen interface that 

Figure 5: Internal view of the prototype showing the touchscreen LCD, backlight inverter, and audio interface on the left; the 
single-board computer and rechargeable battery in the middle; and, with the RF shield removed, the Ettus USRP, input board, 

and touchscreen controller on the right. 
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substantially enhances the platform’s functionality. 

However, incorporating the graphics display was the source 

of several unanticipated challenges, and increased the 

design complexity. A simpler approach would have been to 

use a character LCD, but that would have limited the user 

interface options and made on-device development more 

challenging. The ideal solution was a small computer 

display that interfaces directly to the LS-371 and a 

touchscreen that emulates mouse clicks. 

 The main difficulties stemmed from the fact that LCDs 

are usually designed for a specific product, and touchscreen 

overlays are typically LCD-specific. Additionally, there are 

a variety of signaling formats used for internal video 

transport, further limiting what off-the-shelf display devices 

would work for this application. LCDs smaller than 8.4” 

usually have parallel TTL-level inputs, whereas many SBCs 

only provide video output over a high-speed serial interface 

using low-voltage differential signaling (LVDS). For 

simplicity, we chose to use the AUO G065VN01 6.5” VGA 

(640x480) LCD – the smallest readily available with an 

onboard LVDS interface. Because the G065VN01 does not 

have an integrated touchscreen, we incorporated a resistive 

touch overly that was designed for a similarly sized LCD. A 

touchscreen controller encodes the overlay’s output and 

sends the encoded data to the SBC via USB. Developing the 

Linux software drivers for the USB controller we chose 

presented some additional challenges, which are further 

discussed in Section 4. 

 

3.4. Power System 

 

It was essential that the system be portable, necessitating an 

internal power source with enough capacity for running 

useful experiments in the field. However, the 

computationally intensive signal processing performed by 

the SBC and Ettus USRP requires more power than a 

similar hardware-based wireless device. Because weight 

was also of importance, heavier batteries such as lead acid 

were inadequate. Lithium-ion (Li-ion) batteries, and more 

recent successors such as lithium-polymer (LiPo) batteries 

offer one of the best energy-to-weight ratios and lowest self-

discharge rates available today. LiPo technology offers 

several additional benefits over Li-ion such as improved 

robustness, increased energy density, and flexible housing 

that enable more customized form factors. These benefits 

led to our decision to use a LiPo battery pack (with internal 

protection circuitry) constructed from four 3.7 V cells, 

which together weigh about one pound and provide a 

capacity of over 6 Ah at 14.8 V. 

 The LS-371 provides the 5 V and 12 V power supplies 

needed for the Ettus USRP, LCD backlight inverter, and 

audio amplifier. Although using the same power supply for 

the radio and digital boards results in increased RF noise, 

the overall design is much simpler and we found this 

solution to be acceptable for many applications. For non-

portable operation, an external power supply can be used via 

a standard 2.1 mm center pin DC jack on the back of the 

device. 

 

3.4. Audio Interface 

 

The easiest way to provide the necessary audio peripherals 

while interfacing with the LS-371 was to design a simple 

audio board specific to the prototype’s needs. The audio 

board connects directly to the LS-371’s audio header and is 

powered by the 5 V supply. It is mounted to the top-front of 

the enclosure and contains a built-in microphone, amplifier 

for the audio signal to an internal speaker, and logic for an 

externally accessible audio port. The audio port provides 3.5 

mm stereo line input and output jacks that are automatically 

selected when a plug is inserted or removed. A low-noise 

adjustable gain amplifier can be switched in and out of the 

audio signal path to provide gain for low-level input signals, 

such as from an external electret microphone. All of these 

features are configured via an onboard DIP switch, allowing 

audio operation tailored for varied applications. 

 

4. SOFTWARE INTEGRATION 

 

Even with the decision to use GNU Radio software for the 

radio, there were a number of software issues to address 

including selection of the operating system for the SBC and 

integration of drivers for hardware interfaces. This section 

discusses the choices and implementation of software, and 

issues that arose and how they were resolved. 

 

4.1. Operating System 

 

In the spirit of keeping the project open-source, we focused 

on Linux for the host operating system. As the SBC we 

chose was quite new, we had to investigate several Linux 

distributions before one was found that functioned reliably. 

Among the free mainstream distributions that supported the 

SBC, we found that Ubuntu 6.10 offered the highest level of 

functionality. After choosing Ubuntu as the host operating 

system, we had to integrate USB-based touchscreen 

software and deal with boot issues created by our choice of 

CF storage. 

 

4.2. Touchscreen Drivers 

 

The kernel-space extension (“kext”) for USB-based 

touchscreens could not provide orientation parameters for 

our selected touchscreen; this kext is not designed for 

calibration. To make use of the touchscreen, we modified 

the USB touchscreen kext to add user-space options for 
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swapping the X and Y coordinates and inverting the 

resulting X or Y axis – all independent of each other. For 

calibration of the incoming touchscreen data with the LCD, 

we chose the Evtouch X.Org event driver [13], as it was the 

first solution that compiled with minimal changes – even 

though at the time it was not designed specifically for 

Ubuntu Linux. 

 

4.3. Boot Disk Issues 

 

Compared with booting from an IDE hard drive, booting 

from CF was around 4 times slower at roughly 4 minutes. 

After reviewing boot logs it was clear that a direct memory 

access timeout was stalling the boot process. A search of the 

particular error in the Ubuntu web forums resulted in a fix 

via adding the boot parameter “ide=nodma” to the GRUB 

“menu.lst” file for each boot command, reducing boot time 

to around 2.5 minutes. 

 

4.3. Radio Software 

 

GNU Radio provides basic building blocks for a “simple” 

analog repeater as well as a “complex” HDTV receiver; 

users can also create their own blocks. The software 

package as a whole provides a framework for 

experimentation, testing, and evaluation of new 

communications protocols. GNU Radio is powerful, 

scalable, robust software for real-time digital signal 

processing. 

 

5. CONCLUSIONS 

 

We have successfully implemented a portable software 

radio prototype built primarily using commercial off-the-

shelf components and open-source software. Given the ever-

increasing computational power of GPPs, as well as 

continually increasing interest and funding for software 

radio and related projects, we believe that GPP-based 

software radio will soon provide the processing power, 

scalability, and reconfigurability required by current and 

future communications problems. Going forward, emerging 

applications of software radio [13] offer the possibility of 

revolutionizing the wireless industry through cognitive 

functionality [14] – allowing radios to dynamically access 

spectrum as needed, and moving transmissions elsewhere if 

legacy radios communicate using the same spectrum. 
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