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ABSTRACT 
 
Many developments in communications systems begin as a 
theoretical model and then analyzed in a simulation 
environment such as Matlab. Often, these simulations do not 
provide the complexity of a real implementation where one 
must deal with real circuitry and channels. The open source 
GNU Radio platform offers an easy transition between the 
theoretical models and an affordable solution to test the 
models under real-world conditions. We present the concept 
of GNU Radio for this purpose here by discussing and 
analyzing a flexible OFDM transceiver. This design offers 
research and development of different methods of OFDM 
symbol transmission, reception, and synchronization. These 
concepts are currently being applied to develop waveforms 
such as WiMAX. 
 

1. INTRODUCTION 
 
GNU Radio is a free and open source software defined radio 
(SDR) project [1]. The purpose of this paper is to show how 
GNU Radio is useful in experimenting with and developing 
SDR techniques. Many problems faced in communication 
system design have multiple solutions while other new 
problems have solutions that are still in experimental stages 
of development. Some of these solutions have been 
developed and shown only mathematically and in simple 
simulations that ignore or miss certain problems 
experienced when used in real systems. Other times, 
different solutions to the same problems can have trade-offs 
in power cost and performance. In all of these cases, an 
open, transparent system for developing, testing, and 
comparing these systems can help advance our 
understanding. 
 GNU Radio is a solution to these problems. As an open 
source project, GNU Radio offers transparency to analyze, 
design, and distribute concepts in communications. We have 
developed a number of communications and signal 
processing blocks that can be used to build and test systems 
to analyze performance. Furthermore, GNU Radio runs in 
real-time and on-line and can be interfaced with RF 
hardware, which means we can go from experimentation to 
deployment in the same system. 

 In order to illustrate how GNU Radio offers these 
services to SDR development, we will discuss the 
implementation of an OFDM transceiver system. In 
particular, we have developed the transmit and receive 
chains in a modular way that enables discrete replacement 
of components so that different modulators, demodulators, 
and receivers can be developed and tested. We will explain 
the architecture and describe how to replace components in 
order to build new functionality such as modulator 
subcarrier mapping and timing and frequency 
synchronization methods. We have implemented three 
different synchronization blocks and will provide some 
results of their use to describe how to analyze and compare 
them. 
 This paper focuses on the implementation in GNU 
Radio, and so we will not present any more than the 
necessary description of OFDM and instead point to the 
relevant texts and papers. For a general introduction to 
OFDM, see [2]. To make the software and the information 
in this paper as useful as possible, all of the code, 
commands, and examples are distributed as part of the 
standard GNU Radio software package. The code is split 
between implementation in C++ and Python. The OFDM 
blocks written in C++ can be found in gnuradio-
core/src/lib/general and are prefixed as gr_ofdm_. The 
Python blocks are hierarchical structures containing other 
hierarchical blocks and the C++ blocks and are found in 
gnuradio-core/src/python/ gnuradio/blks2impl. 
 

2. TRANSMIT AND RECEIVE CHAINS 
 
2.1. Transmit Chain 
In OFDM, the data is mostly operated on in the frequency 
domain. Baseband data is manipulated using standard 
modulation techniques as a complex number and mapped to 
a vector which is then converted to the time domain using 
an IFFT. The vector is made up of NFFT elements of which 
NOC elements are used. When this is put through an IFFT of 
length NFFT, the elements represent orthogonal subcarriers of 
which NOC carry information. In general, these NOC 
subcarriers occupy the middle subcarriers, leaving about 
(NFFT-NOC)/2 subcarriers unused on either side (ignoring a 
±1 if NFFT is odd) as guard bands. The DC subcarrier is 
often removed to avoid problems caused by DC offsets. 
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 Following the IFFT, a guard time is usually inserted 
between symbols to protect against multipath and 
intersymbol interference (ISI). This is often done in the 
form of a cyclic prefix that takes the last G percent of the 
symbol and affixes it the front where G is often some 
fraction from 1/32 to 1/4. 
 Another important step in transmitting OFDM data is to 
guide the synchronization process at the receiver, which is 
usually done by adding a preamble of known data. We 
discuss this in more detail later.  
 Figure 1 shows the block diagram of the GNU Radio 
OFDM transmit chain. The blocks perform the baseband 
symbol mapping to the subcarriers, the insertion of 
preambles, the IFFT, and the addition of the cyclic prefix on 
each symbol. In the transmit chain, the ofdm_mapper_bcv 
function allows for some interesting modifications that are 
discussed in Section 2.3. The IFFT and cyclic prefix adder 
are standard operations while the preamble adder can take in 
a vector of preambles to give a large amount of flexibility in 
how the preambles are structured and how many are used. 
 The mapper block is currently implemented in the 
simplest way possible for basic functionality. The two 
subcarriers near DC are removed and the guard bands on the 
sides are evenly balanced. Data is modulated by taking the 
bit stream mapping the bits to a complex constellation that 
is passed in externally. The complex values are then 
sequentially inserted onto the subcarriers. 
 
2.2. Receive Chain 
The receive chain is more complex than the transmit chain 
and is split into the demodulator in Figure 3 with the 
receiver block in Figure 2 that performs the symbol timing 
and synchronization. After the channel filter, a 
synchronization routine is performed to find the symbol 
timing and fine frequency offset. The former clocks the 
symbols through the receive chain while the latter is used to 
adjust the numerically controlled oscillator (NCO) and a 
complex multiplier to adjust the frequency of the symbols. 
More about the synchronization mechanism will be 
provided in Section 3. 

 The OFDM sampler function uses the timing trigger to 
segment the incoming samples into the properly-timed 
symbols and cuts out the cyclic-prefix. The output is then 
demodulated through the FFT function that performs the 
inverse of the IFFT in the transmitter. The frame acquisition 
block completes the receiver synchronization by finding the 
final integer frequency offset and correcting for it as well as 
using the known data of the preamble to build an equalizer 
in the frequency domain. The output of this block is a 
derotated, equalized OFDM symbol. The OFDM frame sink 
block in Figure 3 takes the OFDM symbol data, demaps it 
into bits, and packs these bits into a frame to be passed out 
of the physical layer and up the stack. The frame sink uses 
the same constellation as the mapper function to perform the 
translation from the OFDM symbol to baseband bits. 
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Figure 1. GNU Radio OFDM modulator block diagram (blks2impl/ofdm.py:ofdm_mod). 

 
2.3 Modifications 
The mapper and frame sink (demapper) functions are where 
modifications can be made to enable different ways of 
realizing an OFDM system. These changes can be for 
experimental purposes or for actual use such as non-
contiguous OFDM and constellation mapping. 
 Non-contiguous OFDM nulls certain subcarriers in 
order to manipulate the used spectrum by the system [3]. 
This concept has been discussed for use in dynamic 
spectrum access systems as a way to fill unused spectrum 
around narrowband users. 
 Another area of interest with more immediate 
applicability is in using different modulation constellations 
on different subcarriers. Based on the channel properties and 
interferers over all subcarriers, different modulations can 
provide a balance between data rate and BER performance 
[4].  
 Both of these techniques can be done through 
modifications of the mapper and frame sink functions. The 
routine for moving data onto the occupied subcarriers would 
control which subcarriers are used, and the constellation 
map provided to the function determines how data is 
mapped per subcarrier. 
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Figure 3. GNU Radio OFDM demodulator block diagram (blks2impl/ofdm.py:ofdm_demod). The ofdm_receiver block is a 
hierarchical block in Python and is shown in Figure 3. 

3. OFDM SYNCHRONIZATION 
 
Like most OFDM systems in use, ours relies on the concept 
of prefixed known data at the start of a frame to provide 
information for synchronization at the receiver. The 
preamble is used by the receiver to find the start of the 
frame, estimate the frequency offset, and calculate an 
equalizer for the channel. Many standards synchronize 
based off a preamble that may be segmented into different 
segments of information for different parts of the receiver 
synchronization including the IEEE 802.16 standard [5]. We 
use a simple version of this, but since the preambles are 
passed from the user-space to the transmitter, the system 
allows for easy changes to this.  
 Our preamble is currently a repeated sequence in time 
over one full OFDM symbol by using a FFT property by 
inserting zeros into every other frequency bin. This is a 
well-known and used preamble concept and the basis of one 
of the most popular synchronization techniques by Schmidl 
and Cox [6]. Inserting two zeros between data symbols 
creates a three times repetition in the time domain that is 
part of the IEEE 802.16 OFDMA standard [5]. 
 Equation 1 represents the OFDM symbol at the receiver 
after being put through a channel with complex taps Hn. 
Each subcarrier, n, is transmitted on a set frequency fn but is 
received with some frequency offset specified by an integer 
part, fΔ, and a fractional part, fδ. The integer part specifies a 
number of subcarriers between the transmitted frequency 
and received frequency while the fractional part specifies 

the amount of frequency deviation within a subcarrier from 
the center. The complex envelope of additive white 
Gaussian noise is represented here by wk. 
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Figure 2. GNU Radio OFDM receiver (blks2impl/ofdm_receiver.py:ofdm_receiver). The ofdm_sync block is a hierarchical block 
in Python that can be replaced for different timing and frequency acquisition functions and techniques (see Section 4). 
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 From equation 1, one of the most important functions of 
the receiver is estimating the frequency offsets, fΔ and fδ. 
The literature contains a number of ways in which these 
parameters are estimated, and to provide the most general 
interface we can, we have separated the synchronization 
tasks to a timing and fractional frequency synchronization 
block, which are usually done using the preamble symbol in 
the time domain, and an integer frequency synchronization 
and equalizer estimation in another block after the FFT. The 
order of synchronization is a bit counterintuitive since the 
fine frequency correction is done prior to the integer 
frequency correction. This is done because the timing and 
fine frequency correction methods are done in the time 
domain while the integer frequency correction is done in the 
frequency domain, and therefore after the FFT. 
 There are many proposed timing and fine frequency 
synchronization methods. In Section 4, we will present three 
of these that we have implemented in GNU Radio. We leave 
the specifics of how the synchronization is done to the 
literature. There are other synchronization techniques in the 
literature that are proposed for different purposes or with 
varying performance metrics in mind such as blind 
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synchronization methods for streaming services [7]. The 
intention of the design is to facilitate the introduction and 
testing of these different methods, 
 The integer frequency offset is found as part of the 
frame acquisition block that correlates the preamble in the 
frequency domain. The timing signal from the synchronizer 
block tells this block when the preamble is received, so it 
knows that the symbol it is working on is the preamble. The 
integer offset causes a symbol rotation, so the correlation is 
performed between the difference in the symbols on 
adjacent data subcarriers. The subcarrier offset that 
maximizes the correlation is the integer frequency offset. 
This value is then used to fully derotate the symbol through 
equation 2 where the each input symbol, y[i], is multiplied 
by the rotation of the integer frequency offset and the ratio 
of the cyclic prefix length, Ncp, to the FFT length, NFFT. 

 ⎟⎟
⎠

⎞
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⎝

⎛
= Δ

FFT

cp

N
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 The equalizer is calculated by using the known symbol 
or the preamble and the received preamble. Because of the 
nulled subcarriers used for the symbol repetition, the 
equalizer is determined for every second subcarrier as  

 where x[i] represents the known value 
of the preamble in subcarrier i. The other subcarriers are 
calculated by simply interpolating between these points. 

][ˆ/][][ yixiH = i

 
4. COMPARING SYCHRONIZATION METHODS 

 
In this section, we provide a brief review of the three 
synchronization techniques developed for use in GNU 
Radio. For a complete understanding of synchronization, see 
[8] and the individual papers behind each technique. 
 The synchronizers are all located in Python source 
directory and are prefixed as ofdm_sync_. They are called 
from ofdm_receiver.py and a simple if statement selects 
which method to use based on the suffix of the filename. 
These techniques are implementations of the “ofdm_sync” 
hierarchical block of Figure 3. We do not show their block 
diagrams here due to space constraints. 
 
4.1 Schmidl and Cox 
The first and default synchronizer is based on the Schmidl 
and Cox method [6] (ofdm_sync_pn.py). The basis of this 
method correlates against a repeated PN code in the 
preamble and creates a timing trigger from it. The 
correlation also produces a fine frequency estimation within 
±1 subcarrier spacing. The integer portion is calculated later 
in the ofdm_frame_acquition block. 
 
 
 

4.2. van de Beek 
The van de Beek method [9] (ofdm_sync_ml.py) correlates 
against the cyclic prefix on every symbol, producing a 
timing and frequency estimate each time. Frequency 
estimation is good to ±0.5 subcarrier spacing. 
 Referring to Figure 3, each synchronization method is 
expected to produce a fine frequency correction signal used 
to adjust the frequency of the incoming signal as well as a 
timing signal that indicates the start of the frame. This 
method produces a timing signal for every received symbol 
and not just once per frame. When an OFDM symbol is 
received with a cyclic prefix, the circular convolution 
property of the symbol allows full demodulation anywhere 
in the cyclic prefix up to the first sample of the symbol. This 
holds true as long as a full T samples are received. Ideally, 
the timing should place the start of the symbol exactly at the 
end of the cyclic prefix to avoid any ISI. However, the 
timing algorithms in real systems do not necessarily get this 
kind of accuracy. If the timing starts inside the cyclic prefix, 
the data can still be recovered but with a phase shift 
proportional to the timing position. The 
ofdm_frame_acquisition block uses the known preamble to 
calculate an equalizer that can then correct for the phase 
shift along with the channel properties. If during the 
reception of the frame, the timing is adjusted by even a 
single sample, the timing offset introduces a new phase 
difference that the equalizer can no longer correct. 
 To protect the receiver from this, we have added a 
correlation against the preamble and use this as the output 
timing trigger. While this provides the proper timing, the 
correlation procedure removes the ability to handle large 
frequency offsets since the correlation peak degrades as the 
offset increases. A coarse frequency estimation would be 
required prior to this if this system were to be used in a 
situation where a large frequency offset is expected. 
 
4.3. Tufvesson 
The Tufvesson method [10] (ofdm_sync_pnac.py) is a 
modification of the Schmidl and Cox method that adds a 
cross-correlation against the known PN sequence of the 
preamble before going through the time-delayed correlation. 
This produces a stronger timing signal at the end of the 
preamble and reduces ambiguity in the timing. However, 
like the correlation added to the van de Beek method, the 
cross-correlation here affects the maximum frequency offset 
that can be detected. 
 

5. DISCUSSION 
To illustrate both the successful implementations of these 
techniques as well as show some of the differences, we 
present here few output results of the different 
synchronizers. The tests are run using the 
benchmark_ofdm.py simulation test script that is a part of 
the GNU Radio distribution package and can be found in the 
source tree at gnuradio-examples/src/python/ofdm/. The 
scripts benchmark_ofdm_tx.py and benchmark_ofdm_rx.py 
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are then used to transmit and receive the signals using the 
Universal Software Radio Peripheral (USRP) [11]. 
 The script is run for each of the three synchronizers 
with the command-line arguments: 
 ./benchmark_ofdm.py --log --frequency-offset=0.3  

--tx-amp=2 -s 1500 
 This sets the frame length (-s) to 1500 bytes, a 
fractional frequency offset of 0.3 subcarriers, sets a specific 
amplitude value, and logs all debug data to files. By default, 
the following values are used by the script. 
 

Table 1. OFDM Simulation Parameters 
Parameter Value 
FFT length 512 
Used subcarriers 200 
Cyclic prefix length 128 
SNR 30 dB 
Timing offset 0 
Multipath channel Off 
Modulation BPSK 
Symbols per frame 62 

Figure 4. Results of Schmidl and Cox synchronization. 

 
Figure 5. Results of van de Beek synchronization. 

 
 GNU Radio distributes a few useful plotting tools to 
visualize the output data using the open source software 
projects Python, Scipy, Numpy, and Matplotlib. One 
plotting tool is distributed in the OFDM examples directory 
that was built specifically to analyze the OFDM system and 
is called gr_plot_ofdm.py. Another suite of plotting utilities 
are located in gr-utils/src/python/  that are all prefixed 
gr_plot_ and can plot character, integer, floating point, and 
complex (as I&Q) data, plot the FFT of floating or complex 
data, and plot the constellation of complex data. 
 To show the performance of the synchronizers, we use 
the OFDM-specific plotting tool which plots four views of 
the received symbols. The upper left plot shows the 
constellation of the received baseband symbols. The black 
dots represent the actual data symbols while the white dots 
represent the data after being passed through a decision-
directed equalizer to correct for phase tracking offsets. This 
plot is useful in understanding the error performance of the 
system as the symbols are tracked through a full frame. The 
middle two carriers are nulled out to compensate for any DC 
offset and show up at the origin of this plot. 
 The upper right plot shows the unequalized angle across 
all FFT bins where the middle occupied carriers carry the 
data. This plot shows the effects of timing offsets in the 
synchronizer through the angle of the occupied carriers. 
 The equalized phase in the bottom left corner shows the 
compensation for any channel affects as well as the linear 
phase offset due to timing error. We did not use a multipath 
channel in this simulation to make the results more clear. A 
simple simulated multipath channel can be used by adding 
“--multipath-on” to the command-line. We have not 
modeled any specific multipath channels yet, so this just 
applies an FIR filter with preset taps. 

 From these plots, we can see differences in the 
synchronizer’s performance. The Schmidl and Cox and the 

Figure 6. Results of Tufvesson synchronization.  
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van de Beek methods have issues when looking for the 
exact timing point due to digitization error, which causes the 
linear phase shift in the unequalized angle plot. This is not a 
problem because the equalizer corrects for the phase shift. 
The Tufvesson method provides a more accurate timing 
metric and therefore a flat phase response even before the 
equalizer is applied. 
 Both the Schmidl and Cox and the Tufvesson methods 
have another interesting effect. Each of these plots was 
captured on the final symbol in the frame. The black points 
in the constellation diagram and the equalized phase shows 
a phase rotation that occurs throughout the frame. This 
occurs because of the ambiguity in the estimation of the 
fractional frequency offset, which builds a small rotation 
into each symbol that builds up over the length of the frame. 
The van de Beek method is the maximum likelihood 
receiver and calculates the frequency much more accurately. 
Furthermore, because the van de Beek method performs the 
frequency estimation once per symbol as opposed to once 
per frame, each symbol is independently corrected and the 
frequency is tracked throughout the frame. 

 GNU Radio is a platform for both experimentation and 
development of communication systems. This paper has 
shown how we have developed OFDM capabilities for GNU 
Radio through the implementation details and 
experimentation with different synchronization algorithms. 
Through this, we have shown how we are developing GNU 
Radio capabilities as well as building, improving, and 
disseminating knowledge. 

Figure 7. Results of using QAM64 subcarrier modulation. 

 
5. CONCLUSIONS AND DEVELOPMENTS 

 
 The current OFDM implementation provides the basic 

properties required to both transmit and receive data through 
stationary channels. The system corrects for multipath, 
frequency and timing offsets, and can transfer data with a 
variable number of subcarriers, cyclic prefix length, and 
subcarrier modulation. There are more properties that we are 
currently making progress on implementing. One important 
OFDM property is the use of pilot tones. Pilot tones are 
reserved subcarriers that are modulated with a known 
symbol used by the receiver to correct for changes in the 
channel, which is required for dynamic channels. The pilots 
are often implemented as a lattice that can be 
multidimensional across both frequency and symbol. The 
addition of pilots is already in progress. 
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