

OPEN SOURCE TRANSPARENCY FOR OFDM EXPERIMENTATION

Thomas W. Rondeau (CTVR, Trinity College Dublin, Dublin, Ireland, trondeau@vt.edu),

Matt Ettus (Ettus Research, LLC., matt@ettus.com), Robert W. McGwier (CCR, IDA,
rwmcgwier@gmail.com)

ABSTRACT

Many developments in communications systems begin as a
theoretical model and then analyzed in a simulation
environment such as Matlab. Often, these simulations do not
provide the complexity of a real implementation where one
must deal with real circuitry and channels. The open source
GNU Radio platform offers an easy transition between the
theoretical models and an affordable solution to test the
models under real-world conditions. We present the concept
of GNU Radio for this purpose here by discussing and
analyzing a flexible OFDM transceiver. This design offers
research and development of different methods of OFDM
symbol transmission, reception, and synchronization. These
concepts are currently being applied to develop waveforms
such as WiMAX.

1. INTRODUCTION

GNU Radio is a free and open source software defined radio
(SDR) project [1]. The purpose of this paper is to show how
GNU Radio is useful in experimenting with and developing
SDR techniques. Many problems faced in communication
system design have multiple solutions while other new
problems have solutions that are still in experimental stages
of development. Some of these solutions have been
developed and shown only mathematically and in simple
simulations that ignore or miss certain problems
experienced when used in real systems. Other times,
different solutions to the same problems can have trade-offs
in power cost and performance. In all of these cases, an
open, transparent system for developing, testing, and
comparing these systems can help advance our
understanding.
 GNU Radio is a solution to these problems. As an open
source project, GNU Radio offers transparency to analyze,
design, and distribute concepts in communications. We have
developed a number of communications and signal
processing blocks that can be used to build and test systems
to analyze performance. Furthermore, GNU Radio runs in
real-time and on-line and can be interfaced with RF
hardware, which means we can go from experimentation to
deployment in the same system.

 In order to illustrate how GNU Radio offers these
services to SDR development, we will discuss the
implementation of an OFDM transceiver system. In
particular, we have developed the transmit and receive
chains in a modular way that enables discrete replacement
of components so that different modulators, demodulators,
and receivers can be developed and tested. We will explain
the architecture and describe how to replace components in
order to build new functionality such as modulator
subcarrier mapping and timing and frequency
synchronization methods. We have implemented three
different synchronization blocks and will provide some
results of their use to describe how to analyze and compare
them.
 This paper focuses on the implementation in GNU
Radio, and so we will not present any more than the
necessary description of OFDM and instead point to the
relevant texts and papers. For a general introduction to
OFDM, see [2]. To make the software and the information
in this paper as useful as possible, all of the code,
commands, and examples are distributed as part of the
standard GNU Radio software package. The code is split
between implementation in C++ and Python. The OFDM
blocks written in C++ can be found in gnuradio-
core/src/lib/general and are prefixed as gr_ofdm_. The
Python blocks are hierarchical structures containing other
hierarchical blocks and the C++ blocks and are found in
gnuradio-core/src/python/ gnuradio/blks2impl.

2. TRANSMIT AND RECEIVE CHAINS

2.1. Transmit Chain
In OFDM, the data is mostly operated on in the frequency
domain. Baseband data is manipulated using standard
modulation techniques as a complex number and mapped to
a vector which is then converted to the time domain using
an IFFT. The vector is made up of NFFT elements of which
NOC elements are used. When this is put through an IFFT of
length NFFT, the elements represent orthogonal subcarriers of
which NOC carry information. In general, these NOC
subcarriers occupy the middle subcarriers, leaving about
(NFFT-NOC)/2 subcarriers unused on either side (ignoring a
±1 if NFFT is odd) as guard bands. The DC subcarrier is
often removed to avoid problems caused by DC offsets.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

 Following the IFFT, a guard time is usually inserted
between symbols to protect against multipath and
intersymbol interference (ISI). This is often done in the
form of a cyclic prefix that takes the last G percent of the
symbol and affixes it the front where G is often some
fraction from 1/32 to 1/4.
 Another important step in transmitting OFDM data is to
guide the synchronization process at the receiver, which is
usually done by adding a preamble of known data. We
discuss this in more detail later.
 Figure 1 shows the block diagram of the GNU Radio
OFDM transmit chain. The blocks perform the baseband
symbol mapping to the subcarriers, the insertion of
preambles, the IFFT, and the addition of the cyclic prefix on
each symbol. In the transmit chain, the ofdm_mapper_bcv
function allows for some interesting modifications that are
discussed in Section 2.3. The IFFT and cyclic prefix adder
are standard operations while the preamble adder can take in
a vector of preambles to give a large amount of flexibility in
how the preambles are structured and how many are used.
 The mapper block is currently implemented in the
simplest way possible for basic functionality. The two
subcarriers near DC are removed and the guard bands on the
sides are evenly balanced. Data is modulated by taking the
bit stream mapping the bits to a complex constellation that
is passed in externally. The complex values are then
sequentially inserted onto the subcarriers.

2.2. Receive Chain
The receive chain is more complex than the transmit chain
and is split into the demodulator in Figure 3 with the
receiver block in Figure 2 that performs the symbol timing
and synchronization. After the channel filter, a
synchronization routine is performed to find the symbol
timing and fine frequency offset. The former clocks the
symbols through the receive chain while the latter is used to
adjust the numerically controlled oscillator (NCO) and a
complex multiplier to adjust the frequency of the symbols.
More about the synchronization mechanism will be
provided in Section 3.

 The OFDM sampler function uses the timing trigger to
segment the incoming samples into the properly-timed
symbols and cuts out the cyclic-prefix. The output is then
demodulated through the FFT function that performs the
inverse of the IFFT in the transmitter. The frame acquisition
block completes the receiver synchronization by finding the
final integer frequency offset and correcting for it as well as
using the known data of the preamble to build an equalizer
in the frequency domain. The output of this block is a
derotated, equalized OFDM symbol. The OFDM frame sink
block in Figure 3 takes the OFDM symbol data, demaps it
into bits, and packs these bits into a frame to be passed out
of the physical layer and up the stack. The frame sink uses
the same constellation as the mapper function to perform the
translation from the OFDM symbol to baseband bits.

_pkt_input
gr.ofdm_mapper_bcv

Input
message
queue

cp_adder
gr.ofdm_cyclic

_prefixer
Output

preambles
gr.ofdm_insert

_preambles
ifft

gr.fft_vcc

scale
gr.multiply_const_cc(1/N)

0

1

Figure 1. GNU Radio OFDM modulator block diagram (blks2impl/ofdm.py:ofdm_mod).

2.3 Modifications
The mapper and frame sink (demapper) functions are where
modifications can be made to enable different ways of
realizing an OFDM system. These changes can be for
experimental purposes or for actual use such as non-
contiguous OFDM and constellation mapping.
 Non-contiguous OFDM nulls certain subcarriers in
order to manipulate the used spectrum by the system [3].
This concept has been discussed for use in dynamic
spectrum access systems as a way to fill unused spectrum
around narrowband users.
 Another area of interest with more immediate
applicability is in using different modulation constellations
on different subcarriers. Based on the channel properties and
interferers over all subcarriers, different modulations can
provide a balance between data rate and BER performance
[4].
 Both of these techniques can be done through
modifications of the mapper and frame sink functions. The
routine for moving data onto the occupied subcarriers would
control which subcarriers are used, and the constellation
map provided to the function determines how data is
mapped per subcarrier.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

ofdm_recv
blks2.ofdm_recvever

odfm_demod
gr.ofdm_frame_sink

Output
message
queue

Input from
RF front end

0

1

Figure 3. GNU Radio OFDM demodulator block diagram (blks2impl/ofdm.py:ofdm_demod). The ofdm_receiver block is a
hierarchical block in Python and is shown in Figure 3.

3. OFDM SYNCHRONIZATION

Like most OFDM systems in use, ours relies on the concept
of prefixed known data at the start of a frame to provide
information for synchronization at the receiver. The
preamble is used by the receiver to find the start of the
frame, estimate the frequency offset, and calculate an
equalizer for the channel. Many standards synchronize
based off a preamble that may be segmented into different
segments of information for different parts of the receiver
synchronization including the IEEE 802.16 standard [5]. We
use a simple version of this, but since the preambles are
passed from the user-space to the transmitter, the system
allows for easy changes to this.
 Our preamble is currently a repeated sequence in time
over one full OFDM symbol by using a FFT property by
inserting zeros into every other frequency bin. This is a
well-known and used preamble concept and the basis of one
of the most popular synchronization techniques by Schmidl
and Cox [6]. Inserting two zeros between data symbols
creates a three times repetition in the time domain that is
part of the IEEE 802.16 OFDMA standard [5].
 Equation 1 represents the OFDM symbol at the receiver
after being put through a channel with complex taps Hn.
Each subcarrier, n, is transmitted on a set frequency fn but is
received with some frequency offset specified by an integer
part, fΔ, and a fractional part, fδ. The integer part specifies a
number of subcarriers between the transmitted frequency
and received frequency while the fractional part specifies

the amount of frequency deviation within a subcarrier from
the center. The complex envelope of additive white
Gaussian noise is represented here by wk.

chan_filt
gr.fft_filter_ccc

ofdm_sync

nco
gr.frequency_
modulator_fc

ofdm_frame_aq
gr.ofdm_frame_

acquisition Output,1

Output,0

sigmix
gr.multiply_cc

sampler
gr.ofdm_sampler

fft_demod
gr.fft_vcc

0

1

0

1
Input from
RF front end

ofdm_recv
blks2.ofdm_recvever

Figure 2. GNU Radio OFDM receiver (blks2impl/ofdm_receiver.py:ofdm_receiver). The ofdm_sync block is a hierarchical block
in Python that can be replaced for different timing and frequency acquisition functions and techniques (see Section 4).

()
k

N

Nn

n
nn w

T
tfffjXHty +⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ++

= ∑
−=

Δ δπ2exp)((1)

 From equation 1, one of the most important functions of
the receiver is estimating the frequency offsets, fΔ and fδ.
The literature contains a number of ways in which these
parameters are estimated, and to provide the most general
interface we can, we have separated the synchronization
tasks to a timing and fractional frequency synchronization
block, which are usually done using the preamble symbol in
the time domain, and an integer frequency synchronization
and equalizer estimation in another block after the FFT. The
order of synchronization is a bit counterintuitive since the
fine frequency correction is done prior to the integer
frequency correction. This is done because the timing and
fine frequency correction methods are done in the time
domain while the integer frequency correction is done in the
frequency domain, and therefore after the FFT.
 There are many proposed timing and fine frequency
synchronization methods. In Section 4, we will present three
of these that we have implemented in GNU Radio. We leave
the specifics of how the synchronization is done to the
literature. There are other synchronization techniques in the
literature that are proposed for different purposes or with
varying performance metrics in mind such as blind

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

synchronization methods for streaming services [7]. The
intention of the design is to facilitate the introduction and
testing of these different methods,
 The integer frequency offset is found as part of the
frame acquisition block that correlates the preamble in the
frequency domain. The timing signal from the synchronizer
block tells this block when the preamble is received, so it
knows that the symbol it is working on is the preamble. The
integer offset causes a symbol rotation, so the correlation is
performed between the difference in the symbols on
adjacent data subcarriers. The subcarrier offset that
maximizes the correlation is the integer frequency offset.
This value is then used to fully derotate the symbol through
equation 2 where the each input symbol, y[i], is multiplied
by the rotation of the integer frequency offset and the ratio
of the cyclic prefix length, Ncp, to the FFT length, NFFT.

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= Δ

FFT

cp

N
N

ifjiyiy π2exp][][ˆ (2)

 The equalizer is calculated by using the known symbol
or the preamble and the received preamble. Because of the
nulled subcarriers used for the symbol repetition, the
equalizer is determined for every second subcarrier as

 where x[i] represents the known value
of the preamble in subcarrier i. The other subcarriers are
calculated by simply interpolating between these points.

][ˆ/][][yixiH = i

4. COMPARING SYCHRONIZATION METHODS

In this section, we provide a brief review of the three
synchronization techniques developed for use in GNU
Radio. For a complete understanding of synchronization, see
[8] and the individual papers behind each technique.
 The synchronizers are all located in Python source
directory and are prefixed as ofdm_sync_. They are called
from ofdm_receiver.py and a simple if statement selects
which method to use based on the suffix of the filename.
These techniques are implementations of the “ofdm_sync”
hierarchical block of Figure 3. We do not show their block
diagrams here due to space constraints.

4.1 Schmidl and Cox
The first and default synchronizer is based on the Schmidl
and Cox method [6] (ofdm_sync_pn.py). The basis of this
method correlates against a repeated PN code in the
preamble and creates a timing trigger from it. The
correlation also produces a fine frequency estimation within
±1 subcarrier spacing. The integer portion is calculated later
in the ofdm_frame_acquition block.

4.2. van de Beek
The van de Beek method [9] (ofdm_sync_ml.py) correlates
against the cyclic prefix on every symbol, producing a
timing and frequency estimate each time. Frequency
estimation is good to ±0.5 subcarrier spacing.
 Referring to Figure 3, each synchronization method is
expected to produce a fine frequency correction signal used
to adjust the frequency of the incoming signal as well as a
timing signal that indicates the start of the frame. This
method produces a timing signal for every received symbol
and not just once per frame. When an OFDM symbol is
received with a cyclic prefix, the circular convolution
property of the symbol allows full demodulation anywhere
in the cyclic prefix up to the first sample of the symbol. This
holds true as long as a full T samples are received. Ideally,
the timing should place the start of the symbol exactly at the
end of the cyclic prefix to avoid any ISI. However, the
timing algorithms in real systems do not necessarily get this
kind of accuracy. If the timing starts inside the cyclic prefix,
the data can still be recovered but with a phase shift
proportional to the timing position. The
ofdm_frame_acquisition block uses the known preamble to
calculate an equalizer that can then correct for the phase
shift along with the channel properties. If during the
reception of the frame, the timing is adjusted by even a
single sample, the timing offset introduces a new phase
difference that the equalizer can no longer correct.
 To protect the receiver from this, we have added a
correlation against the preamble and use this as the output
timing trigger. While this provides the proper timing, the
correlation procedure removes the ability to handle large
frequency offsets since the correlation peak degrades as the
offset increases. A coarse frequency estimation would be
required prior to this if this system were to be used in a
situation where a large frequency offset is expected.

4.3. Tufvesson
The Tufvesson method [10] (ofdm_sync_pnac.py) is a
modification of the Schmidl and Cox method that adds a
cross-correlation against the known PN sequence of the
preamble before going through the time-delayed correlation.
This produces a stronger timing signal at the end of the
preamble and reduces ambiguity in the timing. However,
like the correlation added to the van de Beek method, the
cross-correlation here affects the maximum frequency offset
that can be detected.

5. DISCUSSION
To illustrate both the successful implementations of these
techniques as well as show some of the differences, we
present here few output results of the different
synchronizers. The tests are run using the
benchmark_ofdm.py simulation test script that is a part of
the GNU Radio distribution package and can be found in the
source tree at gnuradio-examples/src/python/ofdm/. The
scripts benchmark_ofdm_tx.py and benchmark_ofdm_rx.py

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

are then used to transmit and receive the signals using the
Universal Software Radio Peripheral (USRP) [11].
 The script is run for each of the three synchronizers
with the command-line arguments:
 ./benchmark_ofdm.py --log --frequency-offset=0.3

--tx-amp=2 -s 1500
 This sets the frame length (-s) to 1500 bytes, a
fractional frequency offset of 0.3 subcarriers, sets a specific
amplitude value, and logs all debug data to files. By default,
the following values are used by the script.

Table 1. OFDM Simulation Parameters
Parameter Value
FFT length 512
Used subcarriers 200
Cyclic prefix length 128
SNR 30 dB
Timing offset 0
Multipath channel Off
Modulation BPSK
Symbols per frame 62

Figure 4. Results of Schmidl and Cox synchronization.

Figure 5. Results of van de Beek synchronization.

 GNU Radio distributes a few useful plotting tools to
visualize the output data using the open source software
projects Python, Scipy, Numpy, and Matplotlib. One
plotting tool is distributed in the OFDM examples directory
that was built specifically to analyze the OFDM system and
is called gr_plot_ofdm.py. Another suite of plotting utilities
are located in gr-utils/src/python/ that are all prefixed
gr_plot_ and can plot character, integer, floating point, and
complex (as I&Q) data, plot the FFT of floating or complex
data, and plot the constellation of complex data.
 To show the performance of the synchronizers, we use
the OFDM-specific plotting tool which plots four views of
the received symbols. The upper left plot shows the
constellation of the received baseband symbols. The black
dots represent the actual data symbols while the white dots
represent the data after being passed through a decision-
directed equalizer to correct for phase tracking offsets. This
plot is useful in understanding the error performance of the
system as the symbols are tracked through a full frame. The
middle two carriers are nulled out to compensate for any DC
offset and show up at the origin of this plot.
 The upper right plot shows the unequalized angle across
all FFT bins where the middle occupied carriers carry the
data. This plot shows the effects of timing offsets in the
synchronizer through the angle of the occupied carriers.
 The equalized phase in the bottom left corner shows the
compensation for any channel affects as well as the linear
phase offset due to timing error. We did not use a multipath
channel in this simulation to make the results more clear. A
simple simulated multipath channel can be used by adding
“--multipath-on” to the command-line. We have not
modeled any specific multipath channels yet, so this just
applies an FIR filter with preset taps.

 From these plots, we can see differences in the
synchronizer’s performance. The Schmidl and Cox and the

Figure 6. Results of Tufvesson synchronization.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

van de Beek methods have issues when looking for the
exact timing point due to digitization error, which causes the
linear phase shift in the unequalized angle plot. This is not a
problem because the equalizer corrects for the phase shift.
The Tufvesson method provides a more accurate timing
metric and therefore a flat phase response even before the
equalizer is applied.
 Both the Schmidl and Cox and the Tufvesson methods
have another interesting effect. Each of these plots was
captured on the final symbol in the frame. The black points
in the constellation diagram and the equalized phase shows
a phase rotation that occurs throughout the frame. This
occurs because of the ambiguity in the estimation of the
fractional frequency offset, which builds a small rotation
into each symbol that builds up over the length of the frame.
The van de Beek method is the maximum likelihood
receiver and calculates the frequency much more accurately.
Furthermore, because the van de Beek method performs the
frequency estimation once per symbol as opposed to once
per frame, each symbol is independently corrected and the
frequency is tracked throughout the frame.

 GNU Radio is a platform for both experimentation and
development of communication systems. This paper has
shown how we have developed OFDM capabilities for GNU
Radio through the implementation details and
experimentation with different synchronization algorithms.
Through this, we have shown how we are developing GNU
Radio capabilities as well as building, improving, and
disseminating knowledge.

Figure 7. Results of using QAM64 subcarrier modulation.

5. CONCLUSIONS AND DEVELOPMENTS

 The current OFDM implementation provides the basic

properties required to both transmit and receive data through
stationary channels. The system corrects for multipath,
frequency and timing offsets, and can transfer data with a
variable number of subcarriers, cyclic prefix length, and
subcarrier modulation. There are more properties that we are
currently making progress on implementing. One important
OFDM property is the use of pilot tones. Pilot tones are
reserved subcarriers that are modulated with a known
symbol used by the receiver to correct for changes in the
channel, which is required for dynamic channels. The pilots
are often implemented as a lattice that can be
multidimensional across both frequency and symbol. The
addition of pilots is already in progress.

6. REFERENCES

[1] GNU Radio, http://www.gnuradio.org/, 2008.
[2] J. G. Andrews, A. Ghosh, and R. Muhamed, Fundamentals of

WiMAX: Understanding Boradband Wireless Networking,
Prentice Hall, 2007.

[3] T. A. Weiss, F. K. Jondral, "Spectrum pooling: an innovative
strategy for the enhancement of spectrum efficiency," IEEE
Communications Magazine, vol. 42, no. 3, pp. S8-14, 2004.

[4] S. Sampei, H. Harada, "System Design Issues and
Performance Evaluations for Adaptive Modulation in New
Wireless Access Systems," Proceedings of the IEEE, vol. 95,
no. 12, pp. 2456-2471, Dec. 2007.

[5] IEEE, “IEEE 802 Part 16: Air Interface for Fixed Broadband
Wireless Access Systems,” IEEE Std 802.16-2004, 2004.

 IEEE 802.16 WiMAX, the developing wireless
standard for highspeed communications, uses OFDM and
OFDMA. It is a current goal of GNU Radio to provide the
necessary capabilities and flexibility to realize all of the
variables of the WiMAX standard. Figure 7 shows the use
of QAM64 modulation on all of the subcarriers to
demonstrate some of the other capabilities of the current
system. Other, intermediate QAM modulations between
QAM64 and BPSK are obviously also supported.

[6] T. M. Schmidl, D. C. Cox, "Robust frequency and timing
synchronization for OFDM," IEEE Trans. Communications,
vol. 45, no. 12, pp. 1613-1621, Dec. 1997.

[7] S. L. Talbot and B. Farhang-Boroujeny, “Spectral modelling
and low-complexity blind carrier frequency tracking in
OFDM,” in /Proc. ICC 2006, /vol. 7, pp. 2917-2922, Jun.
2006.

[8] P. H. Moose, "A technique for orthogonal frequency division
multiplexing frequency offset correction," IEEE Trans.
Communications, vol. 42, no. 10, pp. 2908-2914, Oct. 1994.

[9] J. J. van de Beek, M. Sandell, P. O. Borjesson, "ML
estimation of time and frequency offset in OFDM systems,"
IEEE Trans. Signal Processing, vol. 45, no. 7, pp. 1800-1805,
Jul. 1997.

 At the Laboratory for Telecommunications Sciences,
University of Maryland, a WiMAX network is being
deployed for academic experimentation. It will also be an
official industry wide experimentation facility in
conjunction with several WiMAX working groups. LTS is
using GnuRadio, supporting it for more rapid development,
and implementing WiMAX 802.16e waveforms.

[10] F. Tufvesson, O. Edfors, and M. Faulkner, "Time and
Frequency Synchronization for OFDM using PN-Sequency
Preambles," IEEE Proc. VTC, 1999, pp. 2203-2207.

[11] Ettus Research, LLC., http://www.ettus.com, 2008.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

	Home
	Papers By Alpha
	Papers By Session

