

TOWARDS AN OPEN-SOURCE INTEGRATED DEVELOPMENT

ENVIRONMENT FOR SOFTWARE-DEFINED RADIO WORK

Stephen H. Edwards (Virginia Tech, Blacksburg, VA; edwards@cs.vt.edu);
Jason Snyder (Virginia Tech, Blacksburg, VA; snyder84@cs.vt.edu);

Carl Dietrich (Virginia Tech, Blacksburg, VA; cdietric@vt.edu)

ABSTRACT

Developing software-defined radio components and
waveforms based on the Software Communications
Architecture can be tedious. Commercial SDR tools provide
a wide range of capabilities to address this. Meanwhile,
existing open source work has provided some graphical tools
for designing such assets, but full support across the
development process is lacking. This paper describes work to
combine graphical tools from the Open Source SCA Imple-
mentation::Embedded with a modern, extensible, integrated
development environment: Eclipse.

1. INTRODUCTION

The Software Communications Architecture (SCA) defines a
standard for software-defined radio components and
waveforms. Developing SCA-based software can be an
involved process, however.

The OSSIE (Open Source SCA
Implementation::Embedded) project [1][2] provides a handful
of tools to help address this problem. As an open-source
implementation based on the SCA, OSSIE provides a
platform that allows developers to run software-defined radio
components and waveforms. OSSIE also provides several
python tools to aid designers in the creation of new
components and waveforms. While these tools simplify the
process of designing new SDR components and waveform
applications, generating necessary XML descriptions, and
even generating skeleton program code, they still address
only a small slice of the development cycle.

To strengthen the support that OSSIE provides for
software-defined radio development activities, this paper
describes efforts to combine existing OSSIE prototyping tools
with an industrial-strength integrated development
environment: Eclipse. By integrating OSSIE tools into
Eclipse, developers can leverage the broad base of support
that such tools provide for editing, compiling, debugging,
change control, build management, and deployment.

2. EXISTING OSSIE TOOLS

The development tools provided by OSSIE include OWD (the
OSSIE Waveform Developer) and ALF. OWD allows
developers to create new components, or to link up several
existing components to create a new waveform. When
creating a new component, OWD provides a graphical user
interface (GUI) for the developer to define the component’s
ports, properties, and other information. OWD can then
automatically generate the XML profiles that describe the
component, together with skeleton implementation code in
either C++ or Python. When creating a new waveform,
OWD provides a GUI allowing the developer to click and
select components and add them to the waveform, specify the
nodes that exist on the target platform, identify the various
devices available on each node, and allocate components to
devices. OWD generates the XML profiles that describe the
waveform and the platform deployment strategy.

While OWD simplifies development tasks, ALF is a
GUI-based tool for monitoring execution. It allows
developers to run waveforms, display waveform block
diagrams, and debug waveforms in real time using either
provided or user-developed plug-in tools.

3. EXISTING ECLIPSE CAPABILITIES

Eclipse [3] is a popular, industrial-strength, open-source
integrated development environment (IDE). It is most well
known as the dominant professional IDE for Java
development. Eclipse is based on a flexible plug-in
architecture that allows it to be extended in a variety of ways
easily. As a result, development support for many
programming languages other than Java is now available,
including C++, Python, Perl, PHP, and many more. In
particular, the C/C++ Development Tooling (CDT) project
provides comprehensive development support for C and C++
applications within Eclipse, including support for a variety of
compilers and cross-compilers. It is particularly popular
among g++ developers.

Because of the maturity of Eclipse, a wide range of
professional-quality development features are readily

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

mailto:edwards@cs.vt.edu

available through plug-ins published on the web. Some of
these features, including those from the CDT, are:

• Project management and incremental build
management for supported languages, including
makefile-based or ANT-based control of C/C++
projects.

• Seamless integration with popular version control
software, including CVS and Subversion.

• Full GUI integration of gdb for debugging.
• Editor features such as syntax highlighting,

command completion, file cross-referencing, check-
as-you-type syntax error detection, template support
for recurring constructs, and personal snippet library
support.

• XML editing and checking support.
• Availability of add-ons for creating and running

automated XUnit-style unit tests [4].
These features were a major factor in choosing Eclipse as

the foundation for an OSSIE-based IDE for software-defined
radio work. Most importantly, Eclipse is extensible and
allowed us to create a plug-in to recreate the functionality of
OWD within Eclipse.

4. INTEGRATION

Previously, the workflow for creating a new component
consisted of several steps. The first was to use OWD to
generate the XML profiles and skeleton implementation code.
Then the developer used a separate editor to fill in the
skeleton code. Finally, the component was built and installed
from the command line using the make utility. Similarly,
waveforms were configured with OWD and then built and
installed from the command line.

To simplify this process, the Eclipse IDE was used to
create a unified workflow and increase developer
productivity. We extended Eclipse by writing an OSSIE plug-
in to embed OWD and ALF directly.

Figure 1 shows the new OWD waveform editor, which is
modeled after the original Python version. It provides a list of
available resources, including nodes, devices, and
components. The designer can then add components to the
waveform application under design, configure their properties
and port connections, and allocate them to devices on the
nodes in the current platform model. By right clicking on a
component in the waveform editor, the developer can edit the
component’s properties, as shown in Figure 2.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Figure 1: The Eclipse version of the OWD waveform editor.

When creating new components from scratch, a
developer used the component editor shown in Figure 3. Like
the waveform editor, the component editor was also based on
the original Python implementation. However, we were able
to simplify the interface by moving functionality relating to
component deployment into the waveform editor. Rather than
using the component editor to allocate components to devices,
the waveform editor allows the user to simply drag and drop
components onto devices to configure their deployment
settings.

As component or waveform designs are saved, the
corresponding XML files are automatically generated from

the design information. Later editing triggers regeneration, so
design decisions can be changed at any time.

Eclipse plug-ins are written in Java, with metadata and
configuration details in XML. The preexisting OWD code
was written in Python and could not be used directly in the
plug-in. To bridge this gap, we used Jython, a python
interpreter written in Java.

In order to minimize the amount of “glue” code needed
between Java and Python, we first determined which parts of
OWD to re-implement in Java and which parts to leave in
Python. We decided to re-implement the interface using the

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Figure 3: The Eclipse version of the OWD component editor.

Figure 2: Editing component properties in the Eclipse version of OWD.

Standard Widget Toolkit (SWT). SWT is the standard widget
toolkit used by Eclipse plug-ins. We also rewrote much of the
functionality for saving and loading waveforms and
components.

The most important part of OWD, and the part we
wished to leave in Python, was the code and XML generation.
For each new component, OWD generates a skeleton
implementation in either C++ or Python. This ensures the
component will work correctly as a part of an OSSIE
waveform. OWD also generates XML descriptors for
components. Finally, OWD generates the necessary configure
and make files to build and deploy the component. For
waveforms, OWD generates the XML files that describe
which components make up the waveforms, and how they
connect with one another. The waveform can also specify
properties for the components that are also described in the
XML files. Like it does for components, OWD generates the
necessary configure and make files for building and
deploying the waveform.

We wished to leave this portion of OWD’s functionality
in Python for two reasons. First, it is the most complicated
part of OWD and porting it to Java would have been difficult
and would have taken longer than writing the infrastructure
necessary to use the Python code within Java. Second, OWD
was initially developed in 2006 by DePriest [5] and has been
continually used and improved by the OSSIE group at
Virginia Tech and is known to be very stable and reliable.

Finally, we adopted the notion of Eclipse projects.
Previously, OWD could be used to create new components or
to create new waveforms from existing components. The line
between the two was somewhat blurred however, as new
components could be made while making a new waveform.
Our plug-in distinctly separates the two functions.
Components and waveforms are now created as entirely
separate projects within Eclipse, each contained entirely
within its own directory.

5. CONCLUSIONS AND FUTURE WORK

Eclipse provides a powerful and extensible base for software
development. The OSSIE plug-in described here, along with
built-in and third party features, allow a developer to create,
configure, edit, build, and deploy software-defined radio
components and waveforms, all from within Eclipse. Future
plans include creating a plug-in to integrate the functionality
of the ALF tool within Eclipse.

Reusing the generation code and rewriting the interface
allowed us to quickly build our Eclipse plug-in. It allows
developers to quickly and easily build SCA-based

components and waveforms as OWD did, and also provides
several more improvements as a part of a full featured IDE.
The first such improvement is project management. As stated
previously, components and waveforms are now separate
projects contained within directories. This makes the
distribution of components and waveforms much easier.
Using our plug-in simplifies the process of generating
implementation code and XML. This had to be done manually
with OWD. Our plug-in automatically does all of the
necessary generation whenever a component or waveform is
saved. The process of building and deploying components and
waveforms has also been greatly simplified. After using
OWD to generate all the necessary files, users previously had
to use the command line to run several different tools. The
user now has the option of building and deploying with a
simple menu command, or he may opt to have the component
or waveform built and deployed automatically every time it is
saved.

Along with improvements gained by using our plug-in,
several other plug-ins can be used to further aid developers.
The C Development Tooling (CDT) plug-in provides code
highlighting and debugging for C and C++ files. The PyDev
plug-in provides code highlighting along with code
completion for Python files. Finally, the SubClipse plug-in
allows developers to store their work in a SVN repository.
SVN is a version control tool that provides backups and
versioning along with allowing multiple developers to work
on the same project simultaneously.

10. REFERENCES

[1] James Neel, Carlos Aguayo, Jeff Reed, “Automated Waveform
Partitioning and Optimization for SCA Waveforms,” SDR
Forum Technical Conference 2006, Orlando, FL, November,
2006.

[2] “OSSIE: SCA-Based, Open Source Software Defined Radio,”
<http://ossie.wireless.vt.edu/>.

[3] “Eclipse.org Home,” <http://www.eclipse.org/>.
[4] Anthony Allowatt and Stephen H. Edwards. “IDE Support for

Test-driven Development and Automated Grading in Both Java
and C++,” In Proceedings of the 2005 OOPSLA Workshop on
Eclipse Technology Exchange (San Diego, California, October
16-17, 2005). ACM Press, New York, NY, pp. 100-104.

[5] Jacob A. DePriest, A Practical Approach to Rapid Prototyping
of SCA Waveforms, M.S. Thesis, Virginia Tech, Blacksburg,
VA, April 25, 2006.

ACKNOWLEDGMENT
This work was supported by U.S. ARMY CERDEC.
Matthew Carrick, Shereef Sayed, and Philp Balister provided
additional testing and feedback on the OSSIE Eclipse Feature.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

http://scholar.lib.vt.edu:8765/cs.html?url=http%3A//scholar.lib.vt.edu/theses/available/etd-04272006-110138/&charset=iso-8859-1&qt=DePriest&col=theses&n=2&la=en
http://scholar.lib.vt.edu:8765/cs.html?url=http%3A//scholar.lib.vt.edu/theses/available/etd-04272006-110138/&charset=iso-8859-1&qt=DePriest&col=theses&n=2&la=en
http://scholar.lib.vt.edu:8765/cs.html?url=http%3A//scholar.lib.vt.edu/theses/available/etd-04272006-110138/&charset=iso-8859-1&qt=DePriest&col=theses&n=2&la=en

Copyright Transfer Agreement: The following Copyright Transfer Agreement must be included on the cover
sheet for the paper (either email or fax)—not on the paper itself.

“The authors represent that the work is original and they are the author or authors of the work, except for material
quoted and referenced as text passages. Authors acknowledge that they are willing to transfer the copyright of the
abstract and the completed paper to the SDR Forum for purposes of publication in the SDR Forum Conference
Proceedings, on associated CD ROMS, on SDR Forum Web pages, and compilations and derivative works related
to this conference, should the paper be accepted for the conference. Authors are permitted to reproduce their work,
and to reuse material in whole or in part from their work; for derivative works, however, such authors may not
grant third party requests for reprints or republishing.”

Government employees whose work is not subject to copyright should so certify. For work performed under a U.S.
Government contract, the U.S. Government has royalty-free permission to reproduce the author's work for official
U.S. Government purposes.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

	Home
	Papers By Alpha
	Papers By Session

