
Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

OPEN SPACE RADIO: AN OPEN SOURCE IMPLEMENTATION OF STRS 1.01

Sahana B. Raghunandan (MPRG, Wireless@Virginia Tech, Blacksburg, VA, USA; sahanarb@vt.edu);

Dileep Kumaraswamy (MPRG, Wireless@Virginia Tech, Blacksburg, VA, USA; dileep@vt.edu);

Lillian Le (MPRG, Wireless@Virginia Tech, Blacksburg, VA, USA; lle86@vt.edu) ;

Carl B. Dietrich (MPRG, Wireless@Virginia Tech, Blacksburg, VA, USA; cdietric@vt.edu); and

Jeffrey H. Reed (MPRG, Wireless@Virginia Tech, Blacksburg, VA, USA; reedjh@vt.edu).

ABSTRACT

The Space Telecommunications Radio System (STRS)

details high level specifications for the development, testing

operation and maintenance of software defined radios (SDR)

used by NASA for space communications. As it provides a

broad framework for SDR development across different

mission classes, radio designers can apply this open

architecture to their individual requirements and build an

end-to-end system. In this paper, we describe an open source

implementation based on an excerpt of the STRS 1.01

standard and its applications. The development of Open

Space Radio was initially motivated by the need for an

STRS based proof-of-concept system for a space application

being developed by AeroAstro, Inc. This proof-of-concept

space radio system involves interfacing the General

Processing Module (GPM) with a Signal Processing Module

(SPM) based on a commercial FPGA board. It is hoped that

the availability of Open Space Radio will facilitate SDR

research for space applications.

1. INTRODUCTION

Software defined radios provide a flexible radio architecture

with features such as multifunctionality, mobility,

compactness, power efficiency, ease of manufacture and

upgrade [1]. In addition to these features, one of the major

advantages that SDR technology renders to space-based

radios is the ability to communicate with different stations

without the inclusion of multiple radios for each

communication end point [2]. In order to fully harness all

these capabilities, a robust software architecture is

quintessential. The STRS aims at lending a unifying

framework that embraces a systems approach to develop,

test, operate and maintain reconfigurable space

communication and navigation assets. Although STRS

targets future space communication system needs, it

provides high level abstraction for reuse of existing

hardware and software components.

 At the system level, classifying the radio functions into

objects can aid in portability and maintenance and has

proved as one of best practices in SDR implementations to

date. Open Source SCA Implementation - Embedded

(OSSIE), a SDR framework based on JTRS (Joint Tactical

Radio System) Software Communication Architecture

(SCA), developed at Virginia Tech is a good illustration of

this concept [3]. The hierarchical model that is a key

concept in an open SDR architecture provides partitioned

software modules controlled by managing software [4].

Maintaining compatibility with existing SDR architectures,

the STRS standard prescribes the relationship between

software components instrumental in software execution and

defines the Application Programming Interface (API)

between the Operating Environment (OE) and the waveform

application [5]. The STRS infrastructure, which is a part of

the General Purpose Processor (GPP) OE, provides

functionality to the interfaces defined by this API and

supports waveform operations upon deployment [6]. A

STRS waveform is a term used to refer to an executable

software or firmware application that is abstracted from the

radio platform [4]. The initial release of the STRS open

architecture gives a complete insight into the various

hardware and software modules and lends itself as an open

standard with a dynamic structure that can be updated as

required.

 The development of Open Space Radio was inspired by

the need for an STRS based proof-of-concept radio system

for a space application being developed by AeroAstro,Inc.

The aim of this effort is to leverage STRS as an open

standard that can facilitate research and implementation of

SDR components for space applications. The focus of this

initial implementation has been on the development of

STRS infrastructure and STRS API for waveform

instantiation. A light weight web server has been integrated

into the current system to control waveform initialization

and termination.

2. SYSTEM DESCRIPTION

The STRS architecture allows for a modular radio design

with a choice of hardware implementation that entails the

functional attributes defined in the specifications. The

proposed hardware architecture that is based on

reconfigurable elements consists of: (a) General Purpose

Processing Module (GPM); (b) Signal Processing Module

(SPM); (c) Radio Frequency Module (RFM); (d) Security

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Module (SEC); (e) Network Module (NM); and (f) Optical

Module (OM). The instantiation of a waveform component

on an example radio platform consisting of the GPM and the

SPM is depicted in figure 1. The proof-of-concept radio

system is being designed in a similar manner to support

loading and execution of a waveform. A brief description of

the same has been provided below.

2.1. General Processing Module

This module may consist of a GPP and memory elements

such as a persistent memory storage element and work area

memory element. It needs to incorporate a system control

element that arbitrates the system bus and provides

necessary interfaces to the SPM or RFM. In this project, a

single board computer has been chosen to serve as the GPM.

 The focus of the research team at Virginia Tech

has

been on the design of GPM functionality that encompasses

configuration and control of the STRS architecture. This has

mainly revolved around the development of the STRS

infrastructure that includes device control and waveform

management as illustrated in figure 1. On one end the STRS

infrastructure provides services essential to load, verify,

execute, modify parameters and unload the waveform, and

on the other end it establishes communication with the

specialized hardware through the Hardware Abstraction

Layer (HAL) [2].

 The Hardware Interface Definition (HID) as the name

suggests indicates how the various hardware modules within

the radio platform are physically connected. The Board

Support Package (BSP) that furnishes abstraction of the

specific hardware module is integrated into the OE to

interface with the infrastructure and coordinate device

configuration. This particular kernel level entity is currently

being provided by the team at AeroAstro, Inc, whose focus

has been on the design of SPM using Field Programmable

Gate Arrays (FPGAs) on a dedicated Peripheral Component

Interconnect (PCI) board.

2.2. Signal Processing Module

The SPM contains modules that manipulate the bit stream

from and to the GPM. A FPGA, a Digital Signal Processor

(DSP) or an Application Specific Integrated circuit (ASIC)

or a combination of the above can be used to process the

received signals from the A/D converter as well as generate

the transmit signals to the D/A converter. The use of FPGAs

enhances system reconfigurability and permits the addition

of new signal processing functionalities to the SDR without

redesigning hardware.

 A multichannel transceiver with Virtex-4 FPGAs from

Pentek, Inc [8] is being used to develop the SPM. The

digital transceiver has on board memory resources, four A/D

converters and one digital upconverter capable of handling

baseband complex and real signals. The FPGA (Xilinx

XC4VSX55) that interfaces with these modules contains

DSP slices which are ideal for implementing digital

communication functions such as digital

modulation/demodulation, carrier recovery and

synchronization, scrambling/descrambling and

encryption/decryption. The PCI 2.2 bus specification that is

a part of the HID resides on the second Virtex-4 FPGA

(Xilinx XC4VFX60/LX100), which additionally includes

two PowerPC cores. The currently undertaken tasks at

AeroAstro,Inc, involve the customization of the FPGAs to

incorporate signal processing components that meet the

requirements of the space application.

STRS APIs

STRS APIs

H
I
D

Operating Environment with
POSIX Compliant RTOS

General Processing Module

Signal
Data

Signal Processing Module

H I D

H I D

HAL
Board

Support
Package

Waveform
Control and

Services
STRS

Infrastructure

Waveform
Component

A

Signal Processing Module

Waveform
Component

B

Waveform

Component
D

Data Waveform
Component

C

Signal

Figure 1 Waveform Component Instantiation [7]

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

3. SOFTWARE ARCHITECTURE

The software architecture proposed in STRS specifications

defines interfaces and the relationship between the various

software executable components in an STRS compliant

radio [7]. The objectives of the software execution model

depicted in figure 2 includes: (a) application waveform

abstraction from OE using custom routines made available

through standard interfaces such as Portable Operating

System Interface (POSIX) ; (b) lower level abstraction

between OE and hardware platform and (c) layering of

software components to elucidate the relationship among

different levels of abstraction [7].

 The STRS API, which is the focus of the open space

radio implementation here, provides an open software

specification that is described as a “well-defined set of

interfaces used by the waveform applications to access

specific radio functions or used by the infrastructure to

control the waveform applications” [6]. These interfaces are

standardized for use with any infrastructure platform, which

could include a combination of POSIX, RTOS or BSP, to

allow portability. The fact that the STRS API decouples the

intellectual property rights of the platform and module

developers makes it viable for the development and

interoperation of different mission-specific components of

space radio [6].

4. IMPLEMENTATION

 The STRS standard specifies the minimum API definition

required to execute space radio applications and deliver

control and data packets to the installed hardware

components. Nonetheless, there are several use cases and

APIs out of which a subset required for the proof-of-concept

system has been implemented here. A Unified Modeling

Language (UML) class diagram generated from the C++

open source code implementation is depicted in figure 4. It

illustrates the inheritance between the classes and the

corresponding implementation objects.

 Some of the key elements of the standard required for

the proof-of-concept system have been implemented, viz.,

(a) STRS Application Control API; (b) STRS Infrastructure

Application Control API; (c) STRS Infrastructure

Application Setup API ; and (d) STRS Infrastructure

Memory API. The STRS Application Control API is similar

to a Resource Interface in the SCA specifications. Every

STRS application which could be a waveform, service or

device is required to implement the methods included in this

API. The STRS_ApplicationImpl class is a good example of

this implementation. The STRS Infrastructure Application

Control API has methods corresponding exactly to STRS

Application Control API, which are used to access methods

in the latter API. This is done using a handleID which is a

unique identifier which can also be used to obtain access to

resources such as devices, files, or message queues. Control

of one waveform from another and logging application

status are handled by STRS Infrastructure Application Setup

API. Tasks involving memory management and

manipulation are done by STRS Infrastructure Memory API.

The other class that is depicted in figure 4 is STRS_Device.

A STRS Device has been defined as “a proxy for the data

and/or control path to the actual hardware” [7]. It is a

STRS Application that may use interfaces available in HAL

to connect to the actual specialized hardware.

 The sample implementation of a STRS waveform

application has been executed to test the instantiation of

objects and execution of the participating software packages.

A successful demonstration of simultaneous instantiation of

multiple waveform components using POSIX threads has

been done. One of the other highlights of the system was the

integration of a light weight web server, thttpd, [9] to

support a graphical user interface (GUI) that can control the

Figure 2 Software Execution Model [7]

Figure 3 Functional Diagram of STRS API Implementation

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Figure 4 Class Inheritance Structure in Open Space Radio

execution of a waveform. An overview of the current

application set up is shown in figure 3. For the purpose of

parsing waveform specific and platform specific

configuration files represented in eXtensible Markup

Language (XML), the use of the API provided by TinyXML

is proposed [10].

5. SOFTWARE DEVELOPMENT METHODOLOGY

5.1. STRS Compatibility Approach

To ensure compatibility, the STRS software development is

based on UML diagrams and function descriptions provided

in Section 9 of STRS 1.01 [7]. Where possible, the

pseudocode provided in STRS 1.01 document has been used

as a starting point for the code.

5.2. Development Team using Tested Methodologies and

Tools

The STRS implementation uses most of the tools and

methodologies that have been used for the development of

OSSIE [3]. As in the OSSIE project, extensive use is made

of open-source software development tools.

5.3. Revision Control and Trac Wiki

Subversion, an open-source revision control system, is being

used to store the STRS source code and track changes. This

allows multiple developers to collaborate on the code

development. Tasks are assigned to minimize overlap so that

the developers' edits to the code are unlikely to conflict with

one another. In the event of a conflict, the subversion

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

system can be used to identify specific edits that need to be

harmonized.

 A Trac Wiki system is interfaced with the subversion

repository which allows browsing of the source code and

tracking of edits using a web browser.

6. CONCLUSION

The implementation described in the paper has been

successfully compiled and results indicate that it aligns well

with the requirements laid out for the demo system. The

exclusive use of open source tools has made it possible to

reinstate the fact that this architecture lends itself as an open

standard that can be used to encapsulate proprietary

software and hardware modules. The modularity of this open

architecture is established through the implementation and

ability to integrate additional features such as the GUI. With

the availability of STRS compliant hardware resources, it is

hoped that this effort will enable rapid development of

mission specific waveform application and services.

7. FUTURE WORK

The next step would be to integrate the STRS Application

and Infrastructure implementation residing on the GPM with

the SPM through the HAL layer. Next, the integration

testing of the proof-of-concept system would be done to

ensure it fulfills all the requirements. As far as the API

implementation is concerned, there is scope for extending

the existing functionality to include a networking module

and management units for messaging, security and overall

system health monitoring. Compliance testing and

architecture verification techniques can be investigated and

incorporated into the current software execution model.

Improvisation on the GUI and web server can be done to

port the application to an embedded device. With these

enhancements, a number of radio platforms spanning

different mission classes can be updated, tested and

operated.

REFERENCE

[1] J.H.Reed, Software Radio: A Modern Approach to Radio

Engineering, Pearson Education, New Jersey, USA, 2002.
[2] “Space Telecommunications Radio System Open Architecture

Standard,” Revision 1.0, National Aeronautics and Space
Administration, April 2006.

[3] http://ossie.mprg.org/
[4] “Space Telecommunications Radio System Open Architecture

Description,” National Aeronautics and Space
Administration, April 2006.

[5] “Space Telecommunications Radio System Open Architecture
Use Cases,” National Aeronautics and Space Administration,
April 2006.

[6] T.J. Kacpura, L.M. Handler, J.C. Briones and C.S. Hall,
“Updates to the NASA Space Telecommunications Radio
System (STRS) Architecture,” January 2008.

[7] “Space Telecommunications Radio System Open Architecture
Standard,” Revision 1.01, National Aeronautics and Space
Administration, June 2007.

[8] http://www.pentek.com/Products/Detail.cfm?Model=7642
[9] http://www.acme.com/software/thttpd/
[10] http://www.grinninglizard.com/tinyxml/
[11] R.Lafore, Object Oriented Programming in C++, 4th Edition,

Sams Publishing, U.S.A, 2002.
[12] M.T.Jones, GNU/Linux Application Programming, Charles

River Media, U.S.A, 2005.

ACKNOWLEDGEMENT

This work was supported by AeroAstro, Inc. Shereef Sayed

from MPRG, Wireless@VirginiaTech, provided valuable

inputs and feedback during the course of this

implementation.

	Home
	Papers By Alpha
	Papers By Session

