
Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

SOFTWARE DEFI�ED RADIO EXECUTIO� LATE�CY 

 
Feng Ge, Alex Young, Terry Brisebois, Qinqin Chen, and Charles W. Bostian 

 Virginia Polytechnic Institute and State University, Wireless @ Virginia Tech, Center for Wireless 

Communications, Virginia Tech, Blacksburg, VA 24061, USA;  

{gef, alex.young, tbrisebo, chenq, bostian }@vt.edu  
 
 

ABSTRACT 

 

Software Defined Radio (SDR) achieves multi-band multi-

mode reconfigurability by moving digital signal processing 

functions progressively closer to the radio antenna and 

utilizing software’s flexibility. This requires an easy 

development environment, which is very challenging for 

digital signal processors (DSP) or field-programmable gate 

arrays (FPGA). General purpose processors (GPP) are 

therefore widely used in SDR architectures like GNU Radio 

and OSSIE.  

 Nevertheless, GPPs create several problems for SDR 

development because they are designed for running several 

general purpose tasks simultaneously – they are not 

specifically designed for radio or DSP functions. In this 

paper, we analyze the execution latency in SDR using GNU 

Radio as an example. We explore most latency sources by 

following the entire receiver chain from the RF front end to 

MAC functions in software domain and also examine the 

GPP architecture characteristics. We give numerical latency 

measurements taken by using timestamps.  

 In addition, we compare the execution time difference 

between GNU Radio and a WiFi card, and show the impact 

of SDR execution latency for wireless network applications, 

especially at the MAC layer. We further analyze where this 

difference comes from and explore possible methods of 

overcoming it by using parallel architectures.  

 

1. I�TRODUCTIO� 

 

Aided by advances in silicon technology, radio frequency 

(RF) technology, and software methods, SDR [1] engineers 

have moved digital signal processing functions 

progressively closer to the radio antenna. SDRs can now 

replace inefficient analog circuitry with reliable, low-priced 

digital circuits. Furthermore, the flexibility of 

programmable signal processors augments an SDR’s ability 

to accommodate various waveform formats and protocols on 

one radio platform, and allows the SDR to configure itself 

“on the fly”; today, SDRs can achieve true multi-band 

multimode reconfigurability [2]. SDR technology has been 

widely embraced as the way to develop waveform agile 

radio platforms and also offer functionalities for cognitive 

radio [3] and dynamic spectrum access (DSA) developments 

[4].  

 Continuously increasing in computing ability following 

Moore’s Law, current general purpose processors (GPPs) 

are fast enough to do a lot of real time digital signal 

processing tasks and functions. With many library functions 

and a very easy development environment, several widely 

used SDR architectures like GNU Radio [5] and OSSIE [6] 

are developed on GPPs. However, this makes SDR not just 

a radio or DSP problem anymore. It is also a computer 

problem; GPP’s architecture [7] and operating system (OS) 

mechanism [8] should be considered.  

 In this paper, we use GNU Radio, a typical example of 

an SDR, to analyze a fundamental limitation in SDR 

architecture: the execution latency [9]. This latency 

significantly limits SDR’s applications, like supporting 

networking functions in the PHY/MAC layer [9], realizing 

DSA and cognitive applications, and sustaining network 

throughput. In this paper, we follow the entire receiver chain 

from the RF front end to MAC functions in software domain 

and analyze all sources of latency and their overall impact 

on higher layers. By isolating latency introduced from 

different sources, we study the latency arising from both the 

SDR architecture and the supporting software environment 

and hardware components, including the RF front end, data 

bus, GNU Radio’s architecture, GPPs’ OS [8], and the 

memory hierarchy [7]. With these methods, we also explore 

a few possible ways to improve both hardware and software 

architectures for SDR development. In our studies using 

GNU Radio, we believe we have discovered some general 

limitations of SDR, due either to its own architecture or to 

supporting platforms.  

 Wireless standards, e.g., IEEE 802.11 a/b/g, have very 

strict timing requirements. To satisfy them, current 

commercial products use ASICs together with DSPs mostly 

for baseband signal processing, as well as for modulation, 

demodulation, packet processing, etc. By using IEEE 802.11 

as an example of wireless standards, we compare the 

execution latency of GNU Radio to that of a commercial 

WiFi chip. This allows us to study the limitations of SDR 

and explore new methods, especially when running on a 

GPP, for wireless network applications. 

 

2. G�U RADIO ARCHITECTURE 

 

GNU Radio is an open architecture for building software 

defined radios [5]. It was started in the early 2000s by Eric 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

Blossom and others, and has evolved into a mature software 

infrastructure used and supported by a large community of 

developers. The Universal Software Radio Peripheral 

(USRP) is an openly designed low-price SDR hardware 

platform which implements radio front-end functionality 

and A/D and D/A conversion currently using the Universal 

Serial Bus (USB2.0) to connect to the host PC. 

 

2.1. USRP and G�U Radio 

 
The current, first-generation USRP consists of a 

motherboard with four high speed 12-bit 64 Msps analog to 

digital converters (ADC), four high speed 14-bit 128 Msps 

digital to analog converters (DAC), an Altera FPGA and a 

programmable Cypress FX2 USB 2.0 controller. The ADCs, 

DACs and the FPGA together provide support for IF 

processing. The FPGA on the board provides four digital up 

converters (DUC) and four digital down converters (DDC) 

to shift frequencies from baseband to the required operating 

frequency. The FPGA can be reprogrammed to provide 

additional functionality such as pulse shaping. RF front ends 

are attached in the form of daughter cards which can 

currently cover all the radio bands from 0 Hz to 2.4 GHz.  

 

Figure 1 - A basic SDR system based on G�U Radio and 

USRP [10] 

 

GNU Radio was originally designed to run on 

GPPs. Combined with minimal analog radio hardware it 

allows software radio development of waveforms, 

modulations, protocols, signal processing, and other 

communications functions in the digital domain. The GNU 

Radio signal processing library includes existing and 

developing blocks for most signal-processing functions, 

such as waveform modulation and filtering. The USRP is 

fully supported by the GNU Radio library and a combined 

system of both is shown in Figure 1. 

 

2.2. Latency Sources in G�U Radio 

 
If we follow the receiver chain in GNU Radio, there are six 

factors that may introduce latency, as shown in Figure 1: (1) 

analog signal processing and wire delay in USRP’s analog 

circuits; (2) sampling delay in converters and programmable 

gain amplifier (PGA); (3) filter processing time in FPGA; 

(4) USB’s data queue transmission mechanism, and its 

limited buffer size and transmission speed; (5) GNU 

Radio’s streaming architecture in both radio control and 

PHY information, signal processing, and GNU Radio 

scheduler, which will be detailed in later sections; (6) GPP 

operating system (OS) latency and uncertainty, GPP 

memory hierarchy, and others.  

Let’s use ∆ to represent latency in different 

resources; we can decompose the latency into four parts:  

GPPG�URadioUSBUSRP ∆+∆+∆+∆=∆   (1) 

where USRP∆ , USB∆ , G�URadio∆ , and GPP∆
 
are the total 

delay time introduced by USRP, USB, GNU Radio software 

architecture, and the host GPP. Individually, USRP∆ , 

G�URadio∆ , and GPP∆ can be further decomposed as shown 

 below: 

othersFPGADAADdelayWireAnaUSRP +∆+∆+∆+∆=∆ /_log  (2) 

            SchedulergprocessignalG�URadio ∆+∆=∆ sin_                 (3) 

              
othershierarchymemoryOSGPP +∆+∆=∆ _              (4) 

In the following sections, we will briefly analyze each of the 

four parts separately. 

 

2.2.1. USRP 

As shown in Figure 2, the USRP introduces latency because 

of analog signal processing and wire delay, TX/RX switch, 

tuning in the voltage-controlled oscillator (VCO), signal 

sampling process, programming delay in the programmable 

gain amplifier (PGA), and filter processing in FPGA. 

TX/RX switch and VCO do not impact steady state 

execution latency, and most other parts’ latency is negligible 

with the typical latency of 1 µs in the FPGA. 

 

 

Figure 2 – Radio component time scale.  

 

2.2.2. USB Characteristics 

The current USRP connects to the host computer through 

USB 2.0 ports with buffers on both sides: 8 KB on the 

USRP side and 32 KB on the host computer side. All the 

data is put into queues before it goes through the USB 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

connection, as shown in Figure 2. The USB connection 

transmits data in blocks with a minimum size of 512 B. This 

means that smaller data chunk will have to wait for 

incoming data to fill up to 512B before it can pass the USB. 

Therefore, the USB latency, which is the time duration for 

moving data from FPGA to the USB driver on the PC, is 

decided by three factors: packet size, USB data rate, and 

buffer size on both sides of the USB connection. The USB 

data transmitting latency is  

s

USB
fsizesample

sizeblockfusbnblocksfusbf

*_

)__*_,512(
=∆  (5) 

where ),( yxf depends on the amount of data in the buffer 

and is at least x and at most y ,  nblocksfusb _ is the 

number of data blocks in USB, sizeblockfusb __  is the 

size of each block, 
sf  is the sampling frequency, and 

sizesample_  is usually 32 bits  for complex signal 

samples. 

 Because of the queue structure in USB, there is latency 

variation among different data rates in the signal flow. For 

burst signals flowing from the RF front end when both 

buffers are empty, the latency is decided by equation (5), 

which also determines latency for low rate continuous signal 

flow. For high rate continuous signal flow, new arriving 

signal data have to wait for previous data flowing out of the 

buffer. Therefore, the latency accounts for the time that 

buffers empty previous data. For the TX chain, it is quite 

similar except that the PC side memory buffer size is larger. 

 

2.2.3. G�U Radio Running Mechanism 

Currently, programming in the GNU Radio platform uses a 

combination of C++ and Python, a simple, high-level 

programming language. The computationally intensive 

processing blocks are implemented in C++ while the control 

and coordination of these blocks for applications that sit on 

top are developed in Python. 

 When executing SDR functions, the GNU Radio 

scheduler processes data as a stream of homogeneous items 

in any active flow graph. It breaks each data stream into 

chunks and feeds these chunks one at a time into each block 

in the flow graph using the mechanism described in 

Algorithm 1 [11]. 

 Algorithm 1 

while flow_graph.start do 

 for i = 0, 1, ..., # blocks do 

  if block i has enough input data and 

sufficient room in output port 

   process block i; 

  end if 

 end for 

end while 

 

 The scheduler scans through all included signal 

processing blocks in the flow graph from the head to the 

end, and then loops back. The scheduler is essentially a 

cyclic poller, calling each block in turn to perform its 

processing function, always cycling in the same order. This 

mechanism creates extra latency in looping. Even if one 

block has the highest priority for a particular task, it must 

still wait for following and preceding signal processing 

blocks. 

 

2.2.4. GPP Memory Hierarchy and OS Environment  

In a GPP operating system environment, GNU Radio 

executes all the PHY layer functions including IF band and 

baseband functions. GPPs' memory hierarchy and OS's 

characteristics will bring overhead that is not a concern in 

FPGAs and ASICs.  

 Specifically, modern GPP OS is designed to maximize 

resource utilization – to assure that all available CPU time, 

memory, and I/O are used efficiently, and that no individual 

user takes more than her fair share [8]. To maximize 

resource utilization, the OS uses processes and threads to 

run multiple jobs simultaneously at all times: applications, 

system programs, drivers, etc. The CPU scheduler manages 

all threads and processes according to CPU-scheduling 

algorithms like First-Come, First-Served (FCFS) 

scheduling, or Round-Robin (RR) scheduling. All 

scheduling algorithms balance several criteria like CPU 

utilization, throughput, waiting time, response time. The 

implication for GNU Radio is that the OS will create latency 

uncertainty for GNU Radio implementation because GNU 

Radio signal flow graph processing is just one process 

running in the operating system even though GNU Radio 

can set a high priority for this single process. 

 

 

Figure 3 – Memory Hierarchy in GPPs and the Speed 

Difference [7]. 

 

 Furthermore, GPPs have a memory hierarchy as shown 

in Figure 3. GPPs run any program instructions (with data) 

in the CPU with registers while instructions and data are 

usually stored in the disk or memory.  There is a vast speed 

difference between CPU and memory [7]. To solve this 

problem, several levels of caches are inserted between the 

CPU and memory, and speculative methods are used to pre-

fetch instructions or data into the cache. However, any 

failure in speculative pre-fetching will cause the CPU to 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

wait for data read from memory with a long delay, as shown 

in Figure 3.  

 

3. LATE�CY MEASUREME�TS 

 

In Section 2, we analyzed the possible latency, while, in this 

section, we will give numerical measurements. To measure 

the latency, we use two USRPs connected to one computer 

so that we can utilize timestamps within one computer to 

measure the time between transmitting a packet and 

receiving it. As shown in Figure 4, we implement a digital 

transmitter and receiver – each in its own USRP - and we 

insert four timestamps: the first (Timer Head) is right before 

the data packetizing, the second (Timer 1) is right before the 

transmitter IF band, the third (Timer 2) is right after the 

receiver’s IF band, and the fourth (Timer Tail) is right after 

data de-packetizing.  Our experiment uses an Intel Core 2 

Duo processor (@2.40 GHz) with 2G of memory and the 

GNU Radio code is based on version 3.1. 

 

 

Figure 4 – Experiment Setup for Measuring SDR Execution 

Latency 

 

 Next, we transmit different sizes of packets and 

measure the total latency, i.e., the time difference between 

Timer Head and Timer Tail. For BPSK at different bit rates, 

the latency time vs. packet size is shown in Figure 5.  

 

 

Figure 5 – The Latency Time between Transmitting a Packet 

and Receiving it Using BPSK with Different Packet Sizes. 

 

 As we can see in Figure 5, the latency time is on the 

order of ten milliseconds between sending and receiving 

even a very small packet (10 bytes) at all test bit rates. As 

the packet size increases beyond 100 bytes, this latency time 

increases continuously and reaches the order of 100 

milliseconds for 1000 bytes, though a higher bit rate results 

in a shorter latency.  

 Following Algorithm 1, a big packet in GNU Radio is 

broken into a sequence of data chunks and each one is 

processed following the flow graph shown in Figure 4.  

Considering the uncertainty from the three queues shown in 

Figure 2 and the limited size of USB buffers, we further 

measure the amount of time spent on transmitting and 

receiving a packet at different modulations and bit rates. 

Particularly, we let the transmitting packet go directly to the 

receiving side at the baseband and USRPs are not used, 

therefore removing the impact of waiting for emptying USB 

queues and other hardware latency. Such time latency is 

purely decided by the GNU Radio architecture and the CPU 

speed, and theoretically it is proportional to the number of 

samples (per second) for the same baseband functions 

setting if there is enough available CPU and memory. 

Figure 6 – BSPK Baseband Signal-processing Time  

 

    As an example in Figure 6, we use BPSK in 

transmitting one packet and receiving it at the baseband. 

The behavior of time latency vs. packet size is similar to 

Figure 5, though it is one order of magnitude smaller. Such 

latency is usually at the scale of tens of micro-seconds for 

small packets.  

 

 

4. THE GAP BETWEE� SDR A�D A WIFI CHIP 

 

IEEE 802.11 consists of a set of very successful protocols 

and their MAC functions are crucial to this success. There 

are several functions that require precise and very fast 

timing performance like TDMA (sync), CSMA (DIFS, 

SIFS), carrier sense, dependent packets (ACKs, RTS), fine-

grained radio control (frequency hopping),  etc., as shown in 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Table 1. To achieve the above timing requirement, ASICs 

are usually used in commercial products.  

Table 1. Summary of important timing constants in 802.11b, 

802.11a, and 802.11g [12].  

Parameter Value 

802.11b 802.11

a 

802.11g

only

SLOT 20 µs 9 µs 9 µs

SIFS 10 µs 16 µs 10 µs

DIFS 50 µs 34 µs 28 µs

PHY 

Header 

192 µs [long] 

96 µs [short] 

20 µs 20 µs

 

4.1. A WiFi Chip Architecture 

 

A typical Wi-Fi card [13], as shown in F

markedly different architecture from GNU Radio

front-end and signal processing are on separate chips. 

RF front-end chip on this diagram serves the same function 

as the daughterboard connected to the USRP. 

switching, frequency conversion and amplification a

performed on this chip. An analog, baseband signal is 

transmitted between this chip and the DSP chip

does analog-to-digital and digital-to-analog conversion

Furthermore, there are separate components

chip for filtering, modulation and demodulation, MAC 

functions, and encryption and decryption. T

allows many functions to be performed simultaneously. F

example, for a continuous and constant stream of data, 

physical layer operations, baseband process,

operations, and encryption can be performed at the same 

time. GNU Radio processes them in a sequential way in

which each processing block must wait for a discrete 

of data to be processed by the previous block

difference, as we can see from Figure 5 and

GNU Radio and USRP is approximately three orders of 

magnitude slower than a WiFi chip for sending and 

receiving a small packet. Not counting USB impact, even 

the baseband signal processing within GNU Radio software 

domain alone is slower than a WiFi chip for small packets 

of tens of bytes.  

 

Figure 7 – A WiFi Chip Architecture Example.

 

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

. To achieve the above timing requirement, ASICs 

. Summary of important timing constants in 802.11b, 

802.11g 

only 

802.11 g 

+ legacy 

9 µs 20 µs 

10 µs 10 µs 

28 µs 50 µs 

20 µs 20 µs 

Figure 7, uses a 

from GNU Radio. The RF 

separate chips. The 

end chip on this diagram serves the same function 

erboard connected to the USRP. Filtering, 

sion and amplification are all 

An analog, baseband signal is 

en this chip and the DSP chip which also 

analog conversion. 

here are separate components on the DSP 

for filtering, modulation and demodulation, MAC 

This architecture 

o be performed simultaneously. For 

constant stream of data, the 

, baseband process, MAC layer 

be performed at the same 

sses them in a sequential way in 

each processing block must wait for a discrete chunk 

processed by the previous block. The speed 

and Table 1, is that 

GNU Radio and USRP is approximately three orders of 

magnitude slower than a WiFi chip for sending and 

Not counting USB impact, even 

sing within GNU Radio software 

for small packets 

A WiFi Chip Architecture Example. 

4.2. Another Look at SDR Latency

 

Fundamentally, GPPs can only run

each program is executed sequentially, even though some 

instruction and data level parallelism

pipeline,  super-scalar instruction e

widely implemented [7]. The CPU scheduler switches CPU 

and memory resource among multiple 

quickly [8]. Even worse, GNU Radio scheduler

purely sequential way to execute the signal flow from IF 

band to the MAC layer functions. Analog radio components, 

ASICs, FPGA, and commercial wireless devices all execute 

signals in pipeline (a continuous sequence of signal chunks 

are executed in parallel on different components while there 

is some overlap for two subsequent

functional component), as exemplified by the WiFi chip in 

Section 4.1. The speed difference in executing same amount 

of computation between pipeline and sequent

significant, as illustrated by a hypothetical 

Figure 8.  

 Although we use GNU Radio as 

does demonstrate most common characteristics of SDR on 

GPPs. Even though other GPP based SDRs like OSSIE and 

IRIS [14] use different configuration architectures, they still 

have the same latency problem resulting

and memory hierarchy as well as sequential execution of 

SDR code just like GNU Radio.   

 

Figure 8 – An hypothetical illustration of speed difference: 

pipeline (a) is 8 times faster than sequential

 

 Message-block (m-block) is introduced in

to use meta-data and control channel on 

therefore cutting the latency [15]. However, this 

uses GPPs to sequentially execute the majority of the 

PHY/MAC layer functions. Moving such 

into the FPGA requires expertise in hardware and low

languages and it will complicate

environment.  

 Multi-core or many-core architecture can use 

parallelism in achieving the speed requirement while still 

maintaining the flexibility provided

environment. For example, the Cell Broadband Engine (Cell 

BE) has nine heterogeneous cores [16]

cores [17], and Intel has an 80-core CPU

 In addition, the I/O interface speed plays a very 

important role in SDR for timing sensitive applications, 

where USB is certainly not suitable and b

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

Another Look at SDR Latency 

Fundamentally, GPPs can only run one task at a time and 

each program is executed sequentially, even though some 

instruction and data level parallelisms like instruction 

instruction execution, and SIMD, are 

. The CPU scheduler switches CPU 

multiple running tasks very 

GNU Radio scheduler adopts a 

way to execute the signal flow from IF 

Analog radio components, 

ASICs, FPGA, and commercial wireless devices all execute 

continuous sequence of signal chunks 

on different components while there 

subsequent chunks on one 

as exemplified by the WiFi chip in 

in executing same amount 

pipeline and sequential can be 

hypothetical example in 

Although we use GNU Radio as just one example, it 

most common characteristics of SDR on 

other GPP based SDRs like OSSIE and 

use different configuration architectures, they still 

he same latency problem resulting from GPP’s OS 

as well as sequential execution of 

illustration of speed difference: 

sequential (b).  

block) is introduced in GNU Radio 

data and control channel on the USRP’s FPGA, 

However, this method still 

uses GPPs to sequentially execute the majority of the 

PHY/MAC layer functions. Moving such functions more 

expertise in hardware and low-level 

complicate the development 

core architecture can use 

parallelism in achieving the speed requirement while still 

provided by a GPP development 

For example, the Cell Broadband Engine (Cell 

[16], nVidia GPU has 256 

core CPU [18].  

In addition, the I/O interface speed plays a very 

important role in SDR for timing sensitive applications, 

e USB is certainly not suitable and better I/O interfaces 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

such as PCI-X are needed. Ideally, the computing 

component together with the RF front end and ADC/DAC 

should be put in one system (system-on-package) if not one 

chip (system-on-a-chip).  

 

5. CO�CLUSIO� 

 

In this paper, we used GNU Radio (and USRP) as an 

example to analyze most latency sources following the 

entire radio signal receiver chain from the RF front end to 

the PHY/MAC layer. These sources include the USRP, the 

USB, the GNU Radio execution mechanism, and the GPP 

OS and memory hierarchy. We also gave numerical 

measurements on the latencies within the software domain 

and the overall path from the transmitting packet to the 

receiving packet.  

 We compared GNU Radio’s execution latency against 

IEEE 802.11 MAC protocol’s timing requirement. We also 

explored and analyzed the fundamental difference in signal 

processing, i.e., sequential vs. pipeline, between GPP based 

SDRs and conventional radios based on analog circuits, 

ASICs, or FPGA. To maintain a simple development 

environment while achieving fast speed, we propose to use 

multi-core or many-core architectures in SDR development.  

 

6. ACK�OWLEGEME�T 

 

This work was supported by DARPA under grant W31P4Q-

07-C-0210, by the National Institute of Justice, Office of 

Justice Programs, U.S. Department of Justice under Award 

No. 2005-IJ-CX-K017, and by the National Science 

Foundation under Grant No. CNS-0519959. The opinions, 

findings, and conclusions or recommendations expressed are 

those of the authors and do not necessarily reflect the views 

of these sponsors or the official policy or position of the 

DARPA, Department of Defense, or the U.S. Government. 

 

7. REFERE�CES 

 
[1] J. Mitola, Software Radio Architecture: Object Oriented 

Approaches to Wireless Systems Engineering: John Wiley and 
Sons, 2000. 

[2] J. H. Reed, Software Radio: A Modern Approach to Radio 
Engineering, . Englewood Cliffs, NJ: Prentice-Hall, 2004. 

[3] J. Mitola, "Cognitive Radio: An Integrated Agent 
Architecture for Software Defined Radio," Royal Institute of 
Technology (KTH), 2000. 

[4] M. McHenry, E. Livsics, T. Nguyen, and N. Majumdar, "XG 
dynamic spectrum access field test results," IEEE 
Communications Magazine, vol. 45, pp. 51-57, 2007. 

[5] E. Blossom, "Exploring GNU Radio," 
http://www.gnu.org/software/gnuradio/doc/exploring-
gnuradio.html, November 2004. 

[6] http://ossie.wireless.vt.edu/. 
[7] J. L. Hennessy and D. A. Patterson, Computer Architecture : 

a Quantitative Approach, 3rd ed.: San Francisco, CA : 
Morgan Kaufmann Publishers, 2003. 

[8] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating 
System Concepts: Wiley; 7 edition, 2004. 

[9] T. Schmid, O. Sekkat, and M. B. Srivastava, "An 
Experimental Study of Network Performance Impact of 
Increased Latency in Software Defined Radios," in 
Wi�TECH: The Second ACM International Workshop on 
Wireless �etwork Testbeds, Experimental evaluation and 
CHaracterization, Montreal, QC, Canada, 2007. 

[10] F. Ge, Q. Chen, Y. Wang, T. W. Rondeau, B. Le, and C. W. 
Bostian, "Cognitive Radio: From Spectrum Sharing to 
Adaptive Learning and Reconfiguration," in 2008 IEEE 
Aerospace Conference, Big Sky Montana, MT, 2008. 

[11] "ADROIT: GNU Radio Architectural Changes," 
http://acert.ir.bbn.com/downloads/adroit/gnuradioarchitectural
-enhancements-3.pdf, Ed., May 2007. 

[12] K. Medepalli, P. Gopalakrishnan, D. Famolari, and T. 
Kodama, "Voice capacity of IEEE 802.11b, 802.11a and 
802.11g wireless LANs," IEEE Global Telecommunications 
Conference, vol. 3, pp. 1549-1553, 2004. 

[13] http://www.redpinesignals.com/. 
[14] P. Mackenzie, "Software and reconfigurability for software 

radio systems." vol. Ph.D dissertation: Trinity College Dublin, 
Ireland, 2004. 

[15] G. Nychis, T. Hottelier, Z. Yang, P. Steenkiste, and S. Seshan, 
"Enabling MAC Protocol Implementations on Software 
Defined Radios," in US-Ireland International Workshop on 
�ext Generation Open Architectures for Software Defined 
Radio (CISDR), Maynooth, Ireland, 2008. 

[16] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. 
Maeurer, and D. Shippy, "Introduction to the cell 
multiprocessor," IBM Journal of Research and Development, 
vol. 49, pp. 589-604, 2005. 

[17] http://www.nvidia.com. 
[18] http://www.intel.com. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

Copyright Transfer Agreement:  
 
The authors represent that the work is original and they are the author or authors of the work, except for material 
quoted and referenced as text passages. Authors acknowledge that they are willing to transfer the copyright of the 
abstract and the completed paper to the SDR Forum for purposes of publication in the SDR Forum Conference 
Proceedings, on associated CD ROMS, on SDR Forum Web pages, and compilations and derivative works related 
to this conference, should the paper be accepted for the conference. Authors are permitted to reproduce their 
work, and to reuse material in whole or in part from their work; for derivative works, however, such authors may 
not grant third party requests for reprints or republishing. 




	format.pdf
	Home
	Papers By Alpha
	Papers By Session




