
Verification of Equivalence of Policy-selected Software Components
in a Cognitive Radio

Leszek Lechowicz (Department of Electrical and Computer Engineering, Northeastern University,

Boston, MA; llechowi@ece.neu.edu); Mieczyslaw M. Kokar (Department of Electrical and Computer
Engineering, Northeastern University, Boston, MA; mkokar@ece.neu.edu)

ABSTRACT

In this paper we consider a scenario in which a declaratively
specified policy on a cognitive radio recommends to use a specific
type of functionality for communication with another peer radio.
The requested functionality is given in terms of a specification in a
formal policy language. The specification includes some
behavioral aspects, e.g., delays introduced by particular sub-
functions. The peer composes a module out of components it has in
its library according to its component composition policies. To
ensure that the composed functionality will perform correctly, the
module needs to be verified against the specification. In this paper
we look at two ways of achieving this goal – through direct
inference (derivation) within the policy language, and through
checking a model automatically constructed for this purpose. For
instance, instead of trying to use a theorem prover on a collection
of facts in the knowledge base, one could construct a semantic
model based on those facts and then check the model to see if a
given logical proposition holds. The specific goal of this paper is to
discuss advantages and disadvantages of the two approaches to
verification mentioned above. One of the aspects to compare is the
time complexity of verification. It is known that the inference
within a first-order language is undecidable, while checking a
specific model is time linear in the size of the data. In this paper
we describe our experiments with both approaches.

1. INTRODUCTION
A previously described ([1],[2]) interoperability scenario
assumes that cognitive radios (CRs) are able to negotiate the
use of software components based on specific policies and
communication parameters. In the process of negotiation
one of the CR nodes might be given a description of the
software component that is not readily available in its
knowledge base. Since it is assumed that CRs share a
common base ontology, the description of the new software
component might be given at an arbitrary level of
complexity as long as all of its subcomponents decompose
at some level to components directly defined in the base
ontology. In case the node that received the specification of
the new software module encounters a subcomponent it is
not familiar with, it can send a query to the radio for the
description of such a subcomponent. The querying can
repeat iteratively until the node “knows” all the
subcomponents, which in the worst case happens when the
description of the component uses only the concepts from
the base ontology.

Once the CR node “understands” the description of the
new software module it can assemble it from the available
components, both software and hardware. Since the
composition in a general case may have a different structure

than the one given by the description, the verification of
composition is an important step in the interoperability
scenario and is discussed in this paper in some detail.

2. FUNCTIONAL EQUIVALENCE AND
VERIFICATION

Two software modules are functionally equivalent if all
sequences of valid input values produce identical sequences
of output values for both modules. Such defined input-
output equivalence treats the software module as a black
box with sets of inputs and outputs. As long as we cannot
differentiate two modules by observing their responses to
stimuli, they are functionally equivalent.

The simplest example of functionally equivalent
modules might be two sorting algorithms that take an array
of numbers as the input and return an array of those
numbers in a non-descending order. Such two algorithms
might differ substantially in non-functional properties. For
example, the bubble sort algorithm has O(n2) complexity,
while the merge sort O(n*log(n)), so their execution time
will significantly differ for large sizes of input arrays. But
from the functional point of view they behave the same way.

Software Defined Radio algorithms are not confined to
purely software solutions. With the advent of powerful and
relatively inexpensive FPGAs, it is very likely that CR
hardware will include specialized hardware units for the
benefit of signal processing algorithms running in the radio.
Those units can be used in the signal processing modules
(assuming that getting data in and out of such units is not a
problem).

A simple example presented in Figure 1 shows how a
specialized unit (in this case Multiply-Add Unit) can be
used to make a particular module implementation more
efficient by selecting a different structure to implement the
same functionality.
The upper diagram in Figure 1 depicts a structure of a
quadrature modulator, which consists of two multipliers, an
adder and a 90 deg phase shifter. A structure-preserving
implementation of such a module would instantiate
appropriate software modules and would establish data
paths among them exactly as in that figure. If a specialized
multiply-add hardware unit is available it could be
substituted for the multiplier and the adder, cutting the
number of modules that have to be instantiated in half, and
potentially making the composite module more efficient.
Note that those two different implementations have different
structures but are functionally equivalent. Even though we

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

mailto:llechowi@ece.neu.edu
mailto:mkokar@ece.neu.edu

concentrate mainly on the functional equivalence in this
paper, it should be emphasized that non-functional concerns
have to be resolved before a freshly composed software
module can be inserted in the data-processing path.

Figure 1. Functionally equivalent modules.

As an example, in the context of software defined radio
(similarly as in other real-time systems) one of the most
important concerns is to be able to finish computation on the
current set of data before another set of data arrives. Thus in
that case algorithms of lower computational complexity
might be preferred. On the other hand, in the systems with
very limited amounts of available memory, the memory
footprint of the algorithm will be of utmost importance.

Those kinds of non-functional constraints have to be
taken into consideration during the search phase in which
the specification of the candidate for the composite software
module is defined. The same constraints have to be later fed
into the algorithm that validates the module to make sure
that no hard requirements, like real-time deadline or
memory size, are violated.

3. VERIFICATION THROUGH THEOREM
PROVING.

As we mentioned in our previous work [2], there might be
commonalities between different software modules that are
visible only at the abstract functionality level. For example,
a multiplier for complex numbers encoded as two single-
precision float values significantly differs in the
implementation from a multiplier for real numbers encoded
as fractional numbers in 32-bit integers. The high level
functionality (multiplication), however, is still the same; it’s
just multiplication after all.

Specware, a software design framework developed by
Kestrel Institute, supports systematic construction of
software from abstract specifications to executable code
through a series of refinements [3]. An abstract specification
written in Metaslang – the language of Specware – is
refined through a series of category theory operations like
morphism and colimit until the desired level of
implementation detail is achieved. Specware distribution
integrates Snark – a first-order logic theorem prover. Snark
can be used to prove conjectures regarding functional
equivalence of modules.

In the following snippet of a Metaslang code spec,
QM_cand describes a composite module equivalent to the
lower diagram in Figure 1. The conjecture QM_eq defines
an input-output equivalence condition for that module with
respect to the reference specification QM (which is
equivalent to the structure in the upper diagram).

Adder= spec
 import Samples
 op Adder.Func: Sample*Sample -> Sample
 def Adder.Func(x,y) = Sample.add(x,y)
endspec

Multiplier = spec
 import Samples
 op Multiplier.Func: Sample*Sample -> Sample
 def Multiplier.Func(x,y) = Sample.multiply(x,y)
endspec

PhShifter90Deg = spec
 import CplxIntSamples
 op PhShifter90Deg.Func: Sample -> Sample
 def PhShifter90Deg.Func(x) = Sample.conj(x)
endspec

MAC = spec
 import Samples

 op MAC.Func: Sample*Sample*Sample -> Sample
 def MAC.Func(m1,m2,a) = Sample.add(
Sample.multiply(m1, m2), a)
endspec

QM = spec
 import Adder
 import Multiplier
 import PhShifter90Deg

 op QM.Func: Sample*Sample*Sample -> Sample
 def QM.Func(I,Q,C) = Adder.Func(
Multiplier.Func(I, C), Multiplier.Func(
PhShifter90Deg.Func(C), Q))
endspec

QM_cand = spec
 import Adder
 import Multiplier
 import PhShifter90Deg
 import MAC
 import QM

 op QM_cand.Func: Sample*Sample*Sample -> Sample
 def QM_cand.Func(I,Q,C) = MAC.Func(I, C,
Multiplier.Func(PhShifter90Deg.Func(C), Q))

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

 conjecture QM_eq is
 fa(I,Q,C)
 QM_cand.Func(I,Q,C) = QM.Func(I,Q,C)
endspec

p0 = prove QM_eq in QM_cand options "(use-
resolution t) (use-paramodulation t)"

A major weakness of first-order theorem provers (such
as Snark) is the fact that first-order logic is undecidable in a
general case. In other words, there exist valid first-order
logic formulas that theorem provers are unable to prove or
disprove in any arbitrary amount of time. And even those
formulas that can be decided might require prohibitive
amounts of time and memory to carry out the proof.

4. VERIFICATION THROUGH MODEL
CHECKING

Clarke and Emerson [4] recognized the difficulties of the
formal program correctness verification through logical
inference and proposed a different approach based on model
checking. Model checking is a technique based on a finite-
state model of a system. A set of logical properties defining
the system’s behavior and constraints have to be defined and
the model is automatically checked against those properties
to see if they hold in all states.

One of the most popular software verification systems
based on model checking is SPIN. SPIN (Simple Promela
INterpreter) analyzes models of the system written in
PROMELA (PROcess MEta LAnguage). In addition to
verifying that all logical conditions hold in all states it also
checks for deadlocks, race conditions, assertion violations
and similar situations, which are results of errors in system
design. SPIN has been successfully used for the verification
of a variety of mission critical systems, including control
algorithms of the flood control barrier system in
Netherlands, telephone and data switch software and
software for several space missions at NASA [5].

5. EXHAUSTIVE STATE SPACE SEARCH

In order to prove that the system is free from errors, an
exhaustive search over its whole state space has to be
performed. Only then the system is proven to be error-free.
Coverage less than 100% can give some level of confidence
that the system is correct (especially if the coverage
percentage is high), but only the full state space exploration
proves that beyond any doubt.

It should be emphasized that the number of states in the
composite system is usually orders of magnitude bigger than
the number of states in all state-machines that define the
behavior of the system. This is because the overall system
state depends not only on in what states particular state
machines are at any given moment, but also on states of all
variables and message channels.

In order to show how big a difference it makes let’s
look at the example given by Holzmann [6]. In that example
he considers a protocol with two processes, each of them

having 100 states. Each process accesses 5 local variables -
each variable can have only 10 distinct values. Each of the
two processes also has a message queue associated with it.
Message queues have 5 slots each and the number of
distinct message types is limited to 10.

This seemingly simple system potentially could have
the number of system states in the order of 1024. This
number has been determined in the following way: two
processes, each of them in one of 102 states, yield 104
potential combinations. Each of the processes has 5 local
variables, each of them can have any of the 10 possible
values – that gives additional 105*2 = 1010 possible system
states for each of the 104 states induced by the processes’
state machines. Finally, each of the queues can hold from
zero to five messages, each of them having one of ten
possible values. So in the worst case the system could have
the number of system states equal to

25

0

410 101010 ⎟
⎠

⎞
⎜
⎝

⎛
⋅⋅ ∑

=i

i

Even if a computer system could analyze 1 million states
per second, such a big system state space would require
approximately 1011 years to complete the exhaustive
analysis. Fortunately in practical systems, the number of
reachable states is usually lower.

6. USING SPIN TO VERIFY FUNCTIONAL
EQUIVALENCE

Conceptually, the verification of a composite software
module is simple – create a model of the module in Promela
and use SPIN to verify that its behavior is identical to that of
the model created for the reference design.
Let’s consider an example of a very simple composite
module consisting of an instance of an adder and an instance
of a multiplier (the lower diagram in Figure 2). We want to
verify that this module is functionality equivalent to a
reference multiply-add module, which is defined as a black
box with inputs, outputs and the mathematical equation
describing their relationship (the upper diagram).
The following snippet of the Promela code defines models
for the adder, multiplier and a reference Multiply-Add unit.

proctype Adder(chan chin1, chin2, chout)
{
 SAMPLE a1, a2;
 do
 :: chin1?a1; chin2?a2 -> chout!(a1+a2)
 od;
}

proctype Multiplier(chan chin1, chin2, chout)
{
 SAMPLE m1, m2;
 do
 :: chin1?m1; chin2?m2 -> chout!(m1*m2)
 od
}
proctype MAdd_Reference(chan chm1, chm2, cha, cho)
{

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

 SAMPLE m1, m2, a;
 do
 :: chm1?m1; chm2?m2; cha?a -> cho!(m1*m2+a)
 od
}

Figure 2. Equivalent Multiply-Add modules.

 Each of the processes above executes an infinite do …
od loop. The processes wait for data from the input
channels (the chan?var statement) and once it arrives,
execute an appropriate calculation and send the resulting
data to the output channel (the chan!expr statement).

The composite Multiply-Add module simply
instantiates Multiplier and Adder processes and connects
them through a communication channel (see Promela code
below). Note that in this particular implementation, the
MAC_Composed process terminates after the Multiplier and
Adder processes are created. So effectively it substitutes
those two processes for itself. It is not required in general
case – both parent and child processes can exist at the same
time.

proctype MAdd_Composed(chan chm1, chm2, cha, cho)
{
 chan chMulOut = [1] of { SAMPLE };

 run Multiplier(chm1, chm2, chMulOut);
 run Adder(chMulOut, cha, cho);
}

In order to run both simulation and verification we need to
add some stimuli to the inputs of the module and somehow
evaluate the output data. In our little experiment quasi-
random data sources are used to drive inputs of both
Multiply-Add modules.
 It is very important to understand the difference
between the simulation and validation modes of SPIN. Let’s
consider the following PROMELA statement:
if
 :: x = 1;
 :: x = 2;
 :: x = 3;
 :: x = 4;
 :: x = 5;
fi

Figure 3. Simulation/Verification setup.

In the simulation mode, the if … fi statement works in such
a way that if more than one of the options (statements
starting with double colon) can be executed when the flow
of execution enters it, one of those options is selected
randomly in a non-deterministic way. Since in the code
above no option has a logical condition, all of them are
executable. That means that in the simulation mode one of
the five values will be assigned to the variable x. So in
essence this code works as a single-shot, limited range
random number generator.

In order to validate the models of the system, SPIN is
used to generate C code that actually implements the
exhaustive search algorithm. The above if .. fi statement in
the worst case increases five-fold the number of states the
search has to cover.

The validation code requires that system invariants (i.e.
Boolean conditions that are true in all reachable states) are
established. Their negated forms are used to create the so
called never claim – i.e., a composite statement that is false
in all reachable states of the system.

For the Multiply-Add equivalence model discussed here
the system invariant is simply the condition that if two sets
of output values have been received from MAdd_Reference
and MAdd_Composed, they are always equal. In the LTL
(Linear Temporal Logic) syntax that condition can be
expressed as below:

[](recv -> outEq)

where outEq is defined as

#define outEq (output1 == output2)

and recv is a Boolean flag set to true when output1 and
output2 have been received from the modules.

The negated LTL formula is used to automatically generate
the never claim for the system.
never { /* !([](recv -> outEq)) */
T0_init:
 if
 :: (! ((outEq)) && (recv)) ->

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

 goto accept_all
 :: (1) -> goto T0_init
 fi;
accept_all:
 skip
}

During the validation, the never claim is evaluated after
every single system state transition. That, together with the
exhaustive search, guarantees that if the validation passed
the system, the invariants hold for all reachable states.

7. PROBLEMS WITH FUNCTIONAL
EQUIVALENCE VERIFICATION

From the earlier discussion of the size of the system state
space (Section 5) it is obvious that the described approach is
not feasible from the computational point of view. The input
parameters alone multiply the size of the state space by
factor 248 if the SAMPLE type is defined as a 16-bit integer
or 296 if it is a 32-bit integer. Even if the width of the data
type is reduced to 8-bit, the number of states is still so large
that the validation could not be executed on a notebook
computer with 1.25 GB of RAM due to insufficient
memory.
 The experiment with the 8-bit data type width however
revealed another issue that has been ignored during the
creation of the model – the 8-bit data type is not wide
enough to accommodate the results of addition and
multiplication of two 8-bit numbers. So the model in which
inputs and outputs of the Multiply-Add unit have the same
width is wrong, unless there exist some additional
restrictions as to what ranges of values can be passed on the
inputs of the system.
 In order to better illustrate the problem of state space
explosion we tried to verify the functionality of an Adder (c
= a+b) and a Multiply-Add unit (z = v*u+y) composed of
an Adder and a Multiplier for different bit widths of the
input data. The results are shown in Table 1.
Table 1. State explosion in functional verification
through model checking.

Adder Multiply-Add Word
width in
bits

States Memory
[MB]

States Memory
[MB]

3 6678 0.299 325778 21.977
4 28078 1.195 2746930 177.867
5 115038 4.774 22538354 1431.150
6 465598 19.086 Out of memory
7 1873278 76.329
8 7514878 305.282
9 30103038 1221.065

It is clear that direct application of model checking is ill
suited to functional equivalence verification. As a matter of
fact, Promela Reference Manual states directly that “Spin
targets the verification of process interaction and process
coordination structures, and not internal process

computations. Abstraction is then best done at the process
and system level, not at a computational level.” [7]

8. VERIFICATION OF THE COMPUTATION
THROUGH SYMBOLIC EXECUTION

Siegel et al. found an interesting novel approach to dealing
with state explosion in the verification of numerical
algorithms [8]. They were trying to solve the problem of
functional equivalence between sequential and parallel
versions of the same numerical algorithm. The serial
algorithm was the reference; the parallel version was being
verified for equivalence.

In their solution the computations are modeled
symbolically. An input is considered to be a vector of
symbolic constants and the output is a vector of symbolic
expressions. The numerical operations in the program are
replaced by appropriate symbolic operations in the model.
Moreover, each symbolic expression is represented by a
single index into a table, which prevents the state space
explosion and makes it possible to use model checkers, such
as SPIN, for verification. The numerical expressions
undergo reduction through the application of appropriate
reduction theorems. In case the numerical algorithm
contains conditional branches, the models not only have to
explore all possible execution branches, but also must
record the path condition for each branch execution. The
parallel program is equivalent to the sequential one iff the
outputs of both versions are deterministic functions of their
inputs (i.e. they cannot change from one run to another
depending on the values of data) and iff the symbolic
functions are equivalent for all possible paths of executions.

The results of the experiments cited in their paper show
a large reduction of the state space size for numerical
algorithms (see Table 2).
Table 2. Experimental data from Siegel et al. [8]
 matmat gauss jacobi monte
states (x103) 4443 16114 6295 3112
Memory (MB) 217 801 362 279
time (seconds) 506 3224 9846 738
matmat – 6x6 matrix multiplication
gauss – 6x6 matrix Gaussian elimination
jacobi – 17x17 Linear equation solving through Jacobi iteration
monte – π approximation through Monte Carlo simulation

Comparing those results with the results we gathered
during our experiments makes the reduction of the space
state though symbolic method impressive.

9. BEHAVIORAL ASPECTS IN FUNCTIONAL
VERIFICATION METHODS

As we indicated in our earlier paper [2], systems based on
functional languages (e.g. Specware) are not well suited to
describing behavioral aspects of cognitive radios. The gist
of the problems is in that behaviors require mechanisms
(e.g. global variables) that are considered side effects in
functional languages and as such are not directly supported.
We also suggested that even though a particular side effect

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

is not supported in the Specware itself, if we create a spec
for that specification and a set of axioms, we still can reason
about it in an abstract way.

The UnitDelay module is an example of a behavioral
functionality – it requires a memory element (such as
register) to store the value of the argument until the next
time the function is called. Since it uses a side effect (a
memory location) it cannot be expressed directly in
Specware, instead the properties of UnitDelay are described
through the axioms.

UnitDelaySpec = spec
 import Samples

op UnitDelay.Func: Sample -> Sample

 axiom UnitDelay_commutativity is
 fa(f:(Sample->Sample), x:Sample)
 UnitDelay.Func(f(x)) =
 f(UnitDelay.Func(x))

 axiom UnitDelay_commutativity2 is
 fa(f:(Sample*Sample->Sample),
 x:Sample, y:Sample)
 UnitDelay.Func(f(x,y)) = f(
UnitDelay.Func(x), UnitDelay.Func(y))
endspec

The UnitDelay specification can be used in other Specware
modules to model behavior within the confines of the
functional language.

 MACSpec = spec
 import UnitDelaySpec
 op MAC.Func: Sample*Sample*Sample -> Sample
 def MAC.Func(m1, m2, a) =
 UnitDelay.Func(
 Sample.add(
 UnitDelay.Func(Sample.multiply(m1, m2)),
 UnitDelay.Func(a)))
endspec
In the above example MACSpec models the functionality of
a Multiply-Add module with a two-unit delay between the
inputs and the output. It should be emphasized that even
though the behavioral aspects of functionality are not
supported in Metaslang directly, it is possible to create
Specware specs describing them and to use them to prove
conjectures, which was also shown in [2].

PROMELA supports global and local variables so
modeling of the behavior is easy to implement. The
following fragment of code for example defines a unit delay
in PROMELA.
proctype UnitDelay(chan chi, cho)
{
 SAMPLE reg = 0;
 SAMPLE tmp = 0;
 do
 :: chi?tmp -> atomic { cho!reg; reg = tmp;}
 od
}
Such defined process type can be used to define the
Multiply-Add unit equivalent to the one created in
Metaslang.
proctype MAC_2Delay(chan chm1, chm2, cha, cho)

{
 chan chMulOut = [1] of { SAMPLE };
 chan chD1Out = [1] of { SAMPLE };
 chan chAddOut = [1] of { SAMPLE };
 chan chAddDelOut = [1] of { SAMPLE };

 run Multiplier(chm1, chm2, chMulOut);
 run UnitDelay(chMulOut,chD1Out);
 run UnitDelay(cha, chAddDelOut);
 run Adder(chAddDelOut, chD1Out, chAddOut);
 run UnitDelay(chAddOut, cho);
}
Behavioral elements obviously introduce additional
complexity to the system with respect to comparable purely
functional specifications.

In model checking each UnitDelay instance introduces
a memory element (register) whose presence increases the
state space times 2w, where w – the width of the memory
element in bits.

In theorem proving the increased complexity is more
difficult to gauge and will depend on the number of
additional axioms inserted into the theorem prover and
number of instances of UnitDelay in the composite module
under verification.

10. CONCLUSION

We looked into two methods of functional equivalence
verification. The theorem proving method yielded positive
results in our experiments. The fact that first-order logic is
undecidable in a general case, the experimental character of
theorem proving software available at the moment, as well
as significant computational and memory resources required
make this method might not be suitable for low-power,
portable devices.

In our limited experimentation we didn’t experience the
undecidability of the first-order logic even after introduction
of behavioral elements (UnitDelay modules). SNARK was
able to prove functional equivalence conjectures in a
fraction of second. It is difficult however to draw any
conclusions as to how SNARK would behave with more
complicated specifications. The ongoing research into the
theorem proving theory and algorithms might make this
technology feasible in the feature, especially if additional
restrictions are placed on the types of first-order logic
expressions allowed in the prover.

In the context of cognitive radio, model checking is not
well suited for functional equivalence verification due to the
system state space explosion. Novel ideas of combining
symbolic execution with model checking can bring an
algorithm’s state space down to a small fraction of the
original size so that verification of a not-too-complex
computation like the 6x6 matrix multiplication is feasible on
an average computer workstation. Still, due to the very
nature of this method, it is required that all reachable states
in the system are explored, and thus the feasibility of

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

application of this method in the cognitive radio is
questionable at this time.

11. REFERENCES
[1] L. Lechowicz, M. Kokar. Achieving Dynamic Interoperability
of Communication: Transfer of Ontology and Rules Between
Nodes. In Proceedings of the Software Defined Radio Technical
Conference SDR’06, 2006.
[2] L. Lechowicz, M. Kokar. Composition, Equivalence and
Interoperability: An Example. In Proceedings of the Software
Defined Radio Technical Conference SDR’07, 2007.
[3] Y. V. Srinivas, R. Jullig. SPECWARE: Formal Support for
Composing Software. Tech. Rep. KES.U.95.5, The Kestrel
Institute, Palo Alto, CA, 1995.
[4] Clarke E., Emerson E. A. Design and Synthesis of
Synchronization Skeletons Using Branching Time Temporal Logic.
Logics of Programs, Workshop, Yorktown Heights, New York,
May 1981.
[5] SPIN website, http://spinroot.com/.
[6] Holzmann G. J. Design and Validation of Computer Protocols.
Prentice Hall, Englewood Cliffs, NJ, 1991.
[7] Promela Reference Manual,
http://spinroot.com/spin/Man/promela.html#section0.
[8] Siegel S. F., Mironova A., Avrunin G. S., Clarke L. A.,
Combining Symbolic Execution with Model Checking to Verify
Parallel Numerical Programs. ACM Transactions on Software
Engineering and Methodology, Vol. 17, No. 2, April 2008.

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

	Home
	Papers By Alpha
	Papers By Session

