
Verification of Equivalence of Policy-selected Software Components  
in a Cognitive Radio 

 
Leszek Lechowicz (Department of Electrical and Computer Engineering, Northeastern University, 

Boston, MA; llechowi@ece.neu.edu); Mieczyslaw M. Kokar (Department of Electrical and Computer 
Engineering, Northeastern University, Boston, MA; mkokar@ece.neu.edu) 

 
ABSTRACT 

In this paper we consider a scenario in which a declaratively 
specified policy on a cognitive radio recommends to use a specific 
type of functionality for communication with another peer radio. 
The requested functionality is given in terms of a specification in a 
formal policy language. The specification includes some 
behavioral aspects, e.g., delays introduced by particular sub-
functions. The peer composes a module out of components it has in 
its library according to its component composition policies. To 
ensure that the composed functionality will perform correctly, the 
module needs to be verified against the specification. In this paper 
we look at two ways of achieving this goal – through direct 
inference (derivation) within the policy language, and through 
checking a model automatically constructed for this purpose. For 
instance, instead of trying to use a theorem prover on a collection 
of facts in the knowledge base, one could construct a semantic 
model based on those facts and then check the model to see if a 
given logical proposition holds. The specific goal of this paper is to 
discuss advantages and disadvantages of the two approaches to 
verification mentioned above. One of the aspects to compare is the 
time complexity of verification. It is known that the inference 
within a first-order language is undecidable, while checking a 
specific model is time linear in the size of the data. In this paper 
we describe our experiments with both approaches. 
 

1. INTRODUCTION 
A previously described ([1],[2]) interoperability scenario 
assumes that cognitive radios (CRs) are able to negotiate the 
use of software components based on specific policies and 
communication parameters. In the process of negotiation 
one of the CR nodes might be given a description of the 
software component that is not readily available in its 
knowledge base. Since it is assumed that CRs share a 
common base ontology, the description of the new software 
component might be given at an arbitrary level of 
complexity as long as all of its subcomponents decompose 
at some level to components directly defined in the base 
ontology. In case the node that received the specification of 
the new software module encounters a subcomponent it is 
not familiar with, it can send a query to the radio for the 
description of such a subcomponent. The querying can 
repeat iteratively until the node “knows” all the 
subcomponents, which in the worst case happens when the 
description of the component uses only the concepts from 
the base ontology. 

Once the CR node “understands” the description of the 
new software module it can assemble it from the available 
components, both software and hardware. Since the 
composition in a general case may have a different structure 

than the one given by the description, the verification of 
composition is an important step in the interoperability 
scenario and is discussed in this paper in some detail. 
 

2. FUNCTIONAL EQUIVALENCE AND 
VERIFICATION 

Two software modules are functionally equivalent if all 
sequences of valid input values produce identical sequences 
of output values for both modules. Such defined input-
output equivalence treats the software module as a black 
box with sets of inputs and outputs. As long as we cannot 
differentiate two modules by observing their responses to 
stimuli, they are functionally equivalent. 

The simplest example of functionally equivalent 
modules might be two sorting algorithms that take an array 
of numbers as the input and return an array of those 
numbers in a non-descending order. Such two algorithms 
might differ substantially in non-functional properties. For 
example, the bubble sort algorithm has O(n2) complexity, 
while the merge sort O(n*log(n)), so their execution time 
will significantly differ for large sizes of input arrays. But 
from the functional point of view they behave the same way.  

Software Defined Radio algorithms are not confined to 
purely software solutions. With the advent of powerful and 
relatively inexpensive FPGAs, it is very likely that CR 
hardware will include specialized hardware units for the 
benefit of signal processing algorithms running in the radio.  
Those units can be used in the signal processing modules 
(assuming that getting data in and out of such units is not a 
problem).  

A simple example presented in Figure 1 shows how a 
specialized unit (in this case Multiply-Add Unit) can be 
used to make a particular module implementation more 
efficient by selecting a different structure to implement the 
same functionality.  
The upper diagram in Figure 1 depicts a structure of a 
quadrature modulator, which consists of two multipliers, an 
adder and a 90 deg phase shifter. A structure-preserving 
implementation of such a module would instantiate 
appropriate software modules and would establish data 
paths among them exactly as in that figure. If a specialized 
multiply-add hardware unit is available it could be 
substituted for the multiplier and the adder, cutting the 
number of modules that have to be instantiated in half, and 
potentially making the composite module more efficient. 
Note that those two different implementations have different 
structures but are functionally equivalent. Even though we 
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concentrate mainly on the functional equivalence in this 
paper, it should be emphasized that non-functional concerns 
have to be resolved before a freshly composed software 
module can be inserted in the data-processing path.  

 
Figure 1.  Functionally equivalent modules. 
 
As an example, in the context of software defined radio 
(similarly as in other real-time systems) one of the most 
important concerns is to be able to finish computation on the 
current set of data before another set of data arrives. Thus in 
that case algorithms of lower computational complexity 
might be preferred. On the other hand, in the systems with 
very limited amounts of available memory, the memory 
footprint of the algorithm will be of utmost importance.  

Those kinds of non-functional constraints have to be 
taken into consideration during the search phase in which 
the specification of the candidate for the composite software 
module is defined. The same constraints have to be later fed 
into the algorithm that validates the module to make sure 
that no hard requirements, like real-time deadline or 
memory size, are violated. 
 

3. VERIFICATION THROUGH THEOREM 
PROVING. 

As we mentioned in our previous work [2], there might be 
commonalities between different software modules that are 
visible only at the abstract functionality level. For example, 
a multiplier for complex numbers encoded as two single-
precision float values significantly differs in the 
implementation from a multiplier for real numbers encoded 
as fractional numbers in 32-bit integers. The high level 
functionality (multiplication), however, is still the same; it’s 
just multiplication after all. 

Specware, a software design framework developed by 
Kestrel Institute, supports systematic construction of 
software from abstract specifications to executable code 
through a series of refinements [3]. An abstract specification 
written in Metaslang – the language of Specware – is 
refined through a series of category theory operations like 
morphism and colimit until the desired level of 
implementation detail is achieved. Specware distribution 
integrates Snark – a first-order logic theorem prover. Snark 
can be used to prove conjectures regarding functional 
equivalence of modules. 

In the following snippet of a Metaslang code spec, 
QM_cand describes a composite module equivalent to the 
lower diagram in Figure 1. The conjecture QM_eq defines 
an input-output equivalence condition for that module with 
respect to the reference specification QM (which is 
equivalent to the structure in the upper diagram).  
 
Adder= spec 
  import Samples 
  op Adder.Func: Sample*Sample -> Sample 
  def Adder.Func(x,y) = Sample.add(x,y) 
endspec 
 
Multiplier = spec 
  import Samples 
  op Multiplier.Func: Sample*Sample -> Sample 
  def Multiplier.Func(x,y) = Sample.multiply(x,y) 
endspec 
 
PhShifter90Deg = spec 
  import CplxIntSamples 
  op  PhShifter90Deg.Func: Sample -> Sample 
  def PhShifter90Deg.Func(x) = Sample.conj(x) 
endspec 
 
MAC = spec 
  import Samples 
   
  op MAC.Func: Sample*Sample*Sample -> Sample 
  def MAC.Func(m1,m2,a) = Sample.add( 
Sample.multiply(m1, m2), a ) 
endspec 
 
QM = spec 
  import Adder 
  import Multiplier 
  import PhShifter90Deg 
 
  op QM.Func: Sample*Sample*Sample -> Sample 
  def QM.Func(I,Q,C) = Adder.Func( 
Multiplier.Func( I, C ), Multiplier.Func( 
PhShifter90Deg.Func(C), Q ) )  
endspec 
 
QM_cand = spec 
  import Adder 
  import Multiplier 
  import PhShifter90Deg 
  import MAC 
  import QM 
 
  op QM_cand.Func: Sample*Sample*Sample -> Sample 
  def QM_cand.Func(I,Q,C) = MAC.Func( I, C, 
Multiplier.Func( PhShifter90Deg.Func(C), Q ) ) 
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  conjecture QM_eq is  
    fa( I,Q,C ) 
        QM_cand.Func(I,Q,C) = QM.Func(I,Q,C) 
endspec 
 
p0 = prove QM_eq in QM_cand options "(use-
resolution t) (use-paramodulation t)" 
 

A major weakness of first-order theorem provers (such 
as Snark) is the fact that first-order logic is undecidable in a 
general case. In other words, there exist valid first-order 
logic formulas that theorem provers are unable to prove or 
disprove in any arbitrary amount of time. And even those 
formulas that can be decided might require prohibitive 
amounts of time and memory to carry out the proof.  
 

4. VERIFICATION THROUGH MODEL 
CHECKING 

Clarke and Emerson [4] recognized the difficulties of the 
formal program correctness verification through logical 
inference and proposed a different approach based on model 
checking. Model checking is a technique based on a finite-
state model of a system. A set of logical properties defining 
the system’s behavior and constraints have to be defined and 
the model is automatically checked against those properties 
to see if they hold in all states.  

One of the most popular software verification systems 
based on model checking is SPIN.  SPIN (Simple Promela 
INterpreter) analyzes models of the system written in 
PROMELA (PROcess MEta LAnguage). In addition to 
verifying that all logical conditions hold in all states it also 
checks for deadlocks, race conditions, assertion violations 
and similar situations, which are results of errors in system 
design. SPIN has been successfully used for the verification 
of a variety of mission critical systems, including control 
algorithms of the flood control barrier system in 
Netherlands, telephone and data switch software and 
software for several space missions at NASA [5]. 

 
5. EXHAUSTIVE STATE SPACE SEARCH 

In order to prove that the system is free from errors, an 
exhaustive search over its whole state space has to be 
performed. Only then the system is proven to be error-free. 
Coverage less than 100% can give some level of confidence 
that the system is correct (especially if the coverage 
percentage is high), but only the full state space exploration 
proves that beyond any doubt. 

It should be emphasized that the number of states in the 
composite system is usually orders of magnitude bigger than 
the number of states in all state-machines that define the 
behavior of the system. This is because the overall system 
state depends not only on in what states particular state 
machines are at any given moment, but also on states of all 
variables and message channels. 

In order to show how big a difference it makes let’s 
look at the example given by Holzmann [6]. In that example 
he considers a protocol with two processes, each of them 

having 100 states. Each process accesses 5 local variables - 
each variable can have only 10 distinct values. Each of the 
two processes also has a message queue associated with it. 
Message queues have 5 slots each and the number of 
distinct message types is limited to 10. 

This seemingly simple system potentially could have 
the number of system states in the order of 1024.  This 
number has been determined in the following way: two 
processes, each of them in one of 102 states, yield 104 
potential combinations. Each of the processes has 5 local 
variables, each of them can have any of the 10 possible 
values – that gives additional 105*2 = 1010 possible system 
states for each of the 104 states induced by the processes’ 
state machines. Finally, each of the queues can hold from 
zero to five messages, each of them having one of ten 
possible values. So in the worst case the system could have 
the number of system states equal to 

25

0

410 101010 ⎟
⎠

⎞
⎜
⎝

⎛
⋅⋅ ∑

=i

i  

Even if a computer system could analyze 1 million states 
per second, such a big system state space would require 
approximately 1011 years to complete the exhaustive 
analysis. Fortunately in practical systems, the number of 
reachable states is usually lower.  
 

6. USING SPIN TO VERIFY FUNCTIONAL 
EQUIVALENCE 

Conceptually, the verification of a composite software 
module is simple – create a model of the module in Promela 
and use SPIN to verify that its behavior is identical to that of 
the model created for the reference design.  
Let’s consider an example of a very simple composite 
module consisting of an instance of an adder and an instance 
of a multiplier (the lower diagram in Figure 2). We want to 
verify that this module is functionality equivalent to a 
reference multiply-add module, which is defined as a black 
box with inputs, outputs and the mathematical equation 
describing their relationship (the upper diagram). 
The following snippet of the Promela code defines models 
for the adder, multiplier and a reference Multiply-Add unit. 
 
proctype Adder(chan chin1, chin2, chout) 
{ 
  SAMPLE a1, a2; 
  do 
    :: chin1?a1; chin2?a2 -> chout!(a1+a2) 
  od; 
} 
 
proctype Multiplier(chan chin1, chin2, chout) 
{ 
  SAMPLE m1, m2; 
  do 
    :: chin1?m1; chin2?m2 -> chout!(m1*m2) 
  od 
} 
proctype MAdd_Reference(chan chm1, chm2, cha, cho) 
{ 
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  SAMPLE m1, m2, a; 
  do 
    :: chm1?m1; chm2?m2; cha?a -> cho!(m1*m2+a) 
  od 
} 

 
Figure 2.  Equivalent Multiply-Add modules. 
 
 Each of the processes above executes an infinite do … 
od loop. The processes wait for data from the input 
channels (the chan?var statement) and once it arrives, 
execute an appropriate calculation and send the resulting 
data to the output channel (the chan!expr statement). 

The composite Multiply-Add module simply 
instantiates Multiplier and Adder processes and connects 
them through a communication channel (see Promela code 
below). Note that in this particular implementation, the 
MAC_Composed process terminates after the Multiplier and 
Adder processes are created. So effectively it substitutes 
those two processes for itself. It is not required in general 
case – both parent and child processes can exist at the same 
time. 
 
proctype MAdd_Composed(chan chm1, chm2, cha, cho) 
{ 
  chan chMulOut = [1] of { SAMPLE }; 
 
  run Multiplier(chm1, chm2, chMulOut); 
  run Adder( chMulOut, cha, cho); 
} 
 
In order to run both simulation and verification we need to 
add some stimuli to the inputs of the module and somehow 
evaluate the output data. In our little experiment quasi-
random data sources are used to drive inputs of both 
Multiply-Add modules. 
 It is very important to understand the difference 
between the simulation and validation modes of SPIN. Let’s 
consider the following PROMELA statement: 
if 
 :: x = 1; 
 :: x = 2; 
 :: x = 3; 
 :: x = 4; 
 :: x = 5; 
fi 
  

 
Figure 3.  Simulation/Verification setup. 
 
In the simulation mode, the if … fi statement works in such 
a way that if more than one of the options (statements 
starting with double colon) can be executed when the flow 
of execution enters it, one of those options is selected 
randomly in a non-deterministic way. Since in the code 
above no option has a logical condition, all of them are 
executable. That means that in the simulation mode one of 
the five values will be assigned to the variable x. So in 
essence this code works as a single-shot, limited range 
random number generator. 

In order to validate the models of the system, SPIN is 
used to generate C code that actually implements the 
exhaustive search algorithm. The above if .. fi statement in 
the worst case increases five-fold the number of states the 
search has to cover.  

The validation code requires that system invariants (i.e. 
Boolean conditions that are true in all reachable states) are 
established. Their negated forms are used to create the so 
called never claim – i.e., a composite statement that is false 
in all reachable states of the system.  

For the Multiply-Add equivalence model discussed here 
the system invariant is simply the condition that if two sets 
of output values have been received from MAdd_Reference 
and MAdd_Composed, they are always equal. In the LTL 
(Linear Temporal Logic) syntax that condition can be 
expressed as below: 
 
[]( recv -> outEq ) 
 
where outEq is defined as 
 
#define outEq  (output1 == output2) 
 
and recv is a Boolean flag set to true when output1 and 
output2 have been received from the modules. 
 
The negated LTL formula is used to automatically generate 
the never claim for the system. 
never {    /* !([]( recv -> outEq )) */ 
T0_init: 
        if 
        :: (! ((outEq)) && (recv)) ->  
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                             goto accept_all 
        :: (1) -> goto T0_init 
        fi; 
accept_all: 
        skip 
} 
 
During the validation, the never claim is evaluated after 
every single system state transition. That, together with the 
exhaustive search, guarantees that if the validation passed 
the system, the invariants hold for all reachable states. 
 

7. PROBLEMS WITH FUNCTIONAL 
EQUIVALENCE VERIFICATION 

From the earlier discussion of the size of the system state 
space (Section 5) it is obvious that the described approach is 
not feasible from the computational point of view. The input 
parameters alone multiply the size of the state space by 
factor 248 if the SAMPLE type is defined as a 16-bit integer 
or 296 if it is a 32-bit integer. Even if the width of the data 
type is reduced to 8-bit, the number of states is still so large 
that the validation could not be executed on a notebook 
computer with 1.25 GB of RAM due to insufficient 
memory.  
         The experiment with the 8-bit data type width however 
revealed another issue that has been ignored during the 
creation of the model – the 8-bit data type is not wide 
enough to accommodate the results of addition and 
multiplication of two 8-bit numbers. So the model in which 
inputs and outputs of the Multiply-Add unit have the same 
width is wrong, unless there exist some additional 
restrictions as to what ranges of values can be passed on the 
inputs of the system. 
 In order to better illustrate the problem of state space 
explosion we tried to verify the functionality of an Adder (c 
= a+b) and a Multiply-Add unit (z = v*u+y) composed of 
an Adder and a Multiplier for different bit widths of the 
input data. The results are shown in Table 1. 
Table 1. State explosion in functional verification 
through model checking. 

Adder Multiply-Add Word 
width in 
bits 

States Memory 
[MB] 

States Memory 
[MB] 

3 6678 0.299 325778 21.977 
4 28078 1.195 2746930 177.867 
5 115038 4.774 22538354 1431.150 
6 465598 19.086 Out of memory 
7 1873278 76.329   
8 7514878 305.282   
9 30103038 1221.065   
 

It is clear that direct application of model checking is ill 
suited to functional equivalence verification. As a matter of 
fact, Promela Reference Manual states directly that “Spin 
targets the verification of process interaction and process 
coordination structures, and not internal process 

computations. Abstraction is then best done at the process 
and system level, not at a computational level.” [7]  
 

8. VERIFICATION OF THE COMPUTATION 
THROUGH SYMBOLIC EXECUTION 

Siegel et al. found an interesting novel approach to dealing 
with state explosion in the verification of numerical 
algorithms [8]. They were trying to solve the problem of 
functional equivalence between sequential and parallel 
versions of the same numerical algorithm.  The serial 
algorithm was the reference; the parallel version was being 
verified for equivalence.  

In their solution the computations are modeled 
symbolically. An input is considered to be a vector of 
symbolic constants and the output is a vector of symbolic 
expressions. The numerical operations in the program are 
replaced by appropriate symbolic operations in the model. 
Moreover, each symbolic expression is represented by a 
single index into a table, which prevents the state space 
explosion and makes it possible to use model checkers, such 
as SPIN, for verification. The numerical expressions 
undergo reduction through the application of appropriate 
reduction theorems. In case the numerical algorithm 
contains conditional branches, the models not only have to 
explore all possible execution branches, but also must 
record the path condition for each branch execution. The 
parallel program is equivalent to the sequential one iff the 
outputs of both versions are deterministic functions of their 
inputs (i.e. they cannot change from one run to another 
depending on the values of data) and iff the symbolic 
functions are equivalent for all possible paths of executions. 

The results of the experiments cited in their paper show 
a large reduction of the state space size for numerical 
algorithms (see Table 2).  
Table 2.  Experimental data from Siegel et al. [8] 
 matmat gauss jacobi monte 
states (x103) 4443 16114 6295 3112 
Memory (MB) 217 801 362 279 
time (seconds) 506 3224 9846 738 
matmat – 6x6 matrix multiplication 
gauss – 6x6 matrix Gaussian elimination 
jacobi – 17x17 Linear equation solving through Jacobi iteration 
monte – π approximation through Monte Carlo simulation 

Comparing those results with the results we gathered 
during our experiments makes the reduction of the space 
state though symbolic method impressive. 
 

9. BEHAVIORAL ASPECTS IN FUNCTIONAL 
VERIFICATION METHODS 

As we indicated in our earlier paper [2], systems based on 
functional languages (e.g. Specware) are not well suited to 
describing behavioral aspects of cognitive radios. The gist 
of the problems is in that behaviors require mechanisms 
(e.g. global variables) that are considered side effects in 
functional languages and as such are not directly supported. 
We also suggested that even though a particular side effect 
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is not supported in the Specware itself, if we create a spec 
for that specification and a set of axioms, we still can reason 
about it in an abstract way.  

The UnitDelay module is an example of a behavioral 
functionality – it requires a memory element (such as 
register) to store the value of the argument until the next 
time the function is called. Since it uses a side effect (a 
memory location) it cannot be expressed directly in 
Specware, instead the properties of UnitDelay are described 
through the axioms. 
 
UnitDelaySpec = spec 
  import Samples 

op     UnitDelay.Func: Sample -> Sample 
 

  axiom UnitDelay_commutativity is 
    fa( f:( Sample->Sample ), x:Sample ) 
      UnitDelay.Func(f(x)) =  
                    f( UnitDelay.Func(x) ) 
   
  axiom UnitDelay_commutativity2 is 
    fa(f:(Sample*Sample->Sample),  
       x:Sample, y:Sample )  
    UnitDelay.Func( f(x,y) ) = f( 
UnitDelay.Func(x), UnitDelay.Func(y) ) 
endspec 
 
The UnitDelay specification can be used in other Specware 
modules to model behavior within the confines of the 
functional language.  
 
 MACSpec = spec 
  import UnitDelaySpec 
  op MAC.Func: Sample*Sample*Sample -> Sample 
  def MAC.Func(m1, m2, a) =  
    UnitDelay.Func(  
        Sample.add(  
          UnitDelay.Func(Sample.multiply(m1, m2)), 
          UnitDelay.Func( a ) ) ) 
endspec  
In the above example MACSpec models the functionality of 
a Multiply-Add module with a two-unit delay between the 
inputs and the output. It should be emphasized that even 
though the behavioral aspects of functionality are not 
supported in Metaslang directly, it is possible to create 
Specware specs describing them and to use them to prove 
conjectures, which was also shown in [2]. 

PROMELA supports global and local variables so 
modeling of the behavior is easy to implement. The 
following fragment of code for example defines a unit delay 
in PROMELA. 
proctype UnitDelay( chan chi, cho) 
{ 
  SAMPLE reg = 0; 
  SAMPLE tmp = 0; 
  do 
    :: chi?tmp -> atomic { cho!reg; reg = tmp;} 
  od 
} 
Such defined process type can be used to define the 
Multiply-Add unit equivalent to the one created in 
Metaslang. 
proctype MAC_2Delay( chan chm1, chm2, cha, cho) 

{ 
  chan chMulOut = [1] of { SAMPLE }; 
  chan chD1Out = [1] of { SAMPLE }; 
  chan chAddOut = [1] of { SAMPLE }; 
  chan chAddDelOut = [1] of { SAMPLE }; 
 
  run Multiplier(chm1, chm2, chMulOut); 
  run UnitDelay(chMulOut,chD1Out); 
  run UnitDelay( cha, chAddDelOut); 
  run Adder( chAddDelOut, chD1Out, chAddOut); 
  run UnitDelay( chAddOut, cho); 
} 
Behavioral elements obviously introduce additional 
complexity to the system with respect to comparable purely 
functional specifications.  

In model checking each UnitDelay instance introduces 
a memory element (register) whose presence increases the 
state space times 2w, where w – the width of the memory 
element in bits. 
 
In theorem proving the increased complexity is more 
difficult to gauge and will depend on the number of 
additional axioms inserted into the theorem prover and 
number of instances of UnitDelay in the composite module 
under verification. 
  

10. CONCLUSION 
 
We looked into two methods of functional equivalence 
verification. The theorem proving method yielded positive 
results in our experiments. The fact that first-order logic is 
undecidable in a general case, the experimental character of 
theorem proving software available at the moment, as well 
as significant computational and memory resources required 
make this method might not be suitable for low-power, 
portable devices.  

In our limited experimentation we didn’t experience the 
undecidability of the first-order logic even after introduction 
of behavioral elements (UnitDelay modules). SNARK was 
able to prove functional equivalence conjectures in a 
fraction of second. It is difficult however to draw any 
conclusions as to how SNARK would behave with more 
complicated specifications. The ongoing research into the 
theorem proving theory and algorithms might make this 
technology feasible in the feature, especially if additional 
restrictions are placed on the types of first-order logic 
expressions allowed in the prover. 

In the context of cognitive radio, model checking is not 
well suited for functional equivalence verification due to the 
system state space explosion. Novel ideas of combining 
symbolic execution with model checking can bring an 
algorithm’s state space down to a small fraction of the 
original size so that verification of a not-too-complex 
computation like the 6x6 matrix multiplication is feasible on 
an average computer workstation. Still, due to the very 
nature of this method, it is required that all reachable states 
in the system are explored, and thus the feasibility of 
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application of this method in the cognitive radio is 
questionable at this time. 
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