

POLYPHASE CHANNELIZATION UTILIZING GENERAL-PURPOSE

COMPUTING ON A GPU

Gregory Harrison, Ambrose Sloan, Wilbur Myrick, Joe Hecker, and David Eastin
SAIC, Innovative Technology Office, Chantilly, VA, USA
[harrisongm, sloana, myrickw, heckerjc, eastind]@saic.com

ABSTRACT

Polyphase channelization is essential for a variety of
applications involving bandwidth reduction and signal
separation. Implementations of polyphase channelizers
based on a general purpose processor (GPP) or field-
programmable gate array (FPGA) platform have been
investigated in the past. A novel approach to
implementing a polyphase channelizer based on a
graphics processing unit (GPU) is presented. Current
GPUs have been shown to provide up to 500 GFlops for
problems that do not have stringent size, weight and
power (SWaP) requirements and are well suited for a
parallel processing architecture. This paper compares the
implementation of a polyphase channelizer based on a
NVIDIA® 8800 GTX Graphics Card (NVIDIA
Corporation) with one based on a central processing unit
(CPU). The practical issues of implementation are
presented and the performance measurements are
discussed.

1. INTRODUCTION

Software defined radios (SDRs) have evolved over the
years with more firmware radio-based approaches to
accommodate stringent requirements of size, weight and
power (SwaP). In recent years, research efforts have led
to more software radio server-based architectures that
leverage general purpose processors (GPPs) such as the
currently deployed Anywave® Base Station product from
Vanu Inc.. This paper extends the software radio-based
architecture approach by exploring the use of graphics
processing units (GPUs) with GPPs in a SDR framework.
Rather than discussing general applications of the GPU to
different elements of a software defined radio (SDR), we
focus on a polyphase implementation of channelization.
The motivation for this research is driven by the desire to
leverage the highly parallel architecture of the GPU
against the computationally intensive function of
channelization. GPUs provide additional computational
resources that, if implemented properly, could enable
software-based radio systems to simultaneously process

numerous bandwidth-intensive communication signals in
real time, a requirement of cognitive radio networks.

2. POLYPHASE CHANNELIZATION

A common approach to performing channelization and
resampling is by utilizing a polyphase filterbank
implementation (see [2], [3]). For a filterbank of Q
equally-spaced channels, each at a rate of P/Q times the
input sample rate and using a finite impulse response
(FIR) filter of length KQ, a polyphase implementation is
more efficient by a factor of :

)log())log()(log(
))log()(log(

QPPKK
QKKPQ

+−
+

over a simple tune-upsample-filter-downsample approach.
(for cases where Q > P, K > P, and where filtering is done
using fast Fourier transform [FFT] processing).

 The polyphase formulation of channelization also
lends itself well to a parallel processing implementation
as shown in Figure 1. The core processing stages of a
polyphase filterbank can be preformed as large blocks of
parallel FFTs, allowing the use of highly-optimized
software libraries.

Interleave by
Q and

segment into
N blocks

NQ Parallel
FFTs

Multiply by filter
coefficients
(P N blocks)

(P N Q)
Parallel
IFFTs

Rearrange
into Q

channels

Q-point FFT for
each output

vector
(N * blocksize
parallel FFTs)

Figure 1. Parallel Processing Chain for Q-channel
Channelization at Oversampled Rate P

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

2.1 GPU Processing
For all of our GPU development in this paper, we utilized
a NVIDIA Corporation’s NVIDIA® 8800 GTX (see [5]
for specifications) running under 32-bit Red Hat, Inc.’s
Red Hat® Enterprise Linux 4. We used the NVIDIA
CUDA™ toolkit [6] and the CUFFT 1.1 library [7] to
create our GPU channelizer implementation.

 We wrote custom GPU kernel code using CUDA to
perform our data conversions (integer/signed/endian) and
to perform parallel data rearranging and multiplexing
between the FFT stages. We also wrote a kernel for
performing a tailored parallel binary reduction operation
for the resampler application.

2.2 CPU Processing
For comparison, we created reference implementations of
the channelizer using code targeted to an x86 CPU. We
implemented these libraries in C/C++ using the Free
Software Foundation’s GNU® Compiler Collection
(GCC) 3.4.5 under 32-bit Red Hat Enterprise Linux 4
(kernel 2.6.9-34) running on a Dell Precision® 690
workstation (Dell Computer Corporation) with two dual-
core Intel Corporation’s Intel Xeon® 2.33 GHz
processors (5140 Woodcrest, 4MB L2 cache), and 2GB
of system memory.

 We used single-precision, SSE-enabled, multithreaded
FFTW (version 3.1.2) libraries built from source to
perform our CPU FFT computations. Whenever
appropriate, we used parallel FFTW plans to maximize
our CPU FFT performance. We configured FFTW to use
four threads for generating its FFT plans in order to match
the number of cores on our system.

3. TESTING GPU KERNAL

As our baseline test case, we used a 16-bit, signed
complex data file stored on disk, containing 228 samples
(1GB file size). We ran a range of channelization tests,
with the number of channels processed ranging from 2 to
1024 channels.

 Because our processing is heavily input/output (I/O)
bound by the file writing process, our timing results
presented here represent no writing of the resulting data
to disk, thereby highlighting the relative performance
advantage of the GPU. These numbers do, however,
include reading data from the file and transferring data to
and from the GPU device.

Figure 2. Channelization Time for 1GB 16-bit
Complex Signed Data File, Filter Length = (number
channels * 63)

From Figure 2, we can see that the GPU implementation
was typically on the order of 4-10 times faster than the
associated CPU polyphase implementation across a wide
range of channelization levels.

 Figure 3 shows timing results for a range of
decimation rates for the polyphase resampler. In this
example, the resample ratio was simple decimation by a
factor of 1/N. These results show that the GPU processing
advantage over the CPU grows as the decimation rate
increases, with a 10x advantage for a decimation rate of
1024. Even for lower decimation rates, however, the GPU
outperforms the CPU by at least a factor of two.

Figure 3. Resample Time for 1GB 16-bit Complex,
Signed Data File, Filter Length = (decimation rate *
63)

4. DEVELOPING A GPU-BASED SDR

After successfully implementing and testing the GPU
channelization kernel on a Dell Precision 690
workstation, we wanted to test the kernel code on a SDR
platform. To satisfy this requirement, we developed a
GPU-based SDR testing platform utilizing a microATX
motherboard. This testing platform allows the greatest

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

flexibility in interfacing the GPU with a variety of
peripherals while keeping the form factor as small as
possible. The testing platform consists of the Universal
Software Radio Peripheral (USRP) and GNU Radio
software on a microATX motherboard interfaced to a
NVIDIA 8800 GTX GPU. Although one could have
selected a laptop with GPUs as the SDR testing platform,
we wanted the ability to test different types of GPUs as
well as maintain code compatibility with the baseline
testing code. A block diagram of the microATX
motherboard used for the GPU-based SDR testing
platform is shown in Figure 4.

Figure 4: Block diagram of motherboard used to
create a GPU based SDR

 A simple experiment to test the GPU based SDR using
the channelization kernel was to collect AM data using
the USRP and GNU radio. Rather than developing GNU
radio code to interface the USRP directly to the GPU, we
decided to save the data to disk before processing it with
the GPU. This scenario matches closely with the test that
was previously done on the Dell Precision 690
workstation. The USRP was tuned to 1 MHz and
decimated to 1 Msps so the entire AM band could be
channelized with the GPU configured to generate 100
bands (each band has a 10 kHz bandwidth). Figure 5

illustrates an energy map of the bands generated from the
GPU.

Figure 5: Energy map of AM Band channelized using
GPU-based channelization kernel

 The AM frequency band at 820 kHz (strongest band in
energy map) was selected and demodulated after the
channelization. The time to process this 1 minute data
file through the GPU was approximately 4 seconds
compared to approximately 9 seconds through the CPU.
This indicates a 2.5x improvement, which is comparable
to the baseline test case for 100 channels. This also
indicates the potential to have real-time AM band
processing if data is streamed from the USRP to the GPU
directly.

5. SUMMARY AND CONCLUSIONS

Based on our results, using a GPU for polyphase
channelization can provide a significant improvement in
processing time. This advantage is especially pronounced
for higher channelization and decimation rates. An AM
channelization example was given, but this approach can
easily be extended to a variety of signal processing
routines involving multi-band partitioning as a
preprocessing step. To further take advantage of the
GPU’s parallelism, we plan to extend the processing of
the channelized data to include filtering, equalization, and
demodulation while on the GPU. We have implemented
GPU approaches with some of these algorithms already
and need only apply them in parallel to the channelized
streams.

6. REFERENCES

[1] Use Cases for Cognitive Applications in Public Safety
Communications Systems – Vol. 1 Review of the 7 July
Bombing of the London Underground,

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

http://www.sdrforum.org/pages/documentLibrary/documen
ts/SDRF-07-P-0019-V1_0_0.pdf

[2] Business Model for Wireless PCS, SDR Forum, 2003,
http://www.sdrforum.org/pages/documentLibrary/documen
ts/SDRF-03-P-0001-V1_0_0_Business_Case.pdf

[3] R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal
Processing, Prentice-Hall, Englewood Cliffs, New Jersey,
1983.

[4] F. J. Harris, C. Dick, and M. Rice, “Digital Receivers and
Transmitters Using Polyphase Filter Banks for Wireless
Communications,” IEEE Transactions on Microwave
Theory and Techniques, Vol. 51, No. 4, April 2003.

[5] http://www.nvidia.com/page/geforce_8800.html

[6] CUDA Programming Guide, Version 1.1, http://
developer.download.nvidia.com/compute/cuda/1_1/NVIDI
A_CUDA_Programming_Guide_1.1.pdf

[7] CUDA CUFFT Library User’s Manual, Version 1.1,
http://developer.download.nvidia.com/compute/cuda/1_1/C
UFFT_Library_1.1.pdf

[8] FFTW3 User’s Guide, http://www.fftw.org/fftw3.pdf

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

	Home
	Papers By Alpha
	Papers By Session

