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ABSTRACT 
 

Abstract- An adaptive filtering method is proposed for 
blind deconvolution of multiple input multiple output 
(MIMO) IIR channels. This method consists of two 
algorithms. The adaptive blind identification algorithm 
estimates the MIMO system impulse response. These 
estimates are used in an adaptive Weiner type filter to 
extract the instantaneous mixture of input sources. Such a 
mixture can be further processed by a blind source 
separation algorithm to obtain the individual sources. Only 
second order (SOS) statistics is used, and precise knowledge 
of the system order is not required as long as it is over-
modeled. The developed algorithms are globally 
convergent. 
 

1. INTRODUCTION 
 
The objective of blind equalization of  MIMO systems is to 
recover input (source) signals from noisy output 
observations without the knowledge of system impulse 
response, and where no training sequence is available or 
used. Such problems arise in applications related to 
communications, speech and image processing, biomedical 
signal analysis, etc. For example, in wireless 
communications, sensors may receive superposition of 
several signals via different channels from several mobile 
sources. During transmission, a source signal undergoes a 
convolutive distortion between its symbols and the channel 
impulse response and a mixture distortion from other source 
signals. These distortions are referred to as intersymbol 
interference (ISI) and interuser interference (IUI), 
respectively. Generally, equalization is a two phase process. 
The first phase involves removal of the convolutive effect of 
the system to produce an instantaneous mixture of source 
signals. Normally this task relies on second order statistics 
and it involves identification of the system impulse response 
(see for example [1]-[15]), and references therein. Complete 
source recovery is achieved by applying an appropriate 
blind source separation (BSS) algorithm. BSS methods 
exploit higher order statistics (see for example [18], [19]), 

and the references therein). Most of the above work assumes 
that the system is FIR, irreducible, and in MIMO case 
column reduced. In [12], IIR systems with common 
minimum phase factors are considered, and the MIMO 
system does not have to be column reduced. The basis of the 
proposed solution is multistep linear prediction.  
  
Subspace methods for channel estimation have been studied 
in [1]-[3]. Linear prediction methods were considered in [9], 
[13], and [11]. Direct design of equalizers based on 
whitening approach is presented in [4], [12], and [14]. In 
[15] blind identification and equalization of SIMO systems 
is considered by using multiple zero-forcing equalizers that 
whiten the noise-free data at multiple delays. Prediction 
error methods and whitening approaches do not require 
knowledge of the system order, as long as one over fits. In 
[20], a nonlinear adaptive whitening method is proposed for 
blind deconvolution of MIMO systems by whitening the 
received data in both time and space. Blind deconvolution 
of MIMO linear convolutive mixtures by using a set of 
hierarchical maximum entropy type criteria is discussed in 
[16]. A system theoretic foundation for blind equalization of 
FIR MIMO systems is investigated in [17]. It is shown that 
every channel has an FIR irreducible paraunitary 
factorization, and can be reduced to a paraunitary FIR 
system by decorrelation and using only SOS. 
 
In this paper we propose a new recursive algorithm for blind 
adaptive equalization of IIR MIMO systems. The paper is 
organized as follows. In section II, we present the system 
model with underlying assumptions. Section III presents 
algorithms for blind system identification, and temporal 
whitening. Section IV gives illustrative simulation 
experiments.  
Notation: In this paper  denotes the usual transpose 

operation ,  stands for complex conjugate transpose, 

T(.)
∗(.) I  

is the identity matrix of dimension , while mm× O nm×  is 
the zero matrix of dimension . Whenever it is clear 
from the context, the dimensions of 

nm×
I  or O  will be 

omitted.  
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2. PROBLEM STATEMENT 

 
Consider a discrete-time Multiple Input Multi Output 
(MIMO) system with inputs and outputs  l m

−− =1)( kzHzH

0},{ ≥kH k

 
0,1,2,...  i      ),()()( =+= iwixiy                                         (1) 

)()()( 1 iszHix −=  
 
where  is the dimensional output vector, is an  )(iy m )(is
l dimensional source vector, is an dimensional noise 

vector, while  is the transfer function operator given 
by 

)(iw m

)( 1−zH

∑
∞

=0k
k                                                           (2) 

with being an matrix sequence called the 

system impulse response, and 

lm×
1−z is unit delay operation. 

All of the above variables can be complex valued. The 
objective is to recover the inputs  based on the noisy 
observations , without the knowledge of the transfer 

operator . This task is generally a two stage process. 
First, the convolutive effect of the channel is removed using 
second order statistics. As a result an instantaneous mixture 
of the input is obtained. The second part performs source 
separation by means of Higher Order Statistics (HOS). 
Equation (1) approximately models a situation when an 
antenna array is used, or when a single receiver of multiple 
sources is fractionally sampled. 

)(is
)(iy

)( 1−zH

 
We make the following assumptions regarding the system 
model (1). 
 
Assumption A1: , where )()()( 1111 −−−− = zNzDzH

∑
=

−− +=
Dn

k

k
km zDIzD

1

1)(  is polynomial matrix, and 

 is of dimension , where  

mm×

∑ −− =
Nn

k
k zNzN 1)(

=k 0

lm× .lm >

 
Assumption A2: for all complex lzNrank =− )]([ 1 0≠z , 
i.e. is irreducible. )( 1−zN
 
Assumption A3:  for 0)](det[ 1 ≠−zD .1≥z  
 
Assumption A4: is a dimensional martingale 
difference sequence satisfying 

0)},({ ≥kks l

 

0)}(|)1({ 1 =+ kFksE , 
 

kFksksE ++ ∗ )}(|)1()1({ 1 , lI=
and 

l

n

k
n n→∞

Iksks =∑
=

∗

0

)()(1lim  

{where })(,),0()(1 ksskF L=
)(ks

0)},( ≥kkw m

. Components of the vector 
are independent, with nonzero fourth order cumulants. 

 
Assumption A5:{ is a dimensional martingale 
difference sequence satisfying 
 

0)}(|)1({ 2 =+ kFkwE , 
 

kFkwkwE 2 )}(|)1()1({ =++ ∗
mwI2σ , 

and 

mw

n

k

Ikwkw 2

0

)()(1lim σ=∑
=

∗

n n∞→
 

where { })(k,),0()(2 wwkF L= . Also  and 
are independent sequence. 

)(ks
)(kw

⎧ =∗ 0       , iIl

⎪⎩

⎪
⎨
⎧

≠
=

=+ ∗

0          ,
0    ,])([

2

iO
iIikwE mwσ

O

0)},(0 >iisN

⎩
⎨ ≠

=+
0        ,

])()([
iO

iksksE ,                                       (3) 

and 

() kw                                   (4) 

where  in (3) and (4) is zero matrix of appropriate 
dimension. 
 
It can be easily shown that defined by (1) can be 
represented as a finite order autoregressive process driven 
by{ . Following the well-known Bezout 
identity of polynomial matrices will be useful for this 
development. 

)(ix

 
Lemma1 [21]: Let assumption A2 hold and . Then 

there exists 

lm >

ml ×  polynomial matrix  

with finite order , such that . 

∑
=

−− =
Fn

k

k
K zFzF

0

1)(

Fn lIzNzF =−− )()( 11

)()()()( 11 iszNixzD −− =

 
By assumption A1, from (1) can be written as follows )(ix
 

.                                             (5) 
 
Application of Lemma 1 in (5) gives 
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)()()()( isixzDzF =11 −−

)1( 0
1−zD

)(is

)1()()()( 11111 −+ −−−− ixzDzFzN

0

)()]()([ 11111 −−−−−= zDzFzNzI

)( 1−zA
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An

k
km zAIzA

1

1)(

1)2( −+≥ NDA nlnn

)()]()()[( 0
1 isNiwiyzA =−−

)()1 iw )()( 1 iyzA −

],...,[ AA=θ

∗θ 1≥

)],2(

)]1(ˆ)1

−

−− ∗

i

i

w

θ

.                                                   (6) 
 
On the other hand (5) can be transformed into 
 

()()()() 11 −+= − iszNisNix ,                              (7) 
 
where . Substituting from 
(6) in the second term, the RHS of (7) yields 

])([2)( 0
111 NzNzN −= −−

 
)()()( 0= isNixzD .       (8) 

 
Therefore one obtains 
 

)()()( 1 isNixzA =− ,                                                          (9) 
with 

)( 1−zA m .                      
(10) 
For the future reference we write the matrix polynomial 

 in the form 

=

−k .                                                (11) 

It can be shown that .  
Observe that from (1) and (10) we can arrive at the 
following signal model: 

.                                           (12) 
 

3. BLIND ADAPTIVE EQUALIZATION 
 

In this section, we develop an adaptive algorithm for 
obtaining an estimate of the instantaneous 
mixture  . The algorithm consists of two parts. 
Part one estimates the polynomial matrix . Part two 
uses this knowledge in an adaptive Wiener type filter to 
remove the component from in (12). 

0),(0 ≥iisN
)( 1−zA

(zA −

Define 
1 An

∗  .                                                              (13) 
The following algorithm is proposed to adaptively estimate 

for i . 
 

ˆ)2()1(ˆ)1[(ˆ)(          

()()[1()()1(ˆ)(ˆ
2 −−−−+

−−+−= ∗

iiiip

iiyiipii

θθσ

ϕϕθθ
     (14) 

where 
])(,...,)1([)1( T

A
TT niyiyi −−−−=−ϕ ,                           (15) 

 

)1()1((1
)1()1(()1()1(

−−−+
−−−−

−−
∗

∗

iipi
ipiiipip

ϕϕ
ϕϕ

)1
)1)( =ip ,            (16) 

 

and wσ̂  is an estimate of wσ  from assumption A5. Initial 

 is an arbitrary vector of finite norm, is an 
arbitrary positive definite matrix. Typical choice 
is

)0(θ̂ )0(p

Ipp 0)0( = , where is a positive scalar. In the 
following, we give the heuristics behind the algorithm (14)-
(16). Note that (10) can be written in the form 

0p

∗

∗θ

].)(,,)1([)1( T
A

TT
x nixixi −−−−=− Kϕ

 
)()1()( 0 isNiix x +−= ϕθ ,                                             (17) 

 
where  is defined by (13), while 
 

                (18) 
 
Minimum mean-square estimate of θ   is obtained by 
minimizing the following cost function  
 

)]θ̂∗

J ∗θ̂

θϕϕϕ ˆ])1()1([])()1([ ∗∗ −−=− iiEixiE xxx

].)(,,)1 T
A

T niw −−L

)()()( iii wx

)1()())(1(ˆ)([(1 ϕϕθ ∗∗ −−−−= iixiixEJ xx .            (19) 
 
Setting to zero the gradient of with respect to  gives 1

.                   (20) 
 
Define 

([)1( T
w iwi −−=−ϕ               (21) 

 
Then we have 
 

,                                                       (22) = +ϕ ϕ ϕ
 
where we have used the fact that  by (1) )()( ixiy )(iw+= . 
By using (22) and assumption A5, one can derive 
  

AmnwI])1()1([])1()1([ σϕϕϕϕ −−−=−−

])())1()1([(])()1([ ** ixiiEixiE wxx −+−=− ϕϕϕ

]))()()(1([])()1([ ** iwixiEixiE +−=−= ϕϕ

0])()1([ =− ∗iwiE ϕ

θσϕϕϕ ˆ])1()1([])()1([ 2
AmnwIiiEiyiE −−−=− ∗∗

xx iiEiiE 2∗∗ .   (23) 
Similarly we can obtain 

 

],)()1([ *iyiE −= ϕ
        (24) 

 
where we have used the fact that by assumption A5, 

and by (4) . By 
substituting (23) and (24) in (20) we get 

0])()1([ =− ∗ixiE wψ

 
.          (25) 

 
Replacing expectations in the previous equation with sample 
averages, one can obtain 
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where  in (25) is replaced with to signify the fact that 
it is the estimate derived based on the observations up to 
sample time . If in (26) i is replaced with i , we have 

θ̂

 

).1(ˆ)1(                                      2 −−− ii wθσ

             (27) 

 
Subtracting (27) from (26) yields 
 

)(ˆ[                           

()(ˆ)()()1(
2

1

−−

−=− −∗

ii

piipiyi

w θσ

θϕ
               (28) 

where 

*

1

1 )1()1(:)( −−=∑
=

− kkip
k

ϕϕ .                                         (29) 

Clearly 
 

.                              (30) 
 
Then substituting  in 
(28) yields 

11 ()1()()1( −−+=− −− iiipip ϕϕ

 

1()[)1(ˆ)1

()([)(
2* −−− θ

     (31) 

 
At this point of algorithm construction we assume that 
asymptotically , and in the last term on the 

RHS of (31), is replaced with . We thus obtain 

)1(ˆ)(ˆ −≅ ii θθ

(ˆ)2            

                     (32) 

 
From the above, (14) directly follows by replacing the 
unknown  with its a-priori estimate . Equation (16) is 
obtained by using matrix inversion lemma in (30). 

wσ

 
Let 

∑
=

∗

∞→
=

n

i
xxnx ii

n
W

0

)()(1lim: ψψ

ww

.                                           (33) 

Note that the above limit exists by virtue of assumptions A1 
and A4.  
The following proposition qualifies the convergence 
properties of algorithm (14)-(16). 
 
Theorem 1: Let assumptions A1 to A5 hold, and ≤σ σˆ

θσσσσθθ )ˆ(])ˆ([)(ˆlim 22122
wwwwxi

IWi −−++= −

∞→

. 
Then 

,             (34) 

θ is defined by (13), and W is given by (33). where x

1−

).()( 1 iwz−

)())( iuii

 
Proof: The proof of this result is omitted due to space 
limitations, and it follows the same lines as the proof of 
Theorem 2 in [6]. 
 
Define 

)()()( iyzAi =ℑ ,                                                            (35) 
and 

)( Aiu =                                                             (36) 
 
Then (12) becomes 

(0sN .                                                         (37) ℑ +=
Next we develop the Wiener type adaptive filter to extract 

 from (37). This filter is used to estimate u , and 
then from (37) we obtain . In this process we assume 
that 

)(isN )(i
)(0 isN

)(i

0

ℑ is available. Note that algorithm (14)-(16) 
estimates . )( 1−z

∑ −ℑ=
M

k kiGiv )()(

A
Let the filter be defined by 

=k 0

,                                                       (38) 

where M is the parameter chosen by the designer, and 
is the impulse response sequence determined by 

minimizing the following cost function 
}{ kG

].))()())(( *iviuiv −

)()( * iiv φα=

])(,,)1(,)([)( TTTT Miiii −ℑ−ℑℑ= Lφ

 
)([(2 iuEJ −=                                     (39) 

 
Observe that (38) can written in the form  
 

,                                                                   (40) 
where 
 

,                         (41) 
and 
 

MGGG ,,,[ 10 L=∗α ].                                                      (42) 
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Setting to zero the gradient of with respect to , we can 
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Matrix contains 0 M blocks of zero matrices. Next we 
express the RHS of (47) in terms of available quantities. 
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Initial )0(α̂ is an arbitrary vector with finite norm, is 
an arbitrary positive definite matrix and 

)0(Q̂

wσ̂  is the a-priori 
estimate of wσ , and it is the same as in (14). For every 

, ,0≥i )(i AnkÂk ≤≤1  is generated by the algorithm (14)-
(16). We show that )(ˆ iα converges (a.s.), and when 

ww =σ σˆ (ˆ i,  )α  converges toward optimal α defined by 
(53). At every time instant estimate of is 
obtained by using (60). Note that in (59) is the output 
of the adaptive filter, and it is the estimate of  given by 
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blind source separation algorithm can be adaptively applied 
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In the following, we give a heuristic justification of this 
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)(iα we write where instead of α to emphasize the fact that 

this α is obtained based on the data up to time . i
 Let 
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Algorithm (54) is obtained from (68) by replacing 
unavailable data with available ones, i.e., with , )(iℑ )(ˆ iℑ
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with , and apply matrix inversion lemma, (65) will 
follow. 
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Theorem 2: Let assumptions A1-A5 hold, and ww σσ =ˆ  . 
Then the algorithm (54)-(60) provides  
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    [a.s] 

where  α  is optimal parameter matrix satisfying (53). 
 
Proof: The proof of this theorem is omitted due to space 
limitations. 

 
 

 
4. SIMULATION 

 
For this simulation, a 2-input 3-output MIMO FIR channel 
is considered and the channel impulse response is given by 
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and 
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Two QPSK sequences are considered as input. AWGN of 
5dB is added. In order to estimate   is chosen. 
Therefore  in (13) is a *θ × matrix. For the Wiener filter 

5=M  is chosen.  Fig. 1 shows one of the un-equalized 
received symbols. Fig.2 shows the scatter plot of the 
equalized signal before Blind Source Separation (BSS). 
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Fig. 2 Equalized symbols before ICA  

 
For BSS, Independent Component Analysis (ICA) is used. 
Fast ICA developed in [18] is used in this simulation. More 
on ICA can be found in [18]. Fig. 3 shows the scatter plot of 
one of the received signals after BSS. It is clear that 
effective equalization has been accomplished. 
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Fig. 3 Equalized symbols after ICA  

 
5. CONCLUSION 

 
The paper proposes a recursive blind adaptive filtering 
method for MIMO channels to temporally whiten the input 
signals. The algorithm consists of two parts: a recursive 
blind identification scheme and a Weiner type adaptive filter 
used to extract the instantaneous mixture of the source 
signals. Both algorithms are globally convergent. 
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