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ABSTRACT 
 
In mobile communication systems, the Doppler shift is a 
very common cause of time-varying changes in the carrier-
frequency offset. This paper discusses two adaptive line 
enhancer algorithms which are used to aid in the process of 
detecting and tracking these time-varying changes. 
Specifically, it describes the use of an adaptive line enhancer 
in a quadrature amplitude modulation (QAM), or phase shift 
keying (PSK), carrier-recovery system. It shows that finite-
impulse response (FIR) adaptive line enhancers are not well-
suited for tracking changes in the carrier-frequency offset. 
Then, based on the LMS algorithm, an infinite-impulse 
response (IIR) adaptive line enhancer algorithm is presented, 
which is much more effective at tracking the carrier 
frequency offset. Next, an FIR post-filtering operation is 
described that is optimal for out-of-band noise rejection, and 
is used in conjunction with the IIR adaptive line enhancer to 
further improve its line-enhancement capabilities. Finally, 
simulation results are presented to compare the effectiveness 
of the FIR and IIR adaptive line enhancer algorithms at 
tracking changes in the carrier-frequency offset. 
 

1. INTRODUCTION 
 
 In mobile communication systems, the Doppler shift is a 
very common cause of time-varying changes in the carrier-
frequency offset. If these changes are not properly detected, 
and corrected, the transmitted data will be lost. 

 This is illustrated by looking at the equation that 
governs the size of the carrier frequency offset due to the 
Doppler effect.  It is: 

     
      (1) 

 
where cF  is the carrier frequency, sF  is the sample rate, rV  
is the relative velocity between the transmitter and the 
receiver, and c is the speed of light. In mobile systems, rV  
is constantly changing, which results in a time-varying 
carrier frequency offset. In order to avoid data loss, the 
receiver must be able to track these time-varying changes 
and correct for their effects. 
 One system used for the detection and correction of 
carrier frequency offsets is shown in Figure 1. This system, 
which is targeted for use with QAM or PSK data signals, 
operates by synthesizing a complex sinusoid at the negative 
of the frequency of the carrier frequency offset, and then by 
applying that sinusoid to the input signal to shift its spectrum 
down to baseband. 
 The left-most block in this system, called the non-linear 
block, takes the input signal to the Mth power in order to 
convert the QAM or PSK signal into a complex sinusoid 
buried in a wide-band noise. The frequency of this sinusoid 
is M times the carrier frequency offset, where the value of M 
is determined by the  modulation type. 
 The next two blocks in this system prepare the signal 
for the adaptive line enhancer by whitening the wide-band 
noise. Then, the adaptive line enhancer removes as much 
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Figure 1: QAM/PSK Carrier Recovery System 

 



 

noise as possible from the input sinusoid, to make it possible 
for the phase locked loop (PLL) to lock onto the frequency 
of the sinusoid. Finally, the PLL and subsequent blocks 
synthesize a complex sinusoid, at the negative of the carrier 
frequency offset, and multiplies the system's input signal by 
that sinusoid to shift its spectrum down to baseband. A 
complete explanation of the operation of this system can be 
found in [1].  
 In summary, the adaptive line enhancer must be able to 
track changes in the frequency of a complex sinusoid that is 
buried in a white noise, and it must remove as much noise as 
possible from that sinusoid. 
 Figure 2 shows the block diagram of an adaptive line 
enhancer. The filter W(z) is called the prediction filter, 
which is used as a band pass filter in order to minimize the 
noise in the output sinusoid. The frequency response of the 
prediction filter must constantly be adapted in order to 
determine the frequency of the input sinusoid, and to remove 
as much noise as possible. This means that the optimal 
frequency response of the prediction filter, for maximum 
noise rejection, is a band pass filter with a very narrow 
passband centered at the frequency of the input sinusoid.  
 This paper will discuss two possible implementations of 
an adaptive line enhancer algorithm. The first algorithm is 
implemented using an FIR prediction filter. It will be shown 
that this method is less effective at noise rejection while 
tracking changes in the input sinusoid's frequency. The 
second algorithm is implemented using an IIR prediction 
filter. It will be shown that this algorithm is much more 
effective at tracking these changes. Then, a post filtering 
operation will be discussed that further improves the IIR 
adaptive line enhancer's noise rejection. Finally, the tracking 
ability of each adaptive line enhancer algorithm will be 
shown through simulation. 
 

2. THE FIR ADAPTIVE LINE ENHANCER 
 
It is common practice to implement the adaptive line 
enhancer using an FIR prediction filter. One advantage of 
this approach is that the FIR adaptive line-enhancement 
algorithm is well understood, easy to implement, and its 
performance can be analyzed mathematically. The main 
drawback to using this approach is that this algorithm is 
slow to forget past input frequencies, as it attempts to track 
changes in the input sinusoid's frequency [2]. This section 

explains the cause of this drawback, which is referred to as 
the memory effect. 
 In order to understand the memory effect, note that the 
ability of the adaptive line enhancer to reject noise from the 
input sinusoid depends on the frequency response of the 
prediction filter. The ideal frequency response would pass 
only the frequency of the input sinusoid, while rejecting any 
other frequency content in the signal. The wider the 
passband of the frequency response, the more noise is 
passed through to the output signal. Consequently, the 
effectiveness of the adaptive line enhancer at noise rejection, 
is determined by the number of coefficients in the prediction 
filter, or N, and the ability of the adaptive algorithm to 
determine the optimal filter coefficients. 
 The ability of the adaptive algorithm to determine the 
optimal filter coefficients is governed by the fact that the 
prediction filter's frequency response will converge the 
fastest in the frequency bands where the input signal 
contains the most power [3]. This is represented 
mathematically as the adaptive algorithm's convergence time 
constant, which is related to the eigenvalues of the input 
signal’s auto-correlation matrix, according to the equation: 

 
                          (2) 

 
where µ is the algorithm step size, and λi is an individual 
eigenvalue of the auto-correlation matrix. For a prediction 
filter length of N coefficients, the adaptive algorithm will 
have N convergence time constants, and N eigenvalues. It 
can be shown that the magnitude of each of these 
eigenvalues is proportional to the power contained in the 
input signal in each of the N frequency bands [3]. In other 
words, the input signal's power-spectral density determines 
the size of the eigenvalues of the input signal's 
autocorrelation matrix, and the corresponding convergence 
time constant in each of the frequency bands. 
 In this system, the power-spectral density of the input 
signal has a single peak at the frequency of the input 
sinusoid, and a constant wide-band component throughout 
the rest of the frequency spectrum. Consequently, the 
eigenvalues of the input signal's autocorrelation matrix 
consist of a single eigenvalue at the frequency of the input 
sinusoid with a value of N+σ2, and N-1 repeated eigenvalues 
with the value of σ2, where σ2 is the variance of the noise in 
the input signal [3]. From equation 2, it can be seen that the 
convergence time-constant is shortest at the frequency of the 
input sinusoid, and longer elsewhere.  In other words, the 
relative sizes of these convergence time constants result in 
the adaptive line enhancer adapting quickly in the frequency 
band that contains the input sinusoid's frequency, but at a 
slower rate throughout the rest of the frequency spectrum.  
 This fact has a significant impact on the tracking 
behavior of the FIR adaptive line enhancer. When the 
frequency of the input sinusoid changes, the peak in the 

Figure 2: Adaptive line enhancer block diagram 

i
i µλ

τ
4

1=



 

power-spectral density moves with it, and so does the 
frequency band with the largest eigenvalue. The result is that 
the passband of the prediction filter is quickly adapted to 
include the new frequency of the input sinusoid. However, 
the portion of the passband at the past frequency of the input 
sinusoid is slowly forgotten, due to the smaller amount of 
power in the input signal at that frequency. This results in a 
memory of the past frequencies of the input sinusoid, and 
additional noise being passed through the prediction filter. 
 In order to illustrate the memory effect, Figure 3 shows 
the frequency response of the adaptive line enhancer's 
prediction filter before, and after, a step in the input 
sinusoid's frequency. Before the step, the passband on the 
left is centered at the frequency of the sinusoid. After the 
step, this passband disappears slowly, while the passband on 
the right, which is at the new frequency of the input 
sinusoid, is quickly developed. The result of this is that 
unnecessary noise is passed through the adaptive line 
enhancer prediction filter at the past frequency of the input 
sinusoid. 
 

3. IIR ADAPTIVE LINE ENHANCER 
 
A more effective approach to designing an adaptive line 
enhancer is to use an IIR prediction filter with the following 
transfer function: 
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 This transfer function is a single-pole band pass filter. 
The frequency response of this filter is controlled by two 
coefficients, φ and α. The coefficient φ determines the 
center frequency of the filter's passband by rotating the pole 
location in the z-plane. The coefficient α determines the 
width of the passband by determining the radius of the pole 
in the unit circle.  

 By adapting these coefficients in such a way that the 
center frequency of the passband is placed at the frequency 
of the input sinusoid, and the width of the passband is 
minimized, this filter is very effective at rejecting noise from 
the input sinusoid.  
 Figure 4 shows the block diagram of the adaptive line 
enhancer algorithm used to simultaneously adapt the IIR 
prediction filter's coefficients. The φ coefficient is adapted 
by minimizing the cost function E|e(i)|2, and the α coefficient 
is adapted by maximizing the cost function E|yα(i)|

2.  
 The LMS algorithm is one method of adapting these 
coefficients in order to maximize, or minimize, the value of 
the cost function. This is done by approximating the value of 
the cost function based on the current filter coefficients, the 
input signal, and the error signal. Then, based on the slope 
of the cost function at that point, the filter coefficients are 
adjusted in the direction of the slope, which moves the value 
of the cost function either towards its minimum, or its 
maximum. 
 A plot of the cost function used to adapt φ is shown in 
Figure 5. Clearly, the minimum value of the cost function 
corresponds to the input sinusoid's frequency. By 
minimizing the value of this cost function, the current 
approximation of φ will approach the input sinusoid’s  

Figure 3: The FIR prediction filter's frequency response 
before, and after, a step in the input sinusoid's frequency.  

Figure 4: IIR adaptive line enhancer block diagram 

Figure 5: IIR φ cost function 



 

Table 1: IIR adaptive line enhancer algorithm 
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frequency φo, and place the center of the prediction filter's 
passband at that frequency.  
 The φ cost function is plotted for several values of α, in 
order to show that the slope of the cost function is very 
dependent on α. For α values near one, the slope is very 
small except near the frequency of the input sinusoid. 
Consequently, the adaptive line enhancer will converge 
slowly as for values of α near one, and faster for values of α 
near zero. This has the unfortunate effect that the filter 

bandwidth has to be expanded in order to speed convergence 
of the φ coefficient to its optimal value, and it results in two 
opposing constraints. First, the value of α must be kept small 
in order to decrease the φ coefficient's convergence time; 
and second, the value of α must be kept near one in order to 
maximize noise rejected from the input sinusoid by the 
adaptive line enhancer. Consequently, a cost function must 
be selected that will minimize the value of α, when φ is far 
from the frequency of the input sinusoid, and maximize its 
value otherwise. The cost function  E|yα(i)|

2 meets this 
criteria [3][4], where:  
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 Figure 6 shows a plot of the α cost function for different 
distances between the current estimate of φ, and its optimal 
value φo. Note that when φ is far from φo, the maximum 
value of the cost function is near 0, and as φ approaches φo, 
this maximum moves toward one. Consequently, by 
maximizing the value of this cost function, the value of α 
can be adapted in such a way that the opposing constraints 
are met. Table 1 shows a listing of the resulting adaptive line 
enhancer algorithm. Note that the value of α must be 
explicitly limited between zero and one in order to keep the 
transfer function's pole within the unit circle. 
 Finally, Figure 7 shows the frequency response of the 
IIR prediction filter before, and after, a step in the input 
sinusoid's frequency. As can be seen, the old frequency of 
the input sinusoid is completely forgotten shortly after the 
step. In other words, the IIR adaptive line enhancer does not 
suffer from the memory effect that limits the tracking ability 
of the FIR adaptive line enhancer. Also, the figure shows a 
temporary expansion of the prediction filter's passband. This 

Figure 7: The IIR prediction filter's frequency response 
before and after a step in the input sinusoid's frequency. Figure 6: IIR α cost function 



 

is due to the adaptation of α, which is required to minimize 
the convergence time of the φ coefficient. 
 

4. FIR POST-FILTER 
 

After the convergence of the IIR adaptive line enhancer's φ 
coefficient, the frequency of the input sinusoid is known by 
the system. This allows a band pass post-filtering operation 
to be applied  to the adaptive line enhancer's output signal in 
order to achieve further noise rejection. 
 This filter is implemented as an FIR band pass filter 
with the center frequency being determined by the IIR 
adaptive line enhancer. The transfer function of this filter is: 
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where φ is the desired center frequency determined by the 
IIR adaptive line enhancer. This transfer function represents 
a filter made up of zeros spaced equally around the unit 
circle. It can be shown, using the method of Lagrange 
multipliers, that this transfer function is the optimal FIR 
filter for use in removing noise from a sinusoid buried in 
white noise [4]. Although the input signal to the post-filter is 
a sinusoid buried in noise that has been colored by the 
adaptive line enhancer, it will be shown that the postfilter is 
effective at further noise rejection. 
  Finally, by noting that this transfer function is a 
geometric series, an equivalent transfer function can be 
derived that is much more efficient to implement: 
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where β is a constant that is slightly less than one. The 
purpose for adding β to the transfer function is to keep the 
pole inside the unit circle, and to ensure stability of the 
algorithm.  
 

5. SIMULATION RESULTS 
 
A common scenario that necessitates the tracking of the 
carrier frequency offset due to Doppler shifts is in inter-
vehicle communications. Assume two vehicles are 
communicating wirelessly as they pass each other going 
opposite directions on the freeway. Due to the Doppler 
effect, the relative velocity between these vehicles will cause 
a time-varying shift in the carrier frequency offset that must 
be tracked by the adaptive line enhancer. Figure 8 shows an 
example of the Doppler shift as seen by the carrier recovery 
algorithm.  
 Based on this scenario, simulations have been done to 
compare the effectiveness of each of the adaptive line 
enhancer algorithms in tracking changes in the carrier 
frequency offset. This is done by comparing a time average 
of the excess mean-square error, during the tracking phase 
of the simulation, as a relative measure of each algorithm's 
effectiveness. Mathematically, this is defined as: 
 

)|)(|( 22 σξ −= ieEaverageave
excess .              (17) 

 
 Finally, the convergence rate of the FIR adaptive line 
enhancer is determined by the signal-to-noise ratio. 
Consequently, ave

excessξ  is measured over a range of signal-to-
noise ratios.  
 Figure 9 shows the results of the simulations. As can be 
seen, ave

excessξ  is much higher for the FIR adaptive line 
enhancer due to the memory effect. Also, the IIR adaptive 
line enhancer results in a significant improvement over the 
FIR implementation, especially for high signal-to-noise 

Figure 8: Time-varying carrier frequency offset caused by 
the Doppler effect in inter-vehicle communication. 

Figure 9: Tracking comparison of the three adaptive line 
enhancer (ALE) algorithms 



 

ratios. Finally, the postfilter adds an additional advantage to 
that of the IIR adaptive line enhancer. 
 

6. CONCLUSION 
 
 In conclusion, an IIR adaptive line enhancer algorithm 
and a companion postfiltering operation has been presented 
that results in a significant improvement in the noise 
rejection that can be attained over the FIR adaptive line 
enhancer algorithm. This results from the IIR adaptive line 
enhancer's lack of a memory of past input frequencies, and 
the optimal filtering capabilities of the postfilter. Although 
the exact numbers in this simulation will not match those of 
certain systems, the effective result will be the same, that of 
significant noise rejection from the input sinusoid. 
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