

IMPLEMENTING THE TETRA PHYSICAL LAYER ON LYRTECH’S SFF SDR

DEVELOPMENT PLATFORM

Stefan Nagel, Dennis Epple, Friedrich K. Jondral
(Institut für Nachrichtentechnik, Universität Karlsruhe (TH), Germany,

{nagel;epple;fj}@int.uni-karlsruhe.de)

ABSTRACT

This paper presents the implementation of the TETRA
physical layer on an FPGA/DSP based development
platform. The objective is to implement a highly portable
waveform and to determine the optimal boundary between
FPGA-functions and DSP-functions. Due to the portability
aspect, we tried to implement as much functionality as
possible on the DSP and followed a design process
proposed from the Model Driven Architecture. The Lyrtech
Small Form Factor SDR Development Platform is used as
the hardware platform. It is equipped with a Virtex-4 SX35
FPGA from Xilinx and a TMS320DM6446 DSP system-on-
chip from Texas Instruments.

TETRA SYSTEM OVERVIEW

Terrestrial Trunked Radio (TETRA) is an open digital
standard defined by the European Telecommunication
Standards Institute (ETSI). Its infrastructure is primarily
targeted at the mobile radio needs of public safety groups
like police and fire departments [2].
For modulation a π/4-Differential Quaternary Phase Shift
Keying (DQPSK) scheme is used which provides a symbol
rate of 18 kbaud/s. TETRA uses different forward error
correction schemes applied to the different logical channels.
For the Traffic Channel (TCH) a Rate Compatible
Punctured Code (RCPC) is employed while the Access
Assignment Channel (AACH) uses a shortened Reed Muller
(RM) code for example. The channel access mode is a
combination of FDMA and TDMA. Each channel of
bandwidth 25 kHz is divided into 4 timeslots. For
Uplink/Downlink separation an FDD/TDD mode is
implemented. The time delay between uplink and downlink
is about two time slots, so the mobile station does not have
to send and receive data simultaneously. Within one time
slot of each carrier frequency a normal burst is transmitted.
It is used for the transmission of voice or data and contains
432 data bits and 78 bits for training, synchronization, guard
period, etc. So the overall length of a burst is 510 bits that
are transmitted within 14.17 ms. Four bursts fit into one

TDMA frame which results in a frame duration of 56.67 ms.
[1]

PLATFORM OVERVIEW

Lyrtech’s Small Form Factor SDR Development Platform is
a heterogeneous platform for signal processing that consists
of three modules: the RF Module, the Data Conversion
Module and the Digital Processing Module. The platform
has further the possibility to interconnect to
MatLab/Simulink and to develop waveforms on a high level
view.

RF Module
The RF Module is the RF frontend of the SDR. The receive
path is realized with a super heterodyne receiver, that mixes
the signal from a range of 20… 928 MHz to an intermediate
frequency of 30 MHz. The analogue receive filter can be
chosen to support a bandwidth of 5 MHz or 20 MHz. The
complex signal is transported to the Data Conversion
Module via coax cable. The transmitting path of the RF
Module expects two inputs from the Data Conversion
Module: the inphase and quadrature component. These are
directly mixed to the desired carrier frequency from 200
MHz to 930 MHz. The RF Module is further equipped with
a 10 MHz oscillator which provides the reference clock for
the whole platform.

Data Conversion Module
The Data Conversion Module is the interface between the
analogue and the digital side of the platform. It is equipped
with two DACs and two ADCs, with only one ADC being
connected to the RF Module. The DAC works with a
sample rate of 500 MSPS and a resolution of 16 bit. The
two DACs are used to convert the inphase and quadrature
component independently from one another. The ADC
works with a sample rate of 125 MSPS and a resolution of
14 bit.

Digital Processing Module
The Digital Processing Module is equipped with an FPGA,
a DSP and a GPP. The FPGA is the Virtex-4SX35 with

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

34,560 Logic Cells, 30,720 Flip Flops and 192 DSP Slices.
The GPP and the DSP are both on a common chip which is
the DaVinci SoC from Texas Instruments. The core of the
DSP is a C64x+ with 594 MHz and the core of the GPP is
the ARM926 with 297 MHz.

Design Flow:
The design flow starts with building a Simulink model of
the FPGA and the DSP [4]. This can be executed on PC
until the simulation works properly. For executing the
software on the hardware further development tools are
needed. For the DSP, the Code Composer Studio transforms
the Simulink model into a binary file for the processor (.out
file). To build the FPGA model in Simulink there is need
for special Simulink blocks which are equipped with the
System Generator for DSP. This software builds the
interface between Simulink and the Xilinx Development
Environment and transforms the model in the bitfile. The
design flow and the three modules are shown in . Figure 1

WAVEFORM DEVELOPMENT

One objective of this work was to get a high portability of
the TETRA-waveform and to evaluate if modules could be
reused. We followed a waveform based development
process based on the Model Driven Architecture (MDA)
which is an initiative of the Object Management Group
(OMG) [3]. It introduces four different types of models:

1. The Computation Independent Model
2. The Platform Independent Model
3. The Platform Specific Model
4. The Code

These models are levels of abstraction of a waveform. By
implementing all these models there is an evolution from a
very generic waveform specification to code which can be
executed on hardware.
The Computation Independent Model (CIM) is just a
description of the functionality. In our case, this is the
specification of the TETRA air interface, i.e., the ETSI
standard.
The next model is a Platform Independent Model (PIM)
that provides the functionality without platform specific
aspects. The PIM was created by implementing a
MatLab/Simulink model of the TETRA physical layer.
The subsequent step towards a waveform running on a
platform is the design of a Platform Specific Model (PSM).
This includes platform specific aspects like the connection
from the FPGA to the DSP, human machine interfaces, etc.
To transform the PIM to the PSM we followed the model
based design flow proposed by Lyrtech. Due to that, we
replaced the generic blocks in the model by target specific
blocks. We additionally added platform specific blocks that
are interfacing the I/Os on the board.

The final step in the MDA is the implementation of Code
that runs on the specific platform. The development
environment generates code from the PSM and sends it to
the processor’s Integrated Development Environment (IDE)
that will compile the generated code and load the
executables to the processors.

Development of the CIM:
The CIM actually exists as the ETSI standard for the
TETRA AIR interface. Unfortunately this is a very large
and extensive standard so we decided to simplify it for our
development.
There are seven different bursts defined in the specification
so we decided to implement just the Normal Continuous
Downlink Burst. This burst includes a Traffic Channel for
the data supporting a bit rate of 4.8 kbit/s (TCH/4.8) and a
Control Channel (CCH) that manages the allocation of the
next up- and downlink slots.

Figure 1: Structure of the SDR platform
and the design flow

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Figure 2: Platform Independent Model

Development of the PIM:
The TETRA transmit burst we implemented consists of the
Normal Continuous Downlink Burst. This burst is based of
510 bits that are represented in Table 1.

Table 1: Normal Continuous Downlink Burst

Bit Number Field
length Field content

 1 to 12 12 normal training sequence 3
 13 to 14 2 phase adjustment bits
 15 to 230 216 scrambled block 1 bits
 231 to 244 14 scrambled broadcast bits
 245 to 266 22 normal training sequence
 267 to 282 16 scrambled broadcast bits
 283 to 498 216 scrambled block 2 bits
 499 to 500 2 phase adjustment bits
 501 to 510 10 normal training sequence 3

The 30 broadcast bits come from the Control Channel which
manages the allocation of the next up- and downlink slot.
They consist of 14 information bits that are coded with a
Reed Muller code and afterwards scrambled.
The 432 scrambled bits are the bits from the Traffic
Channel which transfers the user data. The two blocks
consist of 288 information bits plus 4 tail bits that are
encoded using a convolution code. The puncturing after the

encoding provides the 432 coded bits that are afterwards
scrambled.
The remaining 48 bits are training sequences and bits to
adjust the phase.
The frame is sent to the DQPSK modulator that converts the
bits to symbols and afterwards filtered by a root raised
cosine transmit filter.
The receiver filters the signal with a root raised cosine filter
and demodulates the incoming symbols to bits. The 432
coded bits are separated from the frame by dropping the
trainings bits. Decoding is done with a Viterbi Decoder for
the Transmit Channel and a Reed Muller Decoder for the
Control Channel.
By developing the PIM we provide a starting point from
which any waveform developer could port the TETRA-
waveform on any Software Defined Radio platform.

Development of the PSM:

Configuration:
In the transformation from the PIM to the PSM the clock
and sample times have to be set. A time slot of the TETRA
system has a duration of 14.167 ms in which 255 symbols
are transmitted. By supporting just the DQPSK modulation
this leads to a bit rate of 36 kHz as the fastest rate in the
DSP. The ADC clock can be varied from 80 to 125 MHz.
So we chose an ADC clock of 108 MHz. By providing a
clock divider of 3000 the DSP bit rate can be provided.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

After setting the clock rate the partition between the DSP
and FPGA has to be set. Our intention was to get a highly
portable waveform, so there was the intention to bring as
much as functionalities onto the DSP as possible. The
optimum would be to develop the whole waveform on the
DSP and just send the I/Q components to the DAC and vice
versa. We decided to stay very close at this optimum. So the
signal processing from the data bits to the generation of the
phase is done in the DSP and the further signal processing
like the generation of the inphase and quadrature component
and the up-sampling is done in the FPGA.

DSP Transmit Side:
The TETRA transmit burst is generated as described in the
Platform Independent Model. The symbol generation maps
two bits to a symbol which is afterwards used by the
Differential Preencoding to generate the proper phase. The
actual symbol S(k) is obtained by rotating the phase of the
last symbol S(k-1) by the phase Dθ(k):

The phase shift is related to the modulation bits as described
in Table 2.

Table 2: Phase shift in π/4 DQPSK modulation
S(k) Dθ(k)
00 + 1/4 π
01 + 3/4 π
10 - 1/4 π
11 - 3/4 π

The output of the Differential Preencoding block is the
phase of the symbol in the range from 0 to 2π. The phase
has to be converted in the proper way by:

2
2

B

FPGA DSPϕ ϕ
π

=

B is the amount of bits provided by the Direct Digital
Synthesizer (DDS) in the FPGA. Before transferring this
value to the FPGA it has to be converted in the proper
representation due to the fact that the VPBE bus requires an

()() (1) jD kS k S k e θ= −

Figure 3: DSP part of the Platform Specific Model

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Figure 4: FPGA part of the Platform Specific Model

integer format (int32).

DSP Receive Side
The data coming from the VPFE bus are represented by an
integer format (int32), although the FPGA works with a
fixpoint representation. To get the information back to
floating point representation there is need to drop the last 20
bits from the received value and set the point to the 15th bit.
After a conversion to the double representation, the well
known work with Simulink can be continued.
The differential decoding is done by subtracting the former
phase from the previous one with help of a delay block. To
map the phase to a symbol Table 3 is used:

Table 3: Mapping the phase to the symbols
Range Phase Symbol
[0...π/2] + 1/4 π 00
[π/2...π] + 3/4 π 01
[0…-π/2] - 1/4 π 10
[-π/2…-π] - 3/4 π 11

Before dividing the burst into the coded bits and the training
sequence there is need to find the head and the tail of the
frame. So the first 12 bits from the burst are used for frame
synchronization. This algorithm is:

• Take two consecutive frames
• Connect them to a frame with 1020 bits
• Search for the training sequence
• The synchronized frame consists of the training

sequence and the adjacent 498 bits
• Drop the first frame and take a new one

• Start over

The TETRA receive burst block performs like the PIM in

. The whole DSP part of the PSM is shown in
.

Figure 2
Figure 3

FPGA High Level Structure
Figure 4 shows the high level view of the FPGA structure.
The input is the VPSS block which is the bus from the DSP.
The signals are acquired with a rate of 36 kHz and then up-
sampled by a factor of 3000 to a sampling rate of 108 MHz.
The same is done on the receiving side accordingly. The
signals from the system block are down-sampled with a
factor of 3000 and sent to the DSP via the VPSS block with
a sample rate of 36 kHz.

FPGA System
The FPGA System is shown in . The modulation
block requires phase information coming from the DSP and
generates a complex signal with the DDS. The frequency in
the DDS is 18 MHz that is used as an intermediate
frequency.

Figure 5

The channel filtering is performed by FIR-filters extracting
the channel of 25 kHz. The pulse shaping is done by a root
raised cosine filter with a roll-off-factor of 0.35. This is
predefined in the TETRA standard. This filter was
implemented as an FIR filter with 5 taps.
In order to transfer the data to the FPGA, the fixpoint
representation with 20 bits has to be converted to 16 bits
due to the DAC’s resolution.
Further data processing is not shown in Simulink because
the DAC is the last block for the FPGA. Nevertheless, data

Figure 5: FPGA system

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

processing can be configured by APIs in the DSP. In
 in the upper right corner there are the blocks that represent

the APIs to configure the ADCs or the RF-Frontend.

Figure
3

The RF Module receives the signal at 400 MHz and
translates it to an intermediate frequency of 30 MHz. This
signal leaves the ADC. The mixer-block brings the signal
down to the complex baseband by multiplying the signal
with a sine and a cosine at a frequency of 30 MHz. The sine
and cosine is generated with the DDS-block. After filtering
the signal with a bandpass filter the phase has to be
calculated. This is done in the Phase Calculation block with
the CORDIC algorithm. It requires the inphase and
quadrature components of a signal and calculates phase and
magnitude. Due to the fact that the whole information is
incorporated in the signal phase, the magnitude is dropped
and only the phase is provided to the DSP.

DEVELOPMENT OF THE CODE:

The Code was generated automatically by using the Code
Composer Studio for the DSP code and the System
Generator for DSP with the ISE for the FPGA bit file We
utilized 3,935 Slice Flip Flops that made 12% of the total
amount and 4375 Look Up Tables that made 14% of he
total amount, available on the FPGA. The utilization of
DSP48 blocks was 19% of the total amount which made a
usage of 37.

CONCLUSION:

We developed the Traffic Channel of the TETRA physical
layer on Lyrtech’s SFF SDR Development Platform with
the design flow of the Model Driven Architecture. In order
to simplify our model, we chose representative parts of the
standard in order to build a Computation Independent
Model. The development of the Platform Independent
Model was done in MatLab/Simulink. This model can serve
as a starting point for any waveform developer to get the
TETRA Traffic Channel on any Software Defined Radio
platform. By developing the Platform Specific Model for
our platform we added special interfaces and the partition
between DSP and FPGA functionality. Due to the platform
architecture it was not possible to implement the whole
waveform on the DSP. The FPGA had to provide inphase
and quadrature components, up- and down-conversion and
filtering. Finally the development of the code was done
automatically by the tools provided by the processor
vendors.
The advantage of such a design flow is time. The whole
implementation was done in about three months. So this is a
good way for rapid prototyping. Another advantage is the
reusage of our models. We can implement this model on
any other DSP with minor changes in the I/O.
The disadvantage of this design is the insufficient
comprehension of the Simulink blocks. We never knew
what is really going on in the blocks, how they are
implemented and how much performance is lost. To
evaluate this, we are going to implement a new PSM in C
without code generation and compare this to our TETRA
waveform.

REFERENCES

[1] ETSI, “Terrestrial Trunked Radio (TETRA); Voice plus Data

(V+D); Part 2: Air Interface (AI),” EN 300 392-2, 2007.
[2] B. Walke, „Mobilfunknetze und ihre Protokolle 2“, Teubner,

Stuttgart, 2003.
[3] T. Langguth and D. Schober, “SDR based Waveform

Development,” 5th Karlsruhe Workshop on Software Radios,
2008.

[4] R. Sathappan, M. Dumas and M. Uhm, “A new architecture
for development platforms targeted to portable radio
applications,” Lyrtech Technical Paper, 2007.

	Home
	Papers By Alpha
	Papers By Session

