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ABSTRACT 
 
This paper presents the implementation of the TETRA 
physical layer on an FPGA/DSP based development 
platform. The objective is to implement a highly portable 
waveform and to determine the optimal boundary between 
FPGA-functions and DSP-functions. Due to the portability 
aspect, we tried to implement as much functionality as 
possible on the DSP and followed a design process 
proposed from the Model Driven Architecture. The Lyrtech 
Small Form Factor SDR Development Platform is used as 
the hardware platform. It is equipped with a Virtex-4 SX35 
FPGA from Xilinx and a TMS320DM6446 DSP system-on-
chip from Texas Instruments. 
 
 

TETRA SYSTEM OVERVIEW 
 

Terrestrial Trunked Radio (TETRA) is an open digital 
standard defined by the European Telecommunication 
Standards Institute (ETSI). Its infrastructure is primarily 
targeted at the mobile radio needs of public safety groups 
like police and fire departments [2]. 
For modulation a π/4-Differential Quaternary Phase Shift 
Keying (DQPSK) scheme is used which provides a symbol 
rate of 18 kbaud/s. TETRA uses different forward error 
correction schemes applied to the different logical channels. 
For the Traffic Channel (TCH) a Rate Compatible 
Punctured Code (RCPC) is employed while the Access 
Assignment Channel (AACH) uses a shortened Reed Muller 
(RM) code for example. The channel access mode is a 
combination of FDMA and TDMA. Each channel of 
bandwidth 25 kHz is divided into 4 timeslots. For 
Uplink/Downlink separation an FDD/TDD mode is 
implemented. The time delay between uplink and downlink 
is about two time slots, so the mobile station does not have 
to send and receive data simultaneously. Within one time 
slot of each carrier frequency a normal burst is transmitted. 
It is used for the transmission of voice or data and contains 
432 data bits and 78 bits for training, synchronization, guard 
period, etc. So the overall length of a burst is 510 bits that 
are transmitted within 14.17 ms. Four bursts fit into one 

TDMA frame which results in a frame duration of 56.67 ms. 
[1] 
 

PLATFORM OVERVIEW 
 
Lyrtech’s Small Form Factor SDR Development Platform is 
a heterogeneous platform for signal processing that consists 
of three modules: the RF Module, the Data Conversion 
Module and the Digital Processing Module. The platform 
has further the possibility to interconnect to 
MatLab/Simulink and to develop waveforms on a high level 
view. 
 
RF Module 
The RF Module is the RF frontend of the SDR. The receive 
path is realized with a super heterodyne receiver, that mixes 
the signal from a range of 20… 928 MHz to an intermediate 
frequency of 30 MHz. The analogue receive filter can be 
chosen to support a bandwidth of 5 MHz or 20 MHz. The 
complex signal is transported to the Data Conversion 
Module via coax cable. The transmitting path of the RF 
Module expects two inputs from the Data Conversion 
Module: the inphase and quadrature component. These are 
directly mixed to the desired carrier frequency from 200 
MHz to 930 MHz. The RF Module is further equipped with 
a 10 MHz oscillator which provides the reference clock for 
the whole platform. 
 
Data Conversion Module 
The Data Conversion Module is the interface between the 
analogue and the digital side of the platform. It is equipped 
with two DACs and two ADCs, with only one ADC being 
connected to the RF Module. The DAC works with a 
sample rate of 500 MSPS and a resolution of 16 bit. The 
two DACs are used to convert the inphase and quadrature 
component independently from one another. The ADC 
works with a sample rate of 125 MSPS and a resolution of 
14 bit. 
 
Digital Processing Module 
The Digital Processing Module is equipped with an FPGA, 
a DSP and a GPP. The FPGA is the Virtex-4SX35 with 
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34,560 Logic Cells, 30,720 Flip Flops and 192 DSP Slices. 
The GPP and the DSP are both on a common chip which is 
the DaVinci SoC from Texas Instruments. The core of the 
DSP is a C64x+ with 594 MHz and the core of the GPP is 
the ARM926 with 297 MHz. 
 
Design Flow: 
The design flow starts with building a Simulink model of 
the FPGA and the DSP [4]. This can be executed on PC 
until the simulation works properly. For executing the 
software on the hardware further development tools are 
needed. For the DSP, the Code Composer Studio transforms 
the Simulink model into a binary file for the processor (.out 
file). To build the FPGA model in Simulink there is need 
for special Simulink blocks which are equipped with the 
System Generator for DSP. This software builds the 
interface between Simulink and the Xilinx Development 
Environment and transforms the model in the bitfile. The 
design flow and the three modules are shown in . Figure 1

 
 

 
 

WAVEFORM DEVELOPMENT 
 
One objective of this work was to get a high portability of 
the TETRA-waveform and to evaluate if modules could be 
reused. We followed a waveform based development 
process based on the Model Driven Architecture (MDA) 
which is an initiative of the Object Management Group 
(OMG) [3]. It introduces four different types of models: 

1. The Computation Independent Model 
2. The Platform Independent Model 
3. The Platform Specific Model 
4. The Code 

These models are levels of abstraction of a waveform. By 
implementing all these models there is an evolution from a 
very generic waveform specification to code which can be 
executed on hardware. 
The Computation Independent Model (CIM) is just a 
description of the functionality. In our case, this is the 
specification of the TETRA air interface, i.e., the ETSI 
standard. 
The next model is a Platform Independent Model (PIM) 
that provides the functionality without platform specific 
aspects. The PIM was created by implementing a 
MatLab/Simulink model of the TETRA physical layer. 
The subsequent step towards a waveform running on a 
platform is the design of a Platform Specific Model (PSM). 
This includes platform specific aspects like the connection 
from the FPGA to the DSP, human machine interfaces, etc. 
To transform the PIM to the PSM we followed the model 
based design flow proposed by Lyrtech. Due to that, we 
replaced the generic blocks in the model by target specific 
blocks. We additionally added platform specific blocks that 
are interfacing the I/Os on the board. 

The final step in the MDA is the implementation of Code 
that runs on the specific platform. The development 
environment generates code from the PSM and sends it to 
the processor’s Integrated Development Environment (IDE) 
that will compile the generated code and load the 
executables to the processors. 
 
Development of the CIM: 
The CIM actually exists as the ETSI standard for the 
TETRA AIR interface. Unfortunately this is a very large 
and extensive standard so we decided to simplify it for our 
development. 
There are seven different bursts defined in the specification 
so we decided to implement just the Normal Continuous 
Downlink Burst. This burst includes a Traffic Channel for 
the data supporting a bit rate of 4.8 kbit/s (TCH/4.8) and a 
Control Channel (CCH) that manages the allocation of the 
next up- and downlink slots. 

Figure 1: Structure of the SDR platform 
and the design flow 
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Figure 2: Platform Independent Model 

 
Development of the PIM: 
The TETRA transmit burst we implemented consists of the 
Normal Continuous Downlink Burst. This burst is based of 
510 bits that are represented in Table 1. 
 
Table 1: Normal Continuous Downlink Burst 

Bit Number   Field 
length   Field content   

 1 to 12   12  normal training sequence 3  
 13 to 14   2  phase adjustment bits   
 15 to 230   216  scrambled block 1 bits   
 231 to 244   14  scrambled broadcast bits  
 245 to 266   22  normal training sequence  
 267 to 282   16  scrambled broadcast bits  
 283 to 498   216  scrambled block 2 bits   
 499 to 500   2  phase adjustment bits   
 501 to 510   10  normal training sequence 3  
 
The 30 broadcast bits come from the Control Channel which 
manages the allocation of the next up- and downlink slot. 
They consist of 14 information bits that are coded with a 
Reed Muller code and afterwards scrambled.  
The 432 scrambled bits are the bits from the Traffic 
Channel which transfers the user data. The two blocks 
consist of 288 information bits plus 4 tail bits that are 
encoded using a convolution code. The puncturing after the 

encoding provides the 432 coded bits that are afterwards 
scrambled. 
The remaining 48 bits are training sequences and bits to 
adjust the phase.  
The frame is sent to the DQPSK modulator that converts the 
bits to symbols and afterwards filtered by a root raised 
cosine transmit filter. 
The receiver filters the signal with a root raised cosine filter 
and demodulates the incoming symbols to bits. The 432 
coded bits are separated from the frame by dropping the 
trainings bits. Decoding is done with a Viterbi Decoder for 
the Transmit Channel and a Reed Muller Decoder for the 
Control Channel. 
By developing the PIM we provide a starting point from 
which any waveform developer could port the TETRA-
waveform on any Software Defined Radio platform. 
 
 
Development of the PSM:  
 
Configuration: 
In the transformation from the PIM to the PSM the clock 
and sample times have to be set. A time slot of the TETRA 
system has a duration of 14.167 ms in which 255 symbols 
are transmitted. By supporting just the DQPSK modulation 
this leads to a bit rate of 36 kHz as the fastest rate in the 
DSP. The ADC clock can be varied from 80 to 125 MHz. 
So we chose an ADC clock of 108 MHz. By providing a 
clock divider of 3000 the DSP bit rate can be provided. 
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After setting the clock rate the partition between the DSP 
and FPGA has to be set. Our intention was to get a highly 
portable waveform, so there was the intention to bring as 
much as functionalities onto the DSP as possible. The 
optimum would be to develop the whole waveform on the 
DSP and just send the I/Q components to the DAC and vice 
versa. We decided to stay very close at this optimum. So the 
signal processing from the data bits to the generation of the 
phase is done in the DSP and the further signal processing 
like the generation of the inphase and quadrature component 
and the up-sampling is done in the FPGA. 
 
DSP Transmit Side: 
The TETRA transmit burst is generated as described in the 
Platform Independent Model. The symbol generation maps 
two bits to a symbol which is afterwards used by the 
Differential Preencoding to generate the proper phase. The 
actual symbol S(k) is obtained by rotating the phase of the 
last symbol S(k-1) by the phase Dθ(k): 
 
 
 
 
  

The phase shift is related to the modulation bits as described 
in Table 2. 
 
Table 2: Phase shift in π/4 DQPSK modulation 
S(k)    Dθ(k)   
00 + 1/4 π   
01 + 3/4 π   
10 - 1/4 π   
11 - 3/4 π   
 
 
The output of the Differential Preencoding block is the 
phase of the symbol in the range from 0 to 2π. The phase 
has to be converted in the proper way by: 
 

2
2

B

FPGA DSPϕ ϕ
π

=  
 
 
  
B is the amount of bits provided by the Direct Digital 
Synthesizer (DDS) in the FPGA. Before transferring this 
value to the FPGA it has to be converted in the proper 
representation due to the fact that the VPBE bus requires an 

( )( ) ( 1) jD kS k S k e θ= −

Figure 3: DSP part of the Platform Specific Model 
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Figure 4: FPGA part of the Platform Specific Model 

integer format (int32). 
 
DSP Receive Side 
The data coming from the VPFE bus are represented by an 
integer format (int32), although the FPGA works with a 
fixpoint representation. To get the information back to 
floating point representation there is need to drop the last 20 
bits from the received value and set the point to the 15th bit. 
After a conversion to the double representation, the well 
known work with Simulink can be continued. 
The differential decoding is done by subtracting the former 
phase from the previous one with help of a delay block. To 
map the phase to a symbol Table 3 is used: 
 
Table 3: Mapping the phase to the symbols 
Range Phase Symbol 
[0...π/2] + 1/4 π 00 
[π/2...π] + 3/4 π 01 
[0…-π/2] - 1/4 π 10 
[-π/2…-π] - 3/4 π 11 
 
 
Before dividing the burst into the coded bits and the training 
sequence there is need to find the head and the tail of the 
frame. So the first 12 bits from the burst are used for frame 
synchronization. This algorithm is: 

• Take two consecutive frames 
• Connect them to a frame with 1020 bits 
• Search for the training sequence 
• The synchronized frame consists of the training 

sequence and the adjacent 498 bits 
• Drop the first frame and take a new one 

• Start over 
 
The TETRA receive burst block performs like the PIM in 

. The whole DSP part of the PSM is shown in 
. 

Figure 2
Figure 3
 
FPGA High Level Structure 
Figure 4 shows the high level view of the FPGA structure. 
The input is the VPSS block which is the bus from the DSP. 
The signals are acquired with a rate of 36 kHz and then up-
sampled by a factor of 3000 to a sampling rate of 108 MHz. 
The same is done on the receiving side accordingly. The 
signals from the system block are down-sampled with a 
factor of 3000 and sent to the DSP via the VPSS block with 
a sample rate of 36 kHz. 
 
FPGA System 
The FPGA System is shown in . The modulation 
block requires phase information coming from the DSP and 
generates a complex signal with the DDS. The frequency in 
the DDS is 18 MHz that is used as an intermediate 
frequency. 

Figure 5

The channel filtering is performed by FIR-filters extracting 
the channel of 25 kHz. The pulse shaping is done by a root 
raised cosine filter with a roll-off-factor of 0.35. This is 
predefined in the TETRA standard. This filter was 
implemented as an FIR filter with 5 taps. 
In order to transfer the data to the FPGA, the fixpoint 
representation with 20 bits has to be converted to 16 bits 
due to the DAC’s  resolution. 
Further data processing is not shown in Simulink because 
the DAC is the last block for the FPGA. Nevertheless, data 

Figure 5: FPGA system 
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processing can be configured by APIs in the DSP. In 
 in the upper right corner there are the blocks that represent 

the APIs to configure the ADCs or the RF-Frontend.  

Figure 
3

 
The RF Module receives the signal at 400 MHz and 
translates it to an intermediate frequency of 30 MHz. This 
signal leaves the ADC. The mixer-block brings the signal 
down to the complex baseband by multiplying the signal 
with a sine and a cosine at a frequency of 30 MHz. The sine 
and cosine is generated with the DDS-block. After filtering 
the signal with a bandpass filter the phase has to be 
calculated. This is done in the Phase Calculation block with 
the CORDIC algorithm. It requires the inphase and 
quadrature components of a signal and calculates phase and 
magnitude. Due to the fact that the whole information is 
incorporated in the signal phase, the magnitude is dropped 
and only the phase is provided to the DSP. 
 

 
DEVELOPMENT OF THE CODE: 

 
The Code was generated automatically by using the Code 
Composer Studio for the DSP code and the System 
Generator for DSP with the ISE for the FPGA bit file We 
utilized 3,935 Slice Flip Flops that made 12% of the total 
amount and 4375 Look Up Tables that made 14% of he 
total amount, available on the FPGA. The utilization of 
DSP48 blocks was 19% of the total amount which made a 
usage of 37.  

 
CONCLUSION: 

 
We developed the Traffic Channel of the TETRA physical 
layer on Lyrtech’s SFF SDR Development Platform with 
the design flow of the Model Driven Architecture. In order 
to simplify our model, we chose representative parts of the 
standard in order to build a Computation Independent 
Model. The development of the Platform Independent 
Model was done in MatLab/Simulink. This model can serve 
as a starting point for any waveform developer to get the 
TETRA Traffic Channel on any Software Defined Radio 
platform. By developing the Platform Specific Model for 
our platform we added special interfaces and the partition 
between DSP and FPGA functionality. Due to the platform 
architecture it was not possible to implement the whole 
waveform on the DSP. The FPGA had to provide inphase 
and quadrature components, up- and down-conversion and 
filtering. Finally the development of the code was done 
automatically by the tools provided by the processor 
vendors.  
The advantage of such a design flow is time. The whole 
implementation was done in about three months. So this is a 
good way for rapid prototyping. Another advantage is the 
reusage of our models. We can implement this model on 
any other DSP with minor changes in the I/O.  
The disadvantage of this design is the insufficient 
comprehension of the Simulink blocks. We never knew 
what is really going on in the blocks, how they are 
implemented and how much performance is lost. To 
evaluate this, we are going to implement a new PSM in C 
without code generation and compare this to our TETRA 
waveform. 
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