

New FPGAs Revolutionize Digital Down Converters

Rodger Hosking VP, Pentek Inc.

rodger@pentek.com www.pentek.com

DSP

Software Defined Radio Forum Technical Conference and Exhibition

Washington, DC – October 26-30, 2008 Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

- New FPGA Technology
- FPGAs Invade Software Radio
- Traditional Digital Downconverter Architectures
- Channel Bank Digital Downconverters
- Summary & Resources

- Field Programmable Gate Arrays
 - Monolithic silicon devices with memory, CPU and logic resources
 - User programmable interconnections support custom configurations
- How Can FPGAs Outperform DSPs?
 - DSP chips have 4-8 multipliers FPGAs can have over 1000
 - DSP chips execute sequential instructions to implement algorithms
 - FPGAs execute multiplications using hardware multipliers in parallel
 - FPGA hardware architecture can be optimized for each algorithm
- How Can FPGAs Replace ASICs?
 - ASICs have dedicated hardware for specialized processing
 - FPGAs can be reconfigured to perform the same processing
 - ASICs require long design cycle and expensive tooling
 - Flexible FPGA hardware faster to design with no tooling charges

FPGAs - New Device Technology

- 550+ MHz DSP Slices and Memory Structures
- Over 1000 dedicated on-chip hardware multipliers
- On-board GHz Serial Transceivers
- Partial Reconfigurability Maintains Operation During Changes
- Switched Fabric Interface Engines
- Gigabit Ethernet media access controllers
- Over 330,000 Logic Cells
- On-chip PowerPC RISC micro-controller cores
- Memory densities approaching 20 million bits
- Reduced power with core voltages at 1 volt
- Silicon geometries to 65 nanometers
- High-density BGA and flip-chip packaging
- Over 1200 user I/O pins
- Configurable logic and I/O channel interface standards

New Xilinx Virtex 5: Four Sub-Families

- LX Devices
 - Announced May 2006
 - Maximum Logic Resources
- LXT Devices
 - Announced October 2006
 - Extension of LX family
 - Gigabit Serial Transceivers
 - Ethernet MACs
 - PCI Express Endpoint
- SXT Devices
 - Announced February 2007
 - Maximum DSP Resources
- FXT Devices
 - Announced May 2008
 - Embedded System Resources

- Footprint Compatibility
 - Among LXT, SXT, & FXT
 - One PCB Design
 - Many Applications

What's New in Virtex-5?

- Lower Power Dissipation
 - 1.0 volt core voltage with 65 nm Copper Process
- Faster Clock Speeds for Faster Execution
 - Up to 550 MHz
- Advanced Clocking Architecture

- Up to 18 Clock Generators, PLLs, Jitter Reduction Filters
- Enhanced DSP48E Engine for Improved DSP Execution
 - 18 x 25 Hardware Multipliers 550 MHz
- Faster Select I/O Technology
 - 800 MHz Single ended 1.25 GHz Differential
- Dedicated PCI Express Endpoint Engine
 - x1, x2, x4, or x8 Lane Support for Each Block
 - 3.2 GHz and 6.25 GHz Serial GTP RocketIO Physical Interfaces

FPGA Evolution Targets SDR Applications

- Each generation of FPGA adds new features
- Each new feature directly benefits software defined radio

	V-4 SX SX55	V-4 FX FX100	V-5 LX LX330	V-5 LXT LX330T	V-5 SXT SX240T	V-5 FXT FX200T
Logic Cells	55,296	94,896	331,776	331,776	239,616	196,608
Block RAM (bits)	5,760k	6,768k	10,368	11,664	18,576	16,416
Max I/O Pins	640	768	1,200	960	960	960
DSP48 Slices	512	160	192	192	1,056	384
Power PC Cores	-	2	-	-	-	2
3 GHz Serial Ports	-	20	-	24	24	-
6 GHz Serial Ports	-	-	-	-	-	24
Gbit ENET MACs	-	4	-	4	4	8
PCIe End Points	-	-	-	1	1	1

- New FPGA Technology
- FPGAs Invade Software Radio
- Traditional Digital Downconverter Architectures
- Channel Bank Digital Downconverters
- Summary & Resources

Typical Software Radio System

- RF Signals are down converted to IF frequencies
- A/D converter digitizes the IF signal
- Mixer and Local Oscillator translates IF to baseband
- Digital FIR low pass defines signal output bandwidth
- DSP performs demodulation, decoding, decryption, error correction, analysis, FFT, control, etc.

Traditional Software Radio Implementations

PENTEK

PENTEK

FPGA Software Defined Radio Module

- Virtex-5 FPGA Functions
 - Four 200 MHz 16-bit A/D Interfaces
 - SDRAM Controllers 330 MHz DDR2
 - Data Formatting & Routing
 - Timing, Gating, Triggering, & Sync

- DDC Functions
- DMA Controller
- Gigabit Serial XMC Interface
- PCI Express Protocol Engine
- PCI 2.2 Interface

Spectral Utilization for SDR Systems

-EK

Typical applications for DDCs and their required bandwidths
Communications
Radar

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

- New FPGA Technology
- FPGAs Invade Software Radio
- Traditional Digital Downconverter Architectures
- Channel Bank Digital Downconverters
- Summary & Resources

FIR Filter DDC Architecture

- Simplest Digital Down Converter Implementation
- Better for Wideband DDCs with Low Decimation
- Uses More Multipliers for High Decimation Narrow BW

Model 7153: 4 Channel Wideband DDC

4 Wideband DDC channels, each individually tunable

- Decimation range of 2 to 256, independent per channel
- Power Meters, Threshold Detectors, & Beamforming Summation Block

Model 7153: 2 Channel Multiband DDC

2 Cascaded Wideband DDC channels, each individually tunable

'EK

- Decimation range of 2 to 65,536 (decimation of each DDCs multiplies)
- Power Meters, Threshold Detectors, & Beamforming Summation Block

7153 2- or 4-Channel Multi-Band DDC PMC

Channel Bandwidth: 2.5 kHz to 80 MHz (2 Ch) or 625 kHz to 80 MHz (4 Ch)
Covers 3G and 4G communications wide bandwidths
Covers many wide-band Radar applications

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

- New FPGA Technology
- FPGAs Invade Software Radio
- Traditional Digital Downconverter Architectures
- Channel Bank Digital Downconverters
- Summary & Resources

- CIC Filters Save Multipliers
- Better for High Decimation Narrowband Channels
- Compensation Filter Corrects CIC Frequency Response
- But, CIC type DDCs still require significant resources

Achieving High Channel Count DDCs

- Channel Bank DDC Principles
 - Divide input signal bandwidth using multiple band pass filters
 - Choose the most appropriate filter for signal of interest
 - Perform fine tuning downconversion using FIR type DDC
 - Fine tuning DDC operates at much lower sample rate
 - Fine tuning DDC hardware is multiplexed across many channels
- Fundamental Problems of Channel Bank DDCs
 - Flatness across band pass filter span
 - Response "notches" or dropout between band pass filter bands
 - Restricts free tuning across input bandwidth
 - Challenge: Build flat filters with no dropout between bands !!

Proprietary overlapping filters with flatness compensation

Model 7152: 32 Channel Bank DDC

32 Channel Bank DDC channels, each individually tunable

- Decimation range of 16 to 8192, independent for each 8-channel bank
- Power Meters, Threshold Detectors, & Beamforming Summation Block

7152: 32-Channel Multi-Band DDC PMC

- Channel Bandwidth: 25 kHz to 10 MHz for Fs = 200 MHz
 - High channel count

TEK

Covers most communications bandwidths and many Radar bandwidths

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Model 7141-430: 256 Channel Bank DDC

- Channel Bank DDC with 256 Channels, each individually tunable
- Decimation range of 1024 9984, common decimation for all channels
- Targeted for VP50 FPGA and 125 MHz A/D Converters

7141-430: 256-Channel Narrow Band DDC

Channel Bandwidths: 10 kHz to 100 kHz for 125 MHz Fs

- Covers many VHF, UHF, SATCOM bandwidths with one board
- Covers 1G communications and AMP EDGE bandwidths

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Model 7151: 256 Channel Bank DDC

- Channel Bank DDC with 256 channels, each individually tunable
- Decimation range of 128 1024, independent for each 64-channel bank
- Targeted for Virtex 5 and 200 MHz A/D Converters

7151: 256-Channel Medium Band DDC PMC

Channel Bandwidths: 156 kHz to 1.25 MHz for Fs = 200 MHz

Covers all GSM channels with one board

TEK

Covers 2G and 3G CDMA2000 bandwidths

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Comparison: FPGA vs. ASIC

- GSM 2G Receiver Example
 - E-GSM has 175 Channels at 200 kHz spacing
 - Comparison
 - Prior to 2008 Pentek 7131
 - 4 Quad GC4016 ASICs per board
 - Year 2008 Pentek 7151
 - I Xilinx Virtex-5 SX95T with FPGA Core

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

175 Channels

would require

44 GC4016 or GC5016 ASICs!

Cost / Space / Power Savings over ASICs

- Example: 175 channel GSM-E software radio receiver
- Cost Per Channel \$563 11 88W • ASIC: \$563 100% • FPGA: \$69 80% Qty of Boards • ASIC: 11 60% • FPGA: 1 40% System Power 30W ASIC: 88 W \$69 20% FPGA: 30 W 0% Higher Channel **Count Systems** Cost Per **Strongly Favor** Number of Channel Power (W) **FPGA** Designs Boards

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

One Pentek 7151

11 Pentek 7131s

- Efficient 256 Channel FPGA DDC Design
 - 7151 core design requires approx 30,000 lines of VHDL code
 - Entire core fits inside one SX95T device
 - Traditional narrow band DCC based on Xilinx CIC and FIR structures requires ten SX95T devices

Pentek 7151 Architecture

Xilinx CIC and FIR Architecture

Overview of New Pentek DDC IP Cores

Presentation Topics

- Military Electronic System Requirements
- New FPGA Technology
- Traditional Digital Downconverter Architectures
- Channel Bank Digital Downconverters
- Summary & Resources

Summary

- Traditional Filter DDCs
 - Excellent for Wideband DDCs
 - Simple FPGA design
 - Consumes many resources for higher decimations
 - Not attractive for high channel densities
- CIC Filter DDCs
 - Saves hardware multipliers
 - Popular in ASIC devices
 - Not attractive for high channel densities
- Channel Bank DDCs
 - Economical for High Channel Count DDCs
 - Suitable for medium to high decimations
 - Extremely challenging channel bank filter design
 - High complexity FPGA design

- FPGA Technology for Software Radio
 - Pentek (DSP, Software Radio): <u>www.pentek.com</u>
 - Pentek (FPGA Resources): <u>www.pentek.com/gateflow</u>
 - Xilinx (FPGAs, Fabric IP Cores, Gigabit I/O): www.xilinx.com
 - Altera (FPGAs, Fabric IP Cores, Gigabit I/O: <u>www.altera.com</u>

