
Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

A PRACTICAL VIEW ON SDR BASEBAND PROCESSING PORTABILITY

T. Kempf, E. M. Witte, V. Ramakrishnan, G. Ascheid

Institute for Integrated Signal Processing Systems,

RWTH Aachen University, Germany

kempf@iss.rwth-aachen.de

M. Adrat, M. Antweiler

Research Establishment for Applied Science (FGAN),

Dept. FKIE/KOM, Wachtberg, Germany,

adrat@fgan.de

ABSTRACT

Software Defined Radios (SDRs) are a promising approach

to efficiently use the resources of a wireless communication

platform for multi-standard systems. Contrary to this advan-

tage, the SDR concept imposes new and huge design chal-

lenges for software and hardware designers. One key issue is

the trade-off between energy efficiency, architecture effi-

ciency, flexibility as well as portability. In this paper key

aspects of the SDR design space are investigated: The selec-

tion of processing elements (e.g. GPPs or DSPs) and the

selection of software implementation strategies (e.g. C or

Assembly). Measurements and analysis support these trade-

off discussions along with the identification of key issues for

portable and efficient SDR implementations.

1. INTRODUCTION

The concept of Software Defined Radio addresses key issues

for future multi-standard systems, among them the realiza-

tion of multiple standards on a single platform and the ease

of porting a given waveform to multiple SDR systems. Since

portability of a waveform can not be defined by a boolean

term, the porting effort determines the granularity of port-

ability. Key requirement for future SDRs is to minimize this

effort by utilizing e.g. portable C-code implementations.

However, incorporation of such flexibility implies overhead

costs, e.g. in processing time and energy consumption. Addi-

tionally, the performance requirements of wireless commu-

nication, in terms of latencies and throughput, put a particu-

lar pressure on the implementation of physical layer process-

ing. Due to these conflicting demands, SDR designers have

to take various trade-off decisions.

Key aspects of implementation are portability and effi-

ciency, which need to be quantified for trade-off decisions.

Possible definitions for efficiency are well known, such as

area and energy efficiency. In [1] a definition for portability

has been proposed in compliance to the IEEE dictionary [2].

Portability is determined by the porting effort, which needs

to be invested to implement a given waveform on a certain

SDR hardware platform. Such effort can be specified by the

person months spent for implementation. Three main aspects

of efficiency are the algorithmic performance, area effi-

ciency and energy efficiency. Focus of this paper is the

trade-off decisions between portability and energy effi-

ciency. Figure 1 depicts this trade-off in a qualitative fash-

ion, which will be discussed in detail within Section II.

Implementing a waveform on an SDR platform requires the

following steps: First, the waveform has to be partitioned

into a task graph, which then can be mapped onto the SDR

hardware platform. Recently, an Electronic System Level

(ESL) based design concept and workbench for such a seam-

less SDR design flow starting from a Waveform Description

Language (WDL) [3][4] down to the SW/HW implementa-

tion has been proposed in [5]. The workbench allows a

seamless design flow from specification down to the final

prototype implementation along with an iterative exploration

of the design space. However, soft- and hardware designers

have to incorporate their expert knowledge to find best pos-

sible solutions.

In this paper an in-depth analysis of different key aspects

influencing portability and efficiency will be performed. The

results and investigations can support trade-off design deci-

sions to increase portability and efficiency. Since one main

objective of SDRs is the execution of multiple waveforms

on one single platform, the analysis does not focus on a par-

ticular waveform implementation. It is rather based on ge-

neric mathematical kernels, such as a Fast Fourier Trans-

formation (FFT) and FIR filter.

After the subsequent discussion of portability aspects the

case study will be introduced. Finally, optimization effects

and suggestions to increase portability along with efficiency

will be deduced from the determined effects.

Fig. 1. Qualitatively visualized Portability vs. Efficiency Trade-Off
 Source: E.M. Witte, et. al. RWTH Aachen University [1])

This research project was performed under contract with the Technical

Center for Information Technology and Electronics (WTD-81), Germany.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

2. PORTABILITY ASPECTS

In the domain of baseband processing real-time constraints

put a particular pressure on the system development. There-

fore, designers have to carefully investigate the complete

design space, which is based on the three pillars:

• Hardware architecture

• Software implementation

• Algorithm implementation

One central hardware architecture element of future SDRs

are processor cores, since they allow execution of different

standards on one platform. While selecting a processor core,

designers have to consider that an energy efficiency range of

5 to 6 orders and a performance range of 3 to 4 orders of

magnitude exists between a General Purpose Processor

(GPP) and physically optimized ASIC [6] (Figure 1). Focus-

ing on programmable processors the energy efficiency can

vary by approximately 2 to 4 orders of magnitude (Software

Part in Figure 1). From the hardware perspective this part of

the design space has been dominated by GPPs and Digital

Signal Processors (DSPs). In recent past a new class of

processors called Application Specific Instruction Set Proc-

essors (ASIPs) has been introduced to the markets. Promis-

ing developments of SDR specific processing elements have

been introduced in [7], [8], [9] and [10]. Preliminary results

of such architectures highlight a significant increase of en-

ergy efficiency and increased performance. Since these ar-

chitectures are not yet available to customers, those are not

investigated in this case study.

A second key aspect the software implementation for em-

bedded devices is dominated by the C-programming lan-

guage. Apart from this, Assembly programming can be

found in the domain of wireless communication. It is used in

performance critical parts mostly found on the physical

layer, where most of the computational complexity occurs.

The qualitative analysis of the software implementation in

Figure 1 illustrates the trade-off between portability and

efficiency. Along with increasing efficiency the porting ef-

fort rises, since utilization of special features of the underly-

ing platform requires optimizations. Thereby, a design point

on the curve moves down-and-right as depicted. Adding

flexibility or removing optimizations results in a reduced

porting effort, moving the design point to the upper left side.

At certain points optimization limits are reached, where the

implementation strategy has to be changed.

Algorithmic implementation decisions, the third key aspect,

have to consider e.g. quantization, filter length, iteration

counts and/or topology. Such modifications can have sig-

nificant impact on the algorithmic and computational per-

formance and efficiency. Two different kinds of algorithmic

optimizations exist. The first ones do not modify the func-

tionality, whereas the second ones modify the functionality

of the algorithm, like reducing the algorithmic complexity

by e.g. shortening the filter length. However both types of

optimizations have to consider the underlying hardware and

given constraints. For example, a Fast Fourier Transforma-

tion (FFT) can be implemented in radix-2 or different other

implementations, which should optimally match the underly-

ing hardware features.

The following case study investigates these main aspects.

3. CASE STUDY

A. Scenario

Focusing on the software part of the design space, the fol-

lowing case study investigates the key issues: (i) hardware

architectures, in this case only processor cores, (ii) wave-

form implementation options, here only software implemen-

tations are considered and (iii) algorithmic implementations.

Fundamental algorithmic kernels have been measured on

which the trade-offs are discussed in the following:

• Vector operations, e.g. vector addition, product

• Matrix operations, e.g. transposition, multiplication

• Filter operations, e.g. FIR and adaptive LMS filtering

• Correlation operations, e.g. autocorrelation

• FFT operations, e.g. FFT and IFFT

All investigated algorithms are based on TI’s DSP library

[13]. Table I depicts the investigated implementation op-

tions. The examined software implementations are C-code,

optimized C-code and Assembly code implementations. Re-

spectively, different hardware options have been explored:

the ARM720T and ARM926EJ-S from the GPP domain and

TI’s C55x and C64x from the DSP domain.

For comparison the measured execution cycles of each im-

plementation option have been normalized by the processors

clock periods to the overall execution time ∆texec. The corre-

sponding implementation efficiency can be computed as the

inverse of the energy consumption per task execution given

by:

Since the power demands of the different processor cores

vary and such cores can typically be operated at different

Core C-code opt. C-code Assembly

ARM720T X -- --

ARM926EJ-S X -- --

C55x X -- X

C64x X X X

TABLE I: Investigated software implementations

Core Clock frequency Avg. power demand

ARM720T 100 MHz 20 mW

ARM926EJ-S 238 MHz 114 mW

C55x 200 MHz 120 mW

C64x 1000 MHz 860 mW

TABLE II: Operation points of the measured processors

execution per task energy

1
)implarch,algo,(=η

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

clock frequencies, a suitable operation point has been se-

lected for each of the cores according to manufacture speci-

fications based on a 130nm technology [14][15] (Table II).

External memories and peripherals are necessary for all

cores, thus their effects are not considered in the later dis-

cussions. The focus is set to processor cores including local

memories, caches etc.

B. Measurements

Table III illustrates the measured execution times and effi-

ciencies for each of the investigated algorithmic kernels

normalized to the ARM720T execution. The table is struc-

tured accordingly to a typical design process starting at a C-

code implementation
1
. Here, the three C-code implementa-

tions on the ARM926EJ-S, the C55x and the C64x are com-

pared with the ARM720T. Some of the algorithms have

been measured exemplarily with optimized C-code. The last

four columns illustrate the execution time speed-up and effi-

ciency gain for hand optimized Assembly codes executed on

the C55x and C64x DSPs.

• C-code implementations: Executing a portable C-code

implementation of the algorithmic kernels, the measure-

ments show the expected significant execution time

speed-up compared to the ARM720T. The ARM926EJ-S

achieves a speed-up factor of 2.61 to 4.12, for the differ-

ent kernels. The C55x achieves a range of 3.54 up to

26.13, whereas the determined speed-up of the C64x is

in the range of 39.50 up to 198.15. Since all cores have a

significant higher power demand than the ARM720T the

efficiency does not show such improvements. For the

ARM926EJ-S even an efficiency degradation of 1/0.46

to 1/0.72 has been identified, whereas the efficiency gain

achieved on the DSPs is in the range of 0.59 to 4.61.

• optimized C-code implementations: Adding optimiza-

tions in terms of compiler directives exemplary to the C-

code of the C64x, the compiler of the complex 8-slot

1
 A GNU ARM GCC compiler v4.0.2 and the compiler delivered within

TIs Code Composer Studio v3.3 for the DSPs have been utilized.

VLIW architecture is able to generate code with an im-

proved quality. For example, providing information on

pointer alignments and ambiguity are well known tech-

niques to allow more aggressive optimizations. The re-

sulting speed-up compared to the un-optimized imple-

mentation has been determined by a factor of approxi-

mately 2. It should be noted that this does not apply for

all kernels, whereas for the investigated ones a gain of up

to 2.9 has been measured. The additional semantic in-

formation passed to the compiler is basically compiler

independent. Since no standard exists for such directives

most compilers implement those differently. Thus they

can be considered as compiler dependent.

• Assembly implementations: The execution time speed-

up and efficiency gain by applying processor specific

Assembly code is significant. A speed-up factor in the

range of 11.15 to 60.18 has been determined for the

C55x as well as of 177.00 to 311.90 for the C64x com-

pared to the respective C-code implementation. The de-

termined efficiency gain has been measured to 1.86 to

10.03 for the C55x and of 4.12 to 16.11 respectively for

the C64x. Compared to the C-code implementation the

hand-optimized Assembly achieves an efficiency and

execution time gain of a factor of 1.0 to 8.8 for the C55x

and 1.1 to 15.0 for the C64x.

The following key effects observed by the measured algo-

rithmic kernels are the following: (i) Porting the C-code im-

plementation from the ARM720T to another processor core,

whether the ARM926EJ-S GPP or the DSPs, achieves the

expected execution time ∆texec speed-up. For the

ARM926EJ-S similar results can be found in literature [16].

(ii) For C-code on the DSPs the efficiency η gain is rather

low. For the ARM926EJ-S even a degradation has been ob-

served due to an approximately 5 times higher power de-

mand. (iii) Application of compiler directives to the C-code

implementation supports the compiler to generate more effi-

cient code. In worst case, no performance gain has been

achieved, whereas in best case a factor of 2.91 has been de-

termined. (iv) The typical assumption that the gain of As-

sembly programming can be neglected can not be supported.

TABLE III: Execution time speed-ups and efficiency gains normalized to the C-code implementation on the ARM720T processor (cycle accurate simula-
tion-models: ARM720T and ARM926EJ-S CoWare CCM Model from Modelling Library [11], TI Code Composer Studio v3.3: C55x, C64x [12])

 1

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

The achievable performance gain with architecture specific

Assembly programming has been determined to be in the

range of one order of magnitude.

The previous discussion has examined the measurements

more on a one-dimensional basis, either the execution time

∆texec or the implementation efficiency η. Since those are

dependent on each other and the differences between the

implementation options, e.g. C-code versus Assembly code,

are significant, the tradeoffs shall be analyzed more in detail.

This analysis will be performed in the subsequent section on

one exemplary kernel, namely the Fast Fourier Transforma-

tion (FFT).

C. Trade-off Discussion

The following discussion is based on the measured algo-

rithmic FFT kernel (64-point FFT as radix-2 and mixed-

radix implementation with 16 bit precision). Figure 2 depicts

the determined execution times ∆texec plotted over the energy

consumption per task execution E. Since the implementation

efficiency is the inverse of the energy consumption the x-

axis can be replaced by the implementation efficiency η.

In hardware design the Area-Timing-Energy Product (ATE

Product) is typically taken as cost function for optimizations.

Since the focus of this discussion is on energy efficiency and

execution time the simplified Energy-Time Product (ET

Product) will be considered here:

A constant ET Product defines a pareto curve [17]. In deci-

mal scale such curves are defined by a hyperbola, which

results in double-logarithm scale in a line with slope −1.

Along such lines trade-off decisions can be made by trading

one cost parameter against the other. Contrary to these trade-

offs, optimizations move a design point orthogonal to such a

line in the direction of the origin. In Figure 2 the pareto

curves C1 to C6 are sketched. For baseband processing tight

constraints for latency and energy consumption exist. Such

constraints can be illustrated as vertical and horizontal lines

within the figure. A vertical line illustrates a maximum al-

lowed latency Tmax, whereas a horizontal line determines the

maximum allowed energy consumption Emax. Please note

that in wireless communication such constraints are much

stricter then the highlighted ones in Figure 2. Thus develop-

ers have to apply architecture specific optimizations to

achieve those constraints and are forced to make trade-offs.
Three identified key observations will be introduced during

the further discussion, which are:

• HW optimization gain: The gain which can be

achieved by changing from on processor core to another

one including necessary individual optimizations to op-

timally utilize the underlying hardware.

• SW implementation loss: The loss which depends on

not utilizing the provided features of the underlying

processor core, e.g. utilizing C-code where the compiler

is unable to generate optimal or near optimal machine

code.

• Algorithmic implementation gain: The gain which re-

sults by changing the implementation characteristic in

an algorithmic manner, e.g. a radix-2 versus a mixed-

radix FFT implementation.

The discussion starts with the investigation of the measured

results depicted in Figure 2 for the C-code executions of the

FFT kernel (C-code region). Since orthogonal distances of

projected pareto curves highlight optimizations of the ET

Product, the measure G(Cx, Cy) defines the length of the

orthogonal distance of pareto curve Cx and Cy. Following

conclusions of this measure can be derived:

In comparison with the C55x and ARM926EJ-S to the

ARM720T a minor speed-up as well as a minor optimiza-

tion gain of G(C2,C1)=2.05 of the ET-Product has been

determined. Considering the C-code executed on the C64x a

major execution time decrease has been measured, whereas

the consumed energy remains constant. The resulting ET-

Product gain is G(C3,C1)=39.67.

Crossing the C-code optimization limit by writing hand

optimized Assembly DSP-code has a huge impact on energy

consumption, respectively efficiency, and execution time

(ASM code region). The pareto curves C4 of the C55x as

well as C5 of the C64x highlight this significant optimiza-

tion with respect to the curves C1 to C3. Regarding the pre-

vious definition of the HW implementation gain with re-

spect to the ARM720T, the ARM926EJ-S can achieve a

C64x C-code C64x Assembly (radix-2) C64x Assembly (mixed-radix)

HW impl. gain SW impl. loss Algorithmic gain

E
x
ec

u
ti

o
n

T
im

e
(i

n
s

p
er

 t
as

k
)

µ

10
3

10
2

10
1

10
0

10
-1

Energy Consumption per Task Execution (in mWs)

10
-2

10
-4 10

-3

Tmax

Emax
const. ET

Threshold Const. ET Product (Pareto Curve)

Implementation Efficiency (in 1/mWs)
10

3
10

4

10
2

C-code

ASM

algo. opt.
ASM

C1C2

C3

C4

C5

C6

Cx

ARM720T C-code ARM926EJS C-code C55x C-code C55x Assembly

Fig. 2. FFT results (64 points): execution time versus efficiency

η

t
ET

∆
=

losstion implementa 0

off- trade0

gaintion implementa 1),(

<

=

>=
Cx

Cy
CyCxG

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

minor optimization gain (G(C2,C1)). For the DSPs the HW

implementation gain is approximately one order of magni-

tude for execution time and consumed energy. A resulting

large ET Product decrease is determined by

G(C4,C1)=163.43 (C55x) as well as the difference between

G(C5,C1)= 553.51 (C64x).

The SW implementation loss can be characterized by the

difference between the C-code and the Assembly code im-

plementations of the DSPs. The observed SW implementa-

tion loss for the C55x is determined by G(C2,C4)=0.01,

whereas for the C64x it is G(C3, C5)=0.07. This huge SW

implementation loss is caused by well known issues for

DSP software development [18][19]. Examples for such

issues are missing language support for semantic informa-

tion and missing memory architecture support. Develop-

ments in the recent past have addressed these issues by lan-

guage extensions, like DSP-C [20] and Embedded C [21],

which are not yet supported by many compilers.

The Algorithmic implementation gain gets particularly

visible on the C64x 8-slot VLIW processor. The radix-2

implementation is not suited to fill all slots of the core. By

modifying the implementation on the algorithmic level from

a radix-2 to a mixed-radix implementation a 4 times speed-

up along with a significant optimization of the ET Product

of G(C6,C5)=16.21

can be achieved. This huge impact of a

proper algorithmic implementation for the respective proc-

essor highlights the demand for an algorithmic reconsidera-

tion at implementation time. Therefore, designers can not

exclusively focus on optimizing the selected implementa-

tion. Instead developers have to consider at the implementa-

tion step which algorithmic implementation fits best to the

underlying hardware. Unfortunately this reimplementation

can have significant porting effort.

Till this point only trade-offs and optimizations regarding

execution time and efficiency have been examined. The

porting effort, respectively portability, defines a third di-

mension. Considering portability the usage of C-code re-

quires merely a re-compilation. Thus the porting effort for

these implementations is rather low. Considering the SW

implementation loss designers have to individually evaluate

whether to apply cost and time intensive optimization or not.

Unfortunately, this effort can not be measured that simply in

numbers since it depends on several factors. For example, an

experienced developer has to invest less effort than a trainee

in code development. To give at least an impression of how

much time has to be invested into such optimizations in [22]

the development of an optimized FIR filter Assembly code

on the ARM Cortex-R4 processor core has been evaluated.

This development has taken approximately 20 hours. Thus

designers have to consider at each design step whether to

invest such cost and time intensive optimizations or not.

Summarizing the observations developers are forced to care-

fully inspect their taken design decisions. For the software

part both two extremes, portable C-code and hardware de-

pendent Assembly code, have pros and cons. C-code pro-

vides high portability. Unfortunately, the measured SW im-

plementation loss has been measured to be one order of

magnitude for execution time and energy efficiency. Includ-

ing the algorithmic optimizations in total one order of mag-

nitude in efficiency and two orders in performance have

been observed for the FFT kernel. On the one hand this

achievable gain is huge and can not be neglected. On the

other hand the high time and cost investments for optimiza-

tions forces developers to decide carefully.

In the subsequent section hints to optimize efficiency and

portability will be given.

4. DISCUSSION OF IMPLEMENTATION ASPECTS

Within the case study some points in the SDR design space

have been investigated, which are determined by the selec-

tion of the underlying hardware architecture, a suitable soft-

ware implementation scheme and the algorithmic implemen-

tation. Key issue for SDR developers is to achieve the given

constraints of a waveform along with the contradicting re-

quirements of portability and efficiency. Figure 3 depicts the

discussed trade-off decisions by projecting the effects of the

following optimizations, starting at C-programming level.

For the sake of completeness the improvements by Coding

Style are sketched. This comprises typical optimizations

such as declaration of constant values, usage of inline func-

tions etc., which do not affect the portability.

1) Adding Compiler Directives in form of pragmas, pro-

vides the compiler with additional information, e.g.

about memory disambiguity, memory banks, etc. The

semantic information, passed by such directives, is ba-

sically compiler-independent. However, no standard

exists thus most compilers implement those differently.

Therefore, effort has to be invested while porting the

code to another platform. Due to this, the projected

gain is a falling straight line in Figure 3.

2) Moving from processor independent optimization to

architecture dependent optimization, first Intrinsics

and Inline Assembly will be applied. This way of util-

izing specialized assembly instructions within the C-

code, allows limited efficiency gain since interfacing to

C-code adds complexity and worsens compiler optimi-

zations. The projected effect of such optimization in-

creases the efficiency at the cost of portability.

3) Assembly reimplementation of an algorithm can con-

sider architecture specific features and will generate

the most efficient code at a high porting effort. There-

fore, the projected effect is illustrated as shown in the

curves of Figure 1 and 3 as an optimization limit.

Please note that Assembly programming typically is an

iterative refinement, starting at C-code [23].

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

4) A suitable trade-off between Assembly programming

and generic C programming is the utilization of stan-

dardized libraries. Such libraries are available for

some processors. However, those are not standardized

and hardly suited for heterogeneous SDR platforms.

From the investigated optimizations only libraries provide

sufficient portability along with implementation efficiency.

Additionally the high porting effort will force developers to

switch to more suited development strategies. Broad accep-

tance and application of such libraries can only be achieved,

if those libraries are standardized in functionality and Appli-

cation Programming Interfaces (APIs). With regard to future

standards such libraries will gain more importance. There-

fore, the standardization of libraries or even a Waveform

Description Language for future SDR development would

give great benefit. Unfortunately, this vision can not be

achieved in short term; however, we at least believe that the

impact on SDR software development would be huge. Addi-

tionally, this would significantly increase the potential and

acceptance of SDRs.

5. CONCLUSION AND OUTLOOK

SDR development comprises many huge challenges for de-

velopers. Two contradicting key issues for SDR design are

the portability and efficiency. In this paper a case study has

been presented, which highlights this issue. Three effects

have been covered: HW implementation gain, SW implemen-

tation loss and Algorithmic implementation gain. Since the

SW implementation loss can be significant, developers have

to consider potential options to increase efficiency along

with portability. The identified option is the use of standard-

ized libraries. Such standardized libraries can be in future

the foundation for Waveform Description Languages

(WDLs). Unfortunately, none of the existing WDL ap-

proaches is yet mature enough to be used in the field today.

In our future work we will concentrate on this research area.

6. ACKNOWLEDGMENT

The authors would like to thank J. Holzer, C. Hatzig, S.

Hartmann and H. Siegmar of the Technical Center for In-

formation Technology and Electronics (WTD-81) for inspir-

ing discussions.

7. REFERENCES

[1] E.M. Witte, et al., “SDR Baseband Processing Portability: A Case

Study,” in 5th Karlsruhe Workshop on Software Radios (WSR’08),
(Karlsruhe, Germany), March 2008.

[2] “IEEE standard computer dictionary. A compilation of IEEE standard
computer glossaries” IEEE Std 610.12-1990, Dec. 1990.

[3] E.D.Willink, “Waveform Description Language: Moving from Im-
plementation to Specification,” vol. 1, Oct. 2001.

[4] M. Gudaitis and R. Hinman, “Practical Considerations for a Wave-
form Development Environment,” IEEE Military Communications
Conference (MILCOM 2001), vol. 1, October 2001.

[5] T. Kempf, et al., “A Workbench for Waveform Description based
SDR Implementation,” in Software Defined Radio Technical Confer-
ence (SDR’07), (Denver, USA), November 2007.

[6] H. Blume, et al., “Model-based exploration of the design space for
heterogeneous systems on chip,” J. VLSI Signal Process. Syst., vol.
40, no. 1, pp. 19-34, 2005.

[7] Y. Lin, et al., “SODA: A High-Performance DSP Architecture for
Software-Defined Radio,” Micro, IEEE, vol. 27, no. 1, Jan.-Feb.
2007.

[8] K. van Berkel, et al., “Vector processing as an enabler for software-
defined radio in handheld devices,” EURASIP J. Appl. Signal Proc-
ess., vol. 2005, no. 1, pp. 2613-2625, 2005.

[9] U. Ramacher, “Software-defined radio prospects for multistandard
mobile phones,” Computer, vol. 40, no. 10, 2007.

[10] T. Vogt, N. Wehn, “A Reconfigurable Application Specific Instruc-
tion Set Processor for Convolutional and Turbo Decoding in a SDR
Environment,” in Design, Automation & Test in Europe 2008
(DATE’08), (Munich, Germany), March 2008.

[11] CoWare Inc., “CoWare Modeling IP Library,”
http://www.coware.com/products/modellibrary.php

[12] Texas Instruments, “Code Composer Studio™ IDE,”
http://www.ti.com/.

[13] Texas Instruments, “TMS320C64x DSP Library Programmer’s Ref-
erence (Rev. B),” October 2003.

[14] ARM Ltd. http://www.arm.com/.
[15] Texas Instruments, “TMS320C6455/C6454 Power Consumption

Summary,” October 2007.
[16] ARM Ltd., “Performance of the ARM9TDMI™ and ARM9E-S™

cores compared to the ARM7TDMI™core,”
http://www.arm.com/pdfs/comparison-arm7-arm9-v1.pdf.

[17] P. Yang, et al., “Energy-aware runtime scheduling for embedded-
multiprocessor Socs,” IEEE Design and Test of Computers, vol. 18,
no. 5, pp. 46-58, 2001.

[18] K. Kennedy and J. R. Allen, Optimizing compilers for modern archi-
tectures: a dependence-based approach. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2002.

[19] S. S. Muchnick, Advanced Compiler Design & Implementation. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997.

[20] DSP-C Website, http://www.dsp-c.org/
[21] ISO/IEC Working Group JTC1/SC22/WG14, “Programming lan-

guages C Extensions to support embedded processors,”
http://www.open-std.org/

[22] BDTI Inc., “Evaluating the DSP Capabilities of the Cortex-R4,”
InsideDSP.

[23] Alan Anderson, “Programming and optimizing C code, part 1,” DSP
DesignLine, http://www.dspdesignline.com/197006981.

Fig. 3. Projected effects of optimization levels on the SW part

	Home
	Papers By Alpha
	Papers By Session

