
Algorithm-Architecture Co-Design for Energy
Efficient Software Defined Radio Baseband

Min Li†‡, David Novo†‡, Bruno Bougard†, Claude Desset†, Antoine Dejonghe†,
Liesbet Van Der Perre†, Francky Catthoor†‡

† Nomadic Embedded System Division, IMEC, Leuven, Belgium
‡ ESAT, K.U.Leuven, Leuven, Belgium

Email: {limin, novo, bougardb, desset, dejonghe, vdperre, catthoor}@imec.be

Abstract—The diversity and evolution of wireless communi-
cation standards are fast pacing. This requires a wide variety
of baseband implementations within a short time-to-market.
Besides, the deep sub-micron technology significantly increases
design complexity and associated cost. These yield an increas-
ing need for reconfigurable/programmable baseband solutions.
Implementing all baseband functionalities on programmable
architectures, as foreseen in the tier-2 SDR, will become a must.
However, the energy efficiency of SDR baseband platforms is
unavoidably worse than ASICs, this brings a challenging gap
to bridge. The gap is broadening with the exploding baseband
complexity. We advocate a system level approach to bridge the
gap with a holistic view. First of all, we explicitly introduce
architecture and compiler friendliness from the very beginning
of the design flow, this enables highly efficient mapping on
the targeted architecture. Furthermore, we fully leverage the
advantages (programmability) of SDR platforms to compensate
its disadvantages (energy efficiency). Highly flexible baseband
implementations are developed to exploit the abundant dynamics
in the environment and the user requirement to reduce energy
consumption.

I. INTRODUCTION

Nowadays, mobile devices are integrating an increasing va-
riety of wireless communication standards, and each standard
demands a multitude of different modes. Such a tremendous
diversity, combined with the increasing development cost of
deep sub-micron silicon, requires highly flexible baseband
implementations. The Tier-2 SDR (Software Defined Radio)
paradigm, where the entire baseband runs on programmable
architectures, is attractive to obtain the desired flexibility.

Parallel ISP (Instruction Set Processor) based flexible base-
band platforms have attracted extensive interest in recent
years. However, such implementations typically come with a
lower efficiency than traditional ASICs (Application Specific
Integrated Circuits) baseband implementations. This efficiency
gap remains to be bridged in order to make SDR more
pervasive. Moreover, as the improvement of communication
performances comes at the expense of significantly increased
complexity, the gap is becoming even more challenging in the
emerging high rate communication standards. Most SDR re-
searches focus on reducing the gap by means of more efficient
architectures. Several ASIPs (Application Specific Instruc-
tion Processors) and multi-processor architectures have been
proposed with power consumption compatible with mobile
devices. However, these are still far from being able to tackle

the latest MIMO-OFDM (Multiple Input Multiple Output - Or-
thogonal Frequency Division Multiplexing) systems. Clearly,
further disruptive innovations are still desired. Specifically,
besides the extensive effort on processor level, more research
is demanded at system level. Particularly, architecture oriented
optimizations of the baseband itself remain to be exploited to
achieve further efficiency improvement.

Our contribution is a system level design methodology
for the implementation of advanced baseband processing on
parallel ISP. The methodology explicitly takes into account
the characteristics of parallel ISP. In most existing works, the
implemented baseband is very similar to those in traditional
baseband ASICs. Hence, due to the lower energy efficiency
(GOPS/mW) of parallel ISP, SDR baseband implementations
usually consume 2x to 10x more energy than equivalent
ASICs. On the contrary, in our work the baseband explicitly
targets parallel ISP. We design and optimize the baseband
processing based on the thorough analysis of the constraints
and opportunities of the new underlying architectures.

First of all, the baseband is designed to be compatible with
the constraints imposed by parallel ISP and associated compil-
ers. This enables maximum utilizations of parallel resources in
the architecture. More importantly, we leverage the advantages
of programmability as much as possible to compensate the
disadvantages of ISP. Specifically, because ISP takes the
programmability as a key design criterion, the multiplexing
of data path and memory is much easier than ASIC. Hence,
with ISP, the implementation cost of structure complexity at
(macro-block level) is mostly increased code size overhead.
The flexibility is an obvious advantage that we should exploit.
We enable highly agile baseband implementations that can
adapt to the dynamics in wireless communications to reduce
energy consumption.

The remaining part of this paper consists of the follow-
ing sections: section II presents the aspects of architec-
ture/compiler friendliness and case studies; section III intro-
duces how to enable agile baseband and case studies; section
IV concludes the paper.

II. INTRODUCING ARCHITECTURE/COMPILER
FRIENDLINESS

ASIC implementations customize architectures to algo-
rithms. Contrarily, in SDR, the parallel ISP is often given

with many specific constraints. In addition, the associated
compiler imposes many constraints as well. For instance,
SIMD (Single Instruction Multiple Data), vector and VLIW
(Very Long Instruction Word) architectures all have very
specific requirements on the data-flow structures. However,
many important emerging baseband processing algorithms are
inherently incompatible. If these problems are not eliminated
at high level, low level compiler transformations hardly help.
This results in inefficient resource utilizations on parallel ISP
and hence low energy efficiency. We propose to introduce ar-
chitecture/compiler friendliness from the very beginning of the
design flow. Specifically, we combine mathematic/algorithms
transformations and compiler transformations to derive data
flow and control flow structures, which can easily bring
efficient mappings on architectures. Note that in our work the
aforementioned transformations may be I/O approximate.

We have demonstrated this on many key baseband algorithm
blocks in MIMO-OFDM systems. For instance, a partial FFT
based OFDMA modualtor/demodulator on ILP architectures,
a near-ML MIMO detector on ILP/DLP architectures, a soft
MIMO detector on ILP/DLP architectures, a sparse-matrix
multiplication based OFDM channel estimator implementation
on ILP architectures. In the following we will briefly introduce
three of these case studies.

A. Near-ML MIMO Detector on ILP/DLP Architecture

When applying MIMO transmissions, the remarkable
throughput improvement comes at the cost of significantly
increased receiver complexity. With SDM (Spatial Division
Multiplexing) transmissions, the major complexity increment
is in the MIMO detector. Among existing MIMO detectors,
the ML (Maximum-Likelihood) and near-ML detectors are
superior to traditional linear detectors. In recent years, the
algorithmic optimizations and implementations of ML/nearl-
ML detector have attracted lots of interest. Almost all of
the implementations are delivered in ASIC or FPGA (Field
Programmable Gate Array), but not on programmable archi-
tectures.

Our contribution is to co-optimize the algorithm and imple-
mentation for scalable near-ML MIMO detector on parallel
programmable baseband architectures, such as the DSPs (Dig-
ital Signal Processors) with VLIW, SIMD or vector processing
features.

Unfortunately, none of the existing near-ML detectors fit
ILP and DLP architectures well. Sphere decoders and most of
its variants [1] are essentially sequential and non-deterministic,
so that the the parallelization is difficult. On the other hand,
although K-Best, QRD-M and their variants have been realized
in several ASIC-style implementations, they have a funda-
mental problems when mapping on ILP and DLP architec-
tures: The spanning-sorting-deleting process incurs irregular
dataflow, non-deterministic control flow, extensive shuffling
and extensive memory-rearrangement. These characteristics
will result in very low resource-utilizations on ILP and DLP
architectures. If these problems are not eliminated at high-
level, low-level compiler optimizations can hardly solve them.

In order to bridge the algorithm/architecture gap, we bring-
in explicit architecture-friendliness from the very beginning of
the design flow. In early steps, high-level algorithmic transfor-
mations make the dataflow structure fit architectures very well.
We enable abundant vector parallelism in our proposed SSFE
(Selective Spanning with Fast Enumeration) detector; memory
rearrangement, shuffling and non-deterministic dynamism are
all excluded. Comparing to the ASIC-minded K-Best, the
SSFE not only significantly reduces the algorithmic complex-
ity, but also results in a completely regular and deterministic
dataflow structure. Hence, it can be easily parallelized and
efficiently mapped onto not only ILP but also DLP (SIMD,
vector) architectures. Furthermore, we apply comprehensive
pre-compiler transformations with the help of application-level
information. Control-flow transformations, loop transforma-
tions, strength reductions, algebraic simplifications, common-
expression reductions, variable-expansions are performed to
optimize not only computation-operations but also address-
generations and memory-accesses. Details of this work can be
found in [2].

B. Partial FFT on ILP Architecture

The FFT (Fast Fourier Transform) is undoubtedly one of
the most important and fundamental techniques in the signal
processing world. Among the countless hardware and software
implementations, the vast majority optimize their results for
the case when all input and output bins are needed. However,
for many real life applications this is not the case. For instance,
the multi-resolution partial spectrum analysis; the modula-
tion and demodulation in the emerging OFDMA (Orthogonal
Frequency Division Multiplexing/Multiple Access) systems;
FFT based interpolations; computation of a high-resolution
eigenvalue spectrum in array signal processing. These partial
input/output cases are crucial for future wireless communica-
tion systems [3], such as IEEE802.11x, IEEE802.16 and 3GPP
LTE.

As we do not want to pay the price of a full FFT for
only part of the input/output bins, the redundant data flow
in the aforementioned cases can be pruned without changing
I/O behaviors. This is called a PFFT (Partial FFT). In many
applications the percentage of required input/output bins is
very small. For instance, in the 3GPP LTE (an important
candidate for air interfaces beyond 3.5G), if the OFMDA
symbol size is 1024 (corresponding to 10MHz bandwidth
mode) and 12 users equally share the available 600 sub-
carriers, only 50 of the 1024 FFT output bins (4.88%) are
required for each active user [4]. Hence, the computations,
memory accesses and shuffling operations saved by the PFFT
are very attractive in practical situations.

Although research on the PFFT can be traced back for
more than 30 years [5] and the theoretical aspects of the
PFFT have been thoroughly studied, there were rarely PFFT
implementation breakthroughs. We find very few papers about
implementations of PFFT in real life systems. The most
important obstacle is that the full regularity in a FFT is
destroyed in a PFFT. Hence, efficient implementations on

1

2

3

4

1

2

3

4

Energy
Efficiency

Quality

1

2

3

4

1

2

3

4

Required
Quality

Fig. 1. The dynamics in the user requirement and the environment

parallel architectures become very difficult. In addition, a size-
N PFFT has 2N possibilities regarding the input or output
patterns. A case-by-case optimization approach is not feasi-
ble. Clearly, delivering both highly optimized flexibility and
efficiency in the same implementation is very difficult. This
challenge is imposed not only on hardware implementations
but also software implementations on parallel programmable
platforms, such as ILP architectures.

We proposed a generic method to efficiently map the
irregular data flow of an arbitrary PFFT onto ILP architec-
tures with SWP (SoftWare Pipelining). Our work exploits the
available opportunities while minimizing the problems that
the constraints introduce in FFT algorithms, ILP architectures
and their interactions. We apply optimization techniques cov-
ering both algorithmic aspects and low level implementation
schemes. Most importantly, at algorithmic level, we select an
appropriate PFFT data flow variant to enable aggressive opti-
mizations in subsequent implementation steps. Then, we apply
a divide and conquer strategy, partitioning the PFFT into three
phases to enable heterogeneous implementations. For each of
the phases, control flow structures, SWP schemes, address
generation schemes and memory operations are specialized.
For a specific PFFT instance, the data flow information is
encoded in a compact table that is used for control opera-
tions, so that the desired flexibility is delivered. Our proposal
achieves significant reductions in terms of cycle count, number
of active instructions and memory activities. To the best of our
knowledge, this is the first reported work about the generic
software pipelined PFFT on ILP architectures. More details
of the work can be found in [7]

III. INTRODUCING AGILE BASEBAND WITH DYNAMIC
SCALABILITY

The user requirement in wireless communications is inher-
ently varying, when propagating the property to baseband, the
required quality of baseband processing is varying as well.
Since a programmable platform offers easy and flexible multi-
plexing of data-path and memory, we propose to implement the
baseband in a flexible way, so that the baseband can tradeoff
the energy efficiency and the quality of processing. In this
way, the baseband implementation can dynamically switches
at run time and work with maximized energy efficiency. This
is illustrated in Fig.1, where the required quality is marked
with a vertical line. We show a simple example with option
1-4 on a Pareto-optimal curve: the option 1 offers the highest
energy efficiency but the lowest quality; the option 4 offers

the highest quality but the lowest energy efficiency. When the
required quality shifts, we can track the change and switch
to another energy optimal option. Such a scheme requires a
flexible trade off between the energy efficiency and the quality
of processing, which is define as the scalability. Implementing
a scalable baseband on programmable SDR platforms is much
easier than on an ASIC.

Besides, the environment is varying as well. This influences
the systems and offers further opportunities. Specifically, the
environment dynamics shifts the tradeoff curve of scalable
baseband implementations. In Fig.1, this is illustrated with
a double-side arrow on the curve. A possible shift is shown
with dashed lines. In this situation, if the quality requirement
remains the same, we can switch from option 3 to option
2, which is more energy efficient. For example, a channel
estimator tracks varying wireless channels. if a mobile is
moving with a vehicle at a high speed, an energy hungry
equalizer (e.g., option 3) is required to track the intensive
channel variations. If the mobile gets out from the vehicle
and moves at a pedestrian speed, the tradeoff curve will shifts
as Fig.1. A lower power equalizer implementation (option 2)
is already enough. In order to optimize the energy efficiency
in such way, a run-time controller is required to monitor
the environment dynamics and switch the mode of scalable
implementations.

From the above discussions, we can clearly see that the
following design steps are required:
• Enabling scalability. This is to enable baseband imple-

mentations that allow a flexible tradeoff between the
energy efficiency and the quality of processing.

• Designing a run time controller, which makes decision
on which mode to use for the scalable baseband imple-
mentations enabled in the first step.

We have applied the design to most key components of the
inner modem in both traditional CDMA based systems, emerg-
ing MIMO-OFDM and MIMO-OFDMA systems, including
channel estimator/equalizer, channelization filters, OFDMA
modualtor/demodulator, advanced MIMO decoders and so on.
For the sake of limited space, we will illustrate 3 representative
ones in this paper.

A. OFDMA Modulator

First we start from a simple example: an agile OFDMA
and MIMO-OFDMA modulator implementation. It is very
important for emerging WiMAX and 3GPP LTE systems.
In MIMO-OFDMA transmitters, the modulator becomes one
of the most energy-consuming parts. Despite that IFFT/FFT
have long been considered as one of the most efficient sig-
nal processing primitives, The modulator implementation is
still challenging. In this case-study, the scalability is enabled
with down-sampled processing. We exploit that fact that the
required modulation quality is dynamically changing.

1) Enabling Scalability: As scheme #1 in Fig.2, the original
OFDMA modulator is just a size-N IFFT with only M of
N input bins being non-zeros. Note that N is large (up to
2048) and M is small, e.g., M=25. We transform scheme #1

Size-N IFFT Based
Modulator

Size-N IFFT for
Zero-Padded Signals

Signal
Rotation

M N

M NN

Scheme #1

Size-N/L IFFT
for

Zero-Padded
Signals

Signal
Rotation

Linear
Interp.M N/L NN

Scheme #2

Scheme #3

Fig. 2. Transformations for the agile OFDMA modulator implementation

TABLE I
RUN-TIME DECISION AND ENERGY EFFICIENCY IMPROVEMENT

Modulation (m) BPSK QPSK 16QAM 16QAM 64QAM 64QAM
Coding Rate (c) 1/2 1/2 3/4 1/2 2/3 3/4
% of carriers (p) 8% 8% 8% 8% 8% 8%
RCE Margin (d) 5 dB 5 dB 15 dB 10 dB 5 dB 5 dB
L 16 16 8 8 8 4
Energy Efficiency 12× 12× 7× 7× 7× 2×

to #2, consisting of a zero-padded IFFT (with nonzero data
starting from the first input bin) and a signal rotator. With this
transformation, the signal before the rotator becomes highly
correlated. Hence, we can further apply an I/O-approximate
transformation and derive scheme #3, which use a size-N/L
IFFT and an efficient N/L to N piece-wise linear Cartesian
interpolator to approximate the size-N zero-padded IFFT in
scheme #2. The interpolation factor L brings the scalability.
Larger L brings lower energy consumption. Importantly, the
blocks in scheme #3 can all be efficiently mapped on parallel
programmable architectures.

2) Designing Controller: The modulation accuracy is con-
sidered as the quality metric. Let m denote the modulation,
c denote the coding, p denote the amount of allocated sub-
carriers. Then (m, c, p) specify the input signal and L is the
knob of the scalability. Importantly, when (m, c, p) and L
is given, the modulation accuracy is statistically stable and
analyzable. Hence, based on the model, we propose a feed
forward scheme with a controller based on loop-up table.
The decision policy is Ψ : (m, c, p, d) 7−→ L, where d is
an indication of the required modulation accuracy. With input
characterized by (m, c, p) (this is completely observable), the
controller selects the right L that satisfies the required accuracy
d. The overhead of this controller is just a table lookup
operation.

3) Implementation Results: Targeting reproducible results,
the work has been implemented on the TI TMS320C6000. We
evaluate the implementation for WiMAX, which defines the
RCE (Relative Constellation Error) to evaluate the modulation
accuracy. We need to guarantee that the modulation accuracy
has a safe margin to the minimal requirements specified
in WiMAX standards. The margin is denoted by d. With
L={2,4,8,16}, 2× to 12× energy efficiency improvements can
be achieved with this work. Some examples are given in Table
I. We can see substantial improvements even with large RCE
margins. More details about the work can be found in [8].

B. Near-ML MIMO Decoder

Near-ML (Maximum Likelihood) MIMO decoders signifi-
cantly outperform traditional linear decoders. However, their

rmax

Near-ML Decoder with Adjustable Ranges

H

Output s

Approximate
Estimator for

K(H)

y

K(H)
Search

Range rLookup Table
for Search
Range r

Fig. 3. Framework of agile MIMO decoder implementations

implementation is challenging on programmable architectures.
We present an agile near-ML decoder specifically designed
for programmable architectures. With reproducible results
on TI TMS320C6416 it delivers 80-103 Mbps throughput
(4×4,64QAM). To the best of our knowledge, this is the first
programmable implementation having throughput compatible
with emerging standards (3GPP LTE, WiMAX, 802.11n). The
key enabler is that our work exploits the dynamics in both the
environment and the user requirement.

1) Enabling Scalability: The ML MIMO decoding is de-
fined as ŝ = arg min

s∈ΩNt
, ‖y −Hs‖2, where H is the channel

matrix, y is the received vector signal, ΩNt is contains all
possibilities of s. Most near-ML decoders are based on a tree-
search in a smartly selected subset of ΩNt. Importantly, the
size of the sub-set can be adjusted. Adjusting the search range
enables the desired scalability.

2) Designing Controller: The dynamic environment shifts
the tradeoff curve (refer to Fig.1). For near-ML MIMO de-
coders, we show that the numerical properties of H have a
significant impact on the curve. If H is well conditioned with
small condition number κ(H), a small search range already
brings a good quality. On the contrary, with large κ(H), a
large search range is necessary for a good quality. Hence, we
consider the condition number κ(H) as the observed variable.

We define the quality metric as the SNR (Signal to Noise
Ratio) loss comparing to the optimal ML decoder @ BER
(Bit Error Rate) 10−5. In this case, we found that the relation
among the observed variable (κ(H)), the controlling variable
(search range), and resulted quality metric (SNR loss) is also
statistically stable and analyzable. Hence, we propose an I/O
model based feed forward controller to adjust search range
according to κ(H) and the required quality. This is illustrated
in Fig.3. However, in this case κ(H) is not readily observable,
an efficient and effective estimator is required. We apply
an approximate iterative estimator with only 2 iterations. In
addition, we applies a down-sampled processing, as shown in
Fig.3 with a switch for H. The estimator is activated only at
the beginning of a burst processing. In this way, the overhead
of the estimator becomes negligible (below 1%).

A efficient decision policy for search range r: Ψ : κ(H) 7−→
r is proposed. The controller selects a search range between
the minimal one rmin and the maximally allowed one rmax.
rmax is a given parameter as an indication of required quality.
To minimize the overhead, we apply a lookup table for Ψ :
κ(H) 7−→ r. The table is calibrated at design time to ensure
that the proposed decoder with dynamically adjusted search
ranges is only 0.1 dB better than a static decoder.

3) Implementation Results: We apply the above generic
design to the SSFE (Selective Spanning with Fast Enumer-

0 1 2 3 4
0

20

40

60

80

100

Tradeoff Curve: SNR Loss Vs. Throughput

SNR Loss @ 1E−5 (Comparing to ML)

T
hr

ou
gh

pu
t (

M
bp

s)
 o

n
T

M
S

32
0C

64
16

Static Search Range
Dynamic Search Range

(a)

[1111][1112][1114][1124][1128][1248]
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4 Histogram of Search Ranges

Search Ranges

N
um

be
r

of
 In

st
an

ce
s

(b)
Fig. 4. Results. (a) Comparison of throughput-quality tradeoffs; (b) His-
togram of search ranges for practical channel models

ation) near-ML decoder, which is the first near-ML decoder
specifically optimized for parallel programmable architectures
[9][2]. It has been implemented on TI TMS320C6416 for
reproducible results. In Fig.4 (a), the X-axis is the SNR loss as
introduced before. The Y-axis is the average throughput. The
results is for 1/2 Turbo-coded 4 × 4 64QAM transmissions
over 3GPP suburban macro channels. We can see that, with
close SNR losses, the agile SSFE decoder significantly boosts
the throughput compared to the static SSFE. The improve-
ment factor ranges from 2.6× to 28.6×. This translates into
remarkable reductions of energy consumption. The histogram
of search ranges in Fig.4 (b) gives more insights, where
strings {[1111], . . . , [1248]} indicate search ranges, number of
spanned nodes of each antennas (4 in total) is described by the
corresponding digit in the strings. [1111] is rmin and [1248]
is rmax. The histogram shows that the agile SSFE decoder
mostly searches over small ranges (such as [1111] and [1112]).
Moreover, we can observe that the agile implementation can
trade off throughput and quality. If a low quality is tolerable,
we can switch rmax to a smaller one for higher energy
efficiency.

C. Adaptive Filter Implementation

1) Overview: An adaptive filter is a filter that self adjusts
its transfer function (or coefficients). It has a wide spectrum of
important applications in baseband processing. For example:
equalization/channel estimation, signal prediction, interference
cancelation. We introduce a generic framework for energy
efficient agile adaptive filter implementations, and validate it
with adaptive equalization for HSDPA. Our work exploits the
dynamics of variations in the process tracked by an adaptive
filter. For instance, the wireless channel is not always varying
fast. With a pedestrian channel, we can switch to a lower
power mode while still delivering the required quality. In this
case study, we design a feed back controller without an explicit
estimator for the environment.

2) Enabling Scalability: The technique for enabling scala-
bility is illustrated in Fig.5. In the shaded area, two algorithms
are multiplexed. In addition, we can also set the alg.#2 just
as a direct link that does no updating. By adjusting how often
alg.#1 is selected, we can enable the scalability. Importantly,
in this way we implement only one algorithm (alg.#1) but
the scalability is still enabled. The speed of variations in the

(a) (b)

Fig. 6. Channel dynamism and energy consumption of the equalizer. (a)
Average speed 50km/h; (b) Average speed 120km/h. The equalizer consumes
much energy only when channel is varying intensively. .

environment shifts the curve at at run time. For example, an
adaptive equalizer tracks a varying wireless channel. If the
mobile is moving with a vehicle at 120km/h, we need to
select alg.#1 frequent. If the mobile gets out from the vehicle
and moves at a pedestrian speed, a longer updating interval is
enough to deliver the required quality.

3) Designing Controller: In order to exploit the afore-
mentioned opportunities, the controller needs to track the
dynamics in variations. For such statistical information, an
explicit estimator incurs significant complexity. In addition,
it does not necessarily converge in a practical system with
high order complex stochastic behaviors (such as the wireless
channel).

With the feed back control, we propose a generic and
efficient technique without any explicit estimator for the
dynamics. As shown in Fig.5, besides the feed back loop for
coefficient updating (shaded area), an extra feed back loop is
built to control the tracking error, which is the error between
the desired output (training signal) and the actual output of
the filter. An efficient PID controller is applied to keep the
tracking error around a predefined set-point. It adjusts how
often the alg.#1 is selected for updating filter coefficients.
Since the PID controller requires only a few multiplications
and additions, the overhead is negligible compared to the
adaptive filter itself. In this controller, the controlling variable
is the updating interval, the controlled variable is the tracking
error, and the observed variable is the tracking error as well.

4) Implementation Results: The above design is very at-
tractive for channel equalizer, because wireless channels have
complex stochastic behaviors. We have demonstrated this for
HSDPA chip level equalizer, which is one of the most energy
consuming parts of HSDPA receivers. This has been imple-
mented on TI TMS320C6713. First, we study the dynamic
behavior of the work. Fig.6 (a) shows how the CIR (Channel
Input Response) varies over time in a 3GPP channel. Fig.6
(b) plots the normalized energy consumption over time. We
can observe that the energy consumption fluctuates intensively.
Comparing the X-axis (time) of Fig.6 (a) and (b), we can
see that this work consumes much energy only when CIR
varies rapidly. Second, we study the potentials of energy
reductions. In Fig.7 we plot results for 3GPP channel case
5. Each curve consists of points with different tracking errors.
Uncoded BER (Y-axis) is considered as the quality metric. A

Required
Tracking Error

Tracking
Error

Reference
(Pilot)

Received
Signal

Sig.
OutInterval of

Updating

Clock
Acc.

PID
Controller

+
-

Previous
Coefficients

Alg.#1

Alg.#2

Adapted
FIR Filter

New
Coeff.

0

Observed
Tracking Error

-

-

1

Fig. 5. A generic framework for agile adaptive filter implementations

0 0.2 0.4 0.6 0.8 1

10
−3

10
−2

10
−1

Normalized Average Energy Cost

B
E

R

Eb/No=25 dB

Eb/No=15 dB

3GPP Channel Case 7
Nr Path: 4
Speed: 50kmph
QPSK
QRD−RLS

Fig. 7. Quality/Energy tradeoff

conventional static equalizer is characterized by the rightmost
points on these curves. We can observe that, with negligible
BER degradations, the design can reduce more than 60%
energy comparing to the conventional static equalizer. More
details of the work can be found in [10][11].

IV. CONCLUSION

Although extensive research efforts have been investigated
in energy efficient SDR baseband, most work focus on pro-
cessors/platforms. System level approaches are less mature. In
this paper, we introduced the algorithm/architecture co-design
for SDR baseband implementations. Such an approach ensures
that algorithm and architecture match with each other and the
energy efficiency is significantly optimized.

REFERENCES

[1] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
H. Bolcskei. Vlsi implementation of mimo detection using the sphere
decoding algorithm. Solid-State Circuits, IEEE Journal of, 40(7):1566–
1577, July 2005.

[2] Min Li, Bruno Bougard, Weiyu Xu, David Novo, Liesbet Van Der Perre,
and Francky Catthoor. The optimization of near-ml mimo detector for
sdr baseband on parallel programmable architectures. The IEEE/ACM
Design Automation and Test in Europe (DATE) 2008, pages 1–6, Nov.
2006.

[3] Zhong Hu and Honghui Wan. A novel generic fast fourier transform
pruning technique and complexity analysis. Signal Processing, IEEE
Transactions on [see also Acoustics, Speech, and Signal Processing,
IEEE Transactions on], 53(1):274–282, Jan. 2005.

[4] 3gpp lte tr 25.814: Physical layer aspects for e-utra. 3GPP LTE
specifications, 2007.

[5] J. Markel. Fft pruning. Audio and Electroacoustics, IEEE Transactions
on, 19(4):305–311, Dec 1971.

[6] Vicki H. Allan, Reese B. Jones, Randall M. Lee, and Stephen J. Allan.
Software pipelining. ACM Comput. Surv., 27(3):367–432, 1995.

[7] Min Li, David Novo, Bruno Bougard, Liesbet Van Der Perre, and
Francky Catthoor. Generic multi-phase software-pipelined partial-fft
on instruction-level-parallel architectures and sdr baseband applications.
The IEEE/ACM Design Automation and Test in Europe (DATE) 2008,
pages 1–6, Nov. 2006.

[8] Min Li, B. Bougard, E. Lopez-Estraviz, A. Bourdoux, L. Van Der Perre,
and F. Catthoor. The quality-energy scalable ofdma modulation for low
power transmitter and vliw processor based implementation. Global
Telecommunications Conference, 2007. GLOBECOM ’07. IEEE, pages
2894–2898, 26-30 Nov. 2007.

[9] Min Li, Bruno Bougard, Weiyu Xu, David Novo, Liesbet Van Der Perre,
and Francky Catthoor. Selective spanning with fast enumeration: A near-
ml mimo detector designed for parallel programmable architectures. The
IEEE International Conference on Communications (ICC) 2008, pages
1–6, Nov. 2006.

[10] Min Li, Bruno Bougard, Francois Horlin, Marc Engels, Liesbet Van
Der Perre, and Francky Catthoor. Spc04-1: Quality-energy scalable chip
level equalization for hsdpa. Global Telecommunications Conference,
2006. GLOBECOM ’06. IEEE, pages 1–6, Nov. 2006.

[11] M. Li, B. Bougard, and F. Catthoor. Exploit multiple-domain sparseness
for hsdpa chip level equalization in sdr: Algorithm and dsp implemen-
tation. Signal Processing Systems Design and Implementation, 2006.
SIPS ’06. IEEE Workshop on, pages 16–21, Oct. 2006.

	Home
	Papers By Alpha
	Papers By Session

