Algorithm-Architecture Co-Design for Efficient SDR Signal Processing

Min Li, limin@imec.be Wireless Research, IMEC

Introduction

SDR Baseband Platforms Today are Usually Based on ILP + DLP + MP

- Massive parallel SDR Baseband platforms with
 - ILP: Instruction Level Parallelism
 - DLP: Data Level Parallelism
 - MP: Multiprocessor
- Typical examples:
 - Infineon MUSIC platform, UMICH SODA, Linkoping/CORSONICS BBP2, IMEC BEAR for flexible air interface

.

ILP+DLP+MP SDR Platforms Can POTENTIALLY Support Advanced Baseband Signal Processing

IMEC ADRES

NXP EVP

imec

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Min Li, NES, IMEC August 20, 2008

4

ILP+DLP+MP SDR Baseband Implementations Are VERY PREMATURE Today

- Usually the SIMPLEST receiver algorithms are implemented
- The throughput is much lower than ASICs
 SODA: WCDMA and 11a, maximum 24Mbps
 - LIU/CORSONICS BBP2: WIMAX, 31.67Mbps
- The power consumption is not good enough
 SODA: 0.5w with 90nm
- NOT comparable with ASIC counterparts
 - Power, communication performance, throughput

Exciting Challenge: from Basic Mobile SDR Baseband to ADVANCED Mobile SDR Baseband

imec

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Min Li, NES, IMEC August 20, 2008

Algorithm-Architecture Co-Design of Advanced SDR Baseband

- Pushing only from architecture/compiler side is not enough
- A strong platform aware algorithmic thrust is highly desired as well

7

PLATFORM-AWARENESS is Very Important When Designing SDR Baseband

Platform 1 in Roman Army

Platform 2 in Roman Army

imec

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved Min

Min Li, NES, IMEC August 20, 2008 8

Analysis of ILP + DLP Programmable Arch. Constraints, Advantages and Disadvantages

- Constraints: architectures and associated compilers requires well-fit algorithms and codes
 - Many advanced algorithms are originally difficult to map/implement, such as various sphere decoders
- Disadvantages: lower power-efficiency
 - GOPS/mW is worse than ASIC
- Super advantages: multiplexing of data-path and memory is much easier on ASIP
 - Heterogeneous and flexible implementations are easier on ASIP

2 Principles for The Co-Design of Advanced SDR Baseband Systems

- Principle #1: Well matched algorithms and architectures/compiler
 - Algorithms need to be compatible with the constraints imposed by the architecture and associated compiler
 - Fine-tuning of the architecture, such as application specific instructions
- Principle #2: highly flexible system with energy awareness
 - Exploit the advantages of SDR baseband platforms

Case Studies: Major Components in MIMO-OFDM/OFMDA and CDMA Transceivers

- MIMO
 - Sphere detector, soft-output sphere detector and so on
- OFDM/OFDMA
 - Channel estimator, modulator/demodulator, synchronizer and so on
- CDMA
 - Equalizer and so on
- Generic blocks
 - Partial FFT, matched filter, FEC and so on

Enhancing The Friendliness between Algorithm and Architecture

Summary of Our Approaches

- Algorithmic transformations
 - Make algorithmic structures compatible with architecture and compiler
- Pre-compiler code transformation
 - Fine-tuning of the mapping on architectures to optimize efficiency
- Fine-tuning of architectures
 - Application specific instruction set design and implementation

13

Case Studies 3 of Them will Be Introduced

- Sphere detector
- Soft-output sphere detector
- Partial FFT/IFFT
- OFDM channel estimator with sparse matrix multiplication

ML Sphere Detector Outperforms MMSE by 4-8 dB, Soft-Output Detector Improves More

imec

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Min Li, NES, IMEC August 20, 2008 15

The FIRST Sphere Detector Explicitly Designed for Parallel Programmable Architectures

- The world's first sphere detector that can be efficiently implemented on VLIW, SIMD and vector architectures
- Scalable throughput from 4.5 Mbps to 112 Mbps (4x4 64QAM) even on TI TMS320C6416
- Higher than 75% scheduling density on 4x4 ADRES architecture

August 20, 2008

16

The FIRST SOFT OUTPUT Sphere Detector on Parallel Programmable Architectures

- Very challenging even for ASIC (100 Mbps at 1.2W)
- The world's first soft-output sphere detector that can be efficiently implemented on VLIW, SIMD and vector architectures
- Designed with 4 application specific instructions
- 2x4 ADRES with 16-way SIMD achieves
 192Mbps for 2x2 64QAM, about 385Mbps for
 2x2 16QAM

Partial FFT (PFFT): FFT with Partial Input or Output

- Decimation in Time, Shuffling on Input

Min Li, NES, IMEC August 20, 2008

PFFT: 30+ Years Theoretical Research But Few Real Life Implementations

- Highly recognized importance in countless engineering areas
- More than 30 years theoretical research
 Complexity oriented analysis and bound analysis
- Few practical implementations
- We reported the first generic implementation of PFFT on ILP architectures
 - Demonstrated on TMS320C6000 as well

Enhancing Energy Awareness with Dynamic Scalability

We Can Exploit The Dynamics in Wireless Communication Systems for Energy Efficiency

 Both user requirement and environment are dynamic

Voice call on highway

Online game in metro

Voice call on street

Video streaming in car

imec

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Min Li, NES, IMEC August 20, 2008 21

Opportunities for SDR Baseband

- Two viewpoints toward complexity
 - Computation complexity and memory complexity
 - Structure complexity (heterogeneity, number of blocks, etc.)
- On SDR baseband platform
 - Computation complexity is much more costly than that in ASIC
 - Memory complexity is as costly as that in ASIC
 - Structure complexity is much less costly than that in ASIC, the multiplexing of memory and datapath is much easier

imec

From Uniform, Regular Design to Highly Agile, Heterogeneous Design

Min Li, NES, IMEC August 20, 2008 23

Scalable Energy Aware Baseband with Dynamic Controller

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved Min Li, N

Case Studies of Major Components in MIMO-OFDM Receiver

- OFDMA modulator
 - 2x to 12x improvements of energy efficiency
- Efficient near-ML MIMO detector
 - 2.8x to 28x improvements
- Adaptive filter implementation
 Up to 5x improvements
- OFDM channel estimator
- Synchronizations in MIMO-OFDM

Conclusions

Conclusions

- We shift mobile SDR baseband from basic systems/algorithms to more advanced ones
- Enhancing the friendliness between algorithm and architecture/compiler
- Enhancing the energy awareness with dynamic scalability
- Case studies:
 - Major components in MIMO-OFDM/OFDMA systems
 - Demonstrated on both ASIPs and commercial DSP (TMS320C6000)

Questions

