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ABSTRACT 
 
The performance and complexity of the signal processing 
hardware accessible to SDR/CR/RADAR designers has 
quickly out-paced the available design tools.  The advances 
in Digital Signal Processors (DSP) both fixed- and floating-
point, Field Programmable Gate Arrays (FPGA), and multi-
core processors have enabled rapid prototyping and 
deployment of platforms that can be dynamically 
reconfigured in the field to implement a variety of 
SDR/CR/RADAR waveforms.  Until recently the process of 
creating waveforms meant starting with high-level 
mathematical models and simulations and then creating 
production quality code that can operate on this variety of 
specialized hardware using either hand coding or vendor 
specific tools, which are typically limited to single 
processor solutions.  This paper discusses an integrated 
model-driven design process and tool-flow used in ORNL's 
Cognitive Radio Program.  It describes how the process and 
tool-flow are used on a variety of SDR and CR projects and 
in the development of a software-defined RADAR 
environment simulator.  It describes how, from a single 
Simulink® model, a single deadlock free real-time multi-
processor application is created and executed on a network 
of heterogeneous processors.  We also describe recent 
progress on extending the process/tool-flow to design 
digital ASICs and our plans for future extensions.  We close 
by highlighting the benefits being realized from applying 
this design flow to SDR/CR/RADAR projects at ORNL: 1) 
a significant reduction in the time required to develop, 
prototype, implement and test SDR/CR/RADAR 
waveforms, 2) increased reusability/retargetabilty of 
SDR/CR/RADAR designs and signal processing library 
components, 3) the ability to quickly port SDR/CR/RADAR 
waveforms to different hardware systems and processor 
types, 4) improvements in documentation, and 5) 
traceability of system components back to original 
requirements.  
 

1. INTRODUCTION 
The process of taking a radio or radar design from initial 
concept and requirements capture to final acceptance testing 
is fraught with many challenges and difficulties. In 
traditional development approaches once requirements are 
captured and models of the desired waveforms and signal 
processing algorithms are developed, the coding of the 
waveforms and algorithms for candidate hardware requires 
manual coding which is tedious, time consuming and error 
prone.  In addition, as manual coding and refinement 
proceeds, the implementation often diverges from the 
original mathematical models, and it becomes increasingly 
difficult to assess the effect the differences will have on 
other components of the design at the system level.   The 
situation becomes even more complex if multiple 
heterogeneous processors such as fixed- and floating-point 
DSPs, FPGAs and general purpose processors (GPPs) are 
used.  Optimally partitioning the system across a mixture of 
heterogeneous processors requires special knowledge of the 
hardware and requires use of vendor specific tools.  In this 
case additional design issues must be addressed including 
inter-processor communication, clock and data 
synchronization, loading/booting, memory constraints and 
processor specific languages (C, C++, assembly, VHDL, 
Verilog).  Often, final trade-off design decisions must be 
based on performance data obtained from implementation in 
actual hardware, which requires rapid prototyping on 
candidate hardware. Combine these challenges with the 
added need for documentation, testing and requirements 
traceability and one begins to get a feel for how daunting 
SDR/CR/RADAR development really is.   
 Our team faced all the above challenges and more as 
we embarked on developing a new radar environment 
simulator (RES).  Our RES is responsible for presenting to 
the radar under test a variety of operator-defined scenarios, 
which include radar returns from multiple simultaneous 
targets/objects and clutter sources (see Figure 1). The RES 
Manager runs on a workstation and provides system control 
functions and scenario generation.  Scenario generation 
feature allows a RES operator to create detailed scenarios 
with all the required technical parameters available in a 
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library of environmental and target data.  This library 
contains the best available models of projectile RCS (radar 
cross-section) and clutter (discrete and distributed, fixed and 
moving).  Scenarios are viewable off-line, and the RES 
operator can pause, rewind, and fast forward the scenario 
during operation. Real-time signal/return generation is 
accomplished by a network of heterogeneous processors in 
the RES Processor Chassis. The RES will generate a 
simulated environment that exceeds the performance of the 
radar under test, which includes many simultaneous targets, 
and extends beyond the radar’s maximum range.  
 The primary RES design goal is the creation of a 
Simulink®®-based executable simulation framework with 
real-time hardware acceleration on a network of 
heterogeneous COTS processors with the following 
characteristics: 1) open systems architecture, 2) model-
driven, 3) automatic multi-processor code generation for 
from a single Simulink®® model, 4) use of modular 
reconfigurable COTS hardware, and 5) model/code re-use.  
While our initial evaluation of candidate hardware and 
design tools failed to identify a tool-set/design-flow and 
hardware that fully met the above criteria we found enough 
key parts of a solution that if combined would and so 
decided to lead an effort to combine them and fill in a few 
missing elements. 
 What follows is a description of where we are in the 
process.  

 
2. MODEL-DRIVEN APPROACH 

 
The model-driven design approach provides an array of 
benefits including a system view of all code/components, a 
seamless testbench, requirements traceability, auto-code 
generation and a host of others. 
 The system-wide view – that is, block-diagrams or 
schematic capture views of all of the subsystems and their 
connections – gives developers a more comprehensive view 
of the system while providing well-defined interfaces for 
separating functions.  This simultaneously reduces the 

complexity for individual tasks while fostering the 
coordination required for large teams to develop code 
jointly.  This approach automates not only code generation 
but also interface definitions among subsystems. 
 The seamless testbench allows developers to start with 
subsystems that have well defined interfaces, while the 
functionality of those subsystems are still in their infancy.  
Thus, providing the infrastructure for end-to-end testing 
before the entire code has been generated. By providing on-
screen scopes and data results, it also provides the developer 
with the immediate feedback required to reduce 
development time. 
 As discussed below, requirements traceability is 
another attribute that provides much greater accountability 
for top-down assessments of the status of the development. 
  

3. TOOL-FLOW 
 
In this section we highlight requirements capture and 
traceability using Rhapsody® and DOORS® and the code 
development process including both a discussion of how the 
tools are integrated as well as giving examples of the 
benefits of the model-driven approach. Figure 2 depicts our 
general design flow which was adapted from the Telelogic 
Harmony™ Process. 
 
3.1. Capturing & Tracing Requirements  
 
Use Cases Analysis is used to gather, analyze and capture 
requirements that are tracked using the Rhapsody® Gateway 
and DOORS®. In addition to common Use Cases, additional 
UML diagrams are used to document requirements (Object 
Diagrams, Sequence Diagrams, Collaboration Diagrams, 
State Charts, and Flow Diagrams). Requirements 
traceability and coverage are tracked using a combination of 
DOORS® and Rhapsody® Gateway. 
 This provides both the developers as well as the users 
the ability to track and understand the progress and status of 
the project.  It also helps bridge the communication gap that 
typically hampers discussions between developers – who by 
necessity are deep into the details of the signal processing – 
and users/customers that have more of a black-box view of 
the system. 
3.2 Modeling & Simulation 

Figure 1  Diagram of RES components. Figure 1  Diagram of RES components and Radar Under 
Test. 

Figure 2  Design flow. 
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All models are created using Simulink®.  This provides the 
seamless testbench and developer environment that crosses 
all DSP target devices, as well as providing scopes and 
other data viewing windows that give developers the 
immediate feedback they need.   
 
3.3 Partitioning and Assignment of Tasks using PARS 
 
PARS is a companion toolbox for The MathWorks™ 
Simulink® enabling the generation of a multi-DSP/FPGA 
application from a single Simulink® model. PARS was 
originally designed by Sundance as part of a development 
contract for the US Navy.   At ORNL’s request, Sundance is 
adding additional capabilities to support the RES 
development.  These capabilities include 1) support for 
Simulink® HDL Coder™, 2) support for Real-Time 
Workshop® Embedded Coder™ (RTW-EC), which enhances 
real-time signal processing capabilities and efficient 
compact code generation, 3) implementation of profilers 
that allow access to low-level clock timing for DSP and 
FPGA tasks and 4) MEM blocks that allow developers to 
instantiate look-up tables necessary for the RES. 
 After the application model is designed and verified in 
the Simulink® environment, the developer uses PARS to 
aggregate and assign subsystems to the desired processor 
elements in the target hardware system, DSP (fixed- or 
floating-point) or FPGA of the host processor. Multiple 
tasks/subsystems may be assigned to a single DSP or 
FPGA.  MATLAB/Simulink® users can quickly design and 
simulate platform-independent models and then 
automatically generate code to rapidly prototype on 
candidate multi-DSP, multi-FPGA hardware. 
 Another critical element in the RES design is the ability 
to create and access multiple large look-up-tables.  PARS 
MEM blocks allow the user to manipulate large amounts of 
data in static arrays at run-time.   PARS MEM blocks can be 
implemented on both DSP and FPGA tasks. During user 
task operation, the protocol parser is able to access the 
contents of memory arrays. With added calls within the user 
task loop, it is also able to synchronize access to the static 
memory arrays. The generated code for PARS MEM block 
is automatically synchronized with code generated by 
Simulink® for the developer’s model. By utilizing PARS 
MEM block, developers can download/upload a section of 
memory inside a DSP or FPGA at any time irrespective of 
the state of the underlying task. For example, the memory 
can be uploaded when the task is waiting for input, 
processing or waiting for output. 
 The following operations can be performed 
transparently for I/O and data processing: 1) initialize data 
block (at compile/link time), 2) write data block (at run-
time), 3) read data block (at run-time) and 4) synchronize 
processing with static array access (at run -time). 

 
3.4 Code Generation 
 
Auto-code generation is the biggest potential time-saver for 
developers but also has had to overcome a decade or more 
of being oversold to the community.  The tools described in 
this paper go beyond providing programmers with 
subroutine skeletons and naming conventions to actually 
provide the complete code required to produce the desired 
functionality.  With recent advances in the quality of the 
tools, they have also addressed historic concerns regarding 
their ability to handle real-time signal processing and 
limited computational resources. 
 Automatic code-generation requires that a restricted 
subset of available blocks/tools (libraries) be utilized.  
While this was a more severe restriction in recent years, the 
rapid increase in available libraries significantly reduces the 
impact.  Developers have to be aware of the extent of 
available libraries and “toolboxes” and make sure that they 
acquire all appropriate libraries.  This exercise alone 
significantly improves development time by providing 
developers with the greatest functionality in the shortest 
time. 
 PARS auto-generates the final code by calling target-
specific tools, such as RTW-EC, Xilinx® System Generator, 
HDL Coder™, and Code Composer Studio™ (CCS).  RTW-
EC generates C and C++ code optimized for embedded 
systems from Simulink®, Stateflow®, and embedded 
MATLAB® models.   Simulink® HDL Coder™ generates 
bit-true, cycle-accurate HDL (VHDL and Verilog) from 
Simulink®, Stateflow®, and embedded MATLAB®.  CCS 
generates C and C++ code optimized for Texas Instruments 
DSPs. 
 
3.5 Code Compilation and Loading 
 
PARS compiles a single application by invoking the 
Diamond tools from 3L which include Diamond DSP and 
Diamond FPGA.  Diamond is an optimized microkernel 
RTOS based on Communicating Sequential Processes 
(CSP) and has been the de facto parallel processing RTOS 
from the time of Transputers [4].  Diamond FPGA has the 
ability to encapsulate FPGA cores as tasks within its process 
flow. This means that interfaces between FPGA and DSP 
tasks are now completely ubiquitous and transparent [1]. 
 Diamond configurer uses the PARS generated 
configuration file and tasks to map the tasks onto processing 
elements and task communications channels on physical 
connections. 
 
 
 
3.6 On-Hardware Task Performance Profiling 
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Our first objective is to create a single complete Simulink® 
model running on a host processor to verify functionality 
and requirements compliance, with the understanding that 
this instantiation of the model will not meet the real-time 
performance requirements.  Once we are assured that the 
Simulink® model is functionally accurate, we begin a 
process of profiling and timing analysis to determine the 
processing time and memory consumed by the various 
elements of the model.  We use this information to 
iteratively repartition the model to meet final performance 
and timing requirements.  
 PARS is capable of profiling multiple parallel tasks 
during runtime, whether those tasks are assigned to a DSP 
or FPGA. On demand PARS generates suitable code to 
extract low-level timing information during run time.   This 
timing information is then sent to the host computer via a 
synchronized channel so that transmission does not affect 
the timing of the tasks.  
 Table 1 shows an example of profiling statistics 
obtained for a sample model.  They are accurate according 
to the actual time taken on hardware. PARS-Profile is 
available for both DSP and FPGA tasks.  
 
Table 1  Example performance data obtained 
PARS profiling (Type O: output, I: input, P: process). 

Task Type Processor 

Clock 
Frequency 
(cycles/sec) Time (sec) Calls 

Time/Call 
(sec) 

DSPinput I ROOT 1000000000 1.40826568 11 0.128024153

DSPinput P ROOT 1000000000 0.000013888 11 0.000001263

DSPinput O ROOT 1000000000 0.000006632 11 0.000000603

DSPoutput I ROOT 1000000000 1.407937192 11 0.12799429 

DSPoutput P ROOT 1000000000 0.000004216 11 0.000000383

DSPoutput O ROOT 1000000000 0.000011728 11 0.000001066

CalcSignalDelay I FPGA1 50000000 1.94540186 12 0.162116822

CalcSignalDelay P FPGA1 50000000 0.00000024 12 0.00000002 

CalcSignalDelay O FPGA1 50000000 0.00000044 12 0.000000037

 
3.7 Configuration Management and Version Control  
 
Subversion, an open source version control system, is used 
to provide version control and tracking for all elements of 
the RES incuding documentation, models, and code. 
 
3.8 HWIL Code Verification 
 
Hardware-in-the-loop (HWIL) methodologies are an 
inherent part of the above-described design process.  That 
is, by targeting actual computing elements with individual 

components of the Simulink® model, the model actually 
runs on the target system (as opposed to a general purpose 
processor.)  There are several advantages to this approach, 
1) the model is bit-true and cycle-accurate to the final 
design, 2) target resource limitations (both clock rate and 
gate count) are dealt with during the model design process 
and 3) the models run at real-time signal processing speeds, 
which is typically 104 or more faster than general purpose 
processors running the same models. 
 
3.9 Documentation 
 
Automatic documentation of designs and test results are 
generated using a combination of Simulink® Report 
Generator™, MATLAB® Report Generator™ and 
Rhapsody® and DOORS®. 
 

4. RESULTS 
 
ORNL has successfully worked with key vendors to 
integrate their tools into a complete end-to-end model-
driven design and simulation framework for 
SDR/CR/RADAR waveform design.  The current 
framework includes re-use of legacy code, auto-generation, 
compilation, and creation of a single real-time executable 
application, task profiling, and baseline performance 
demonstrations on multiple DSPs and FPGAs in prototype 
hardware.  In the case of RES, baseline performance data is 
being gathered from actual hardware and will be used to 
determine the number, type and configuration of processors 
for the final system.  Work is ongoing to further improve 
and extend the capabilities of the process and design flow. 
A few of these are highlighted in the next section.   
 

5. FUTURE EXTENSIONS  
 
There are several ongoing tasks to further improve and 
extend the tool flow to enable support for the following:  
• PICO E-15 FPGA CardBus card [6] 
• Co-simulation and code generation for Power PC cores 

and digital fabric/cores within Xilinx FPGAs 
• Tilera TILE64™ Processor [7] 
• Digital ASIC design 
• Field Programmable Analog Arrays (FPAA) 
• Field Programmable Neuron Arrays (FPNA) 
• Extended Analog Computer (EAC)  
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5.1 PRELIMINARY ASIC RESULTS 
 
UTK, in collaboration with ORNL, has successfully 
synthesized a digital filter example using VHDL generated 
by HDL Coder for both a Xilinx FPGA using Synplicity 
Synplify Pro® and an ASIC process using Synopsys.  
 Pre-synthesis simulation was performed using 
ModelSim and post-synthesis with ModelSim was pending 
at the time of writing. 
 The design uses about 5% of a Xilinx xc2v500fg256-6 
which is roughly 25K system gates (See Figure 3 FGPA 
layout). 
 The ASIC implementation in the TSMC (Taiwan 
Semiconductor Manufacturing Company) 180-nm process 
takes 4146 standard-cells total; 47K pairs of fets or 94,218 
fets/4 = 23K nand-gates.  The ASIC layout consists of 4193 
components arranged into 80 rows and uses four of the 
available 8 layers of metal for routing (see Figure 4 ASIC 
layout).  The area consumed is 1,126,013 x 851,140 db 
units or approximately 11.26 mm x 8.5 mm = 95.8 mm2.  
 Eventually, the design will be combined with an 
existing VHDL core and taken through to an ASIC layout 
and post-layout simulation, but the results achieved so far 
establish the flow to ASIC as feasible. 
 

 
Figure 3 FPGA layout of digital filter generated using 
HDL Coder. 

5.2 FPAA/FPNA/EAC 
 
Work is underway to extend the current tools and design 
flow to be able to target FPAAs [9], FPNAs [10] and EACs 
[11],[12].  
 FPNAs based on floating-gate technology enable one to 
rapidly design and prototype analog circuits in much the 

same way FPGAs have enabled digital circuit design and 
prototyping. 
 While similar to FPAAs, FPNAs utilize reconfigurable 
analog blocks designed to mimic biological neurons (soma, 
axons and dendrites) and enable the implementation of 
biomimetic computation and signal processing, which is 
implicit and inherently parallel in nature.     
 The EAC accelerates computation using implicit 
functions inherent in the materials from which it is 
fabricated. According to Rubel, the EAC is a family of 
special-purpose devices that computes specific functions by 
analogy: heat conducting plates, soap films, vibrating 
strings and membranes, plasmas, slime mold, neural tissue, 
DNA and so forth [13]. All of these connect a user’s 
problem to a natural object that solves it by means of a 
specific analogy. 
 Generally-applicable EACs [13] have been built that 
are useful in a wide range of application domains. Their 
generality requires users to draw an analogy between the 
EAC and its applications that divides its operation into two 
parts: (1) the EAC configuration, which constrains the 
properties of matter and energy that perform the 
computation, and (2) the meaning ascribed to those physical 
processes. Each of these two parts is necessary to define 
computation by analogy [11]. By ascribing problem-specific 
meanings to an EAC configuration, that configuration may 
solve many different problems. For example, one EAC 
configuration, unchanged, can compute butterfly wing 
morphogenesis, aircraft recognition, and small instances of 
the NP-complete problem Hamiltonian cycle. 
 Making the capabilities these technologies have to offer 
readily accessible to researchers and engineers will radically 
change the performance and capabilities of SDR/CR and 
RADAR systems of the future.  

Figure 4 ASIC layout of digital filter generated using 
HDL Coder for TSMC 180 nm process. 
Figure 4 ASIC layout of digital filter generated using 
HDL Coder for TSMC 180 nm process. 
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6. CONCLUSIONS 

 
The benefits realized to date by development and 
implementation of the integrated model-driven design 
process and tool-flow described above include: 1) a 
significant reduction in the time required to develop, 
prototype, implement and test SDR/CR/RADAR 
waveforms, 2) increased reusability and retargetability of 
SDR/CR/RADAR designs and signal processing library 
components, 3) the ability to quickly port SDR/CR/RADAR 
waveforms to different hardware systems and processor 
types, 4) improvements in documentation, and 5) 
traceability of system components back to original 
requirements.  
 While the benefits are significant, one thing to keep in 
mind is the process described in this paper is a departure 
from more traditional design approaches and as with any 
new approach, there is a learning curve associated with 
adopting and implementing it.  But, it is our opinion that the 
benefits far outweigh the cost of learning and implementing 
this approach.   
 The importance of the relationship between the user 
requirements, the RES developers (led by ORNL) and the 
tool provider (Sundance) cannot be overstated.  The 
dynamic interaction between these three entities resulted in 
a complete end-to-end tool that is already resulting in a 
paradigm shift in the way that complex real-time signal 
processing challenges are tackled. 
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