
Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

FROM REQUIREMENTS CAPTURE TO SILICON: A MODEL-DRIVEN
SYSTEMS ENGINEERING APPROACH TO RAPID DESIGN, PROTOTYPING

AND DEVELOPMENT USED IN THE OAK RIDGE NATIONAL
LABORATORY'S COGNITIVE RADIO PROGRAM

Mark A. Buckner, (Oak Ridge National Laboratory, Oak Ridge, TN), Brian Kaldenbach

(ORNL), Nory Nakhaee (Sundance DSP, Reno, NV), Don Bouldin (University of Tennessee,
Knoxville, TN), Jonathan Mills (Indiana University, Bloomington, IN), Michael R. Moore

(ORNL)

ABSTRACT

The performance and complexity of the signal processing
hardware accessible to SDR/CR/RADAR designers has
quickly out-paced the available design tools. The advances
in Digital Signal Processors (DSP) both fixed- and floating-
point, Field Programmable Gate Arrays (FPGA), and multi-
core processors have enabled rapid prototyping and
deployment of platforms that can be dynamically
reconfigured in the field to implement a variety of
SDR/CR/RADAR waveforms. Until recently the process of
creating waveforms meant starting with high-level
mathematical models and simulations and then creating
production quality code that can operate on this variety of
specialized hardware using either hand coding or vendor
specific tools, which are typically limited to single
processor solutions. This paper discusses an integrated
model-driven design process and tool-flow used in ORNL's
Cognitive Radio Program. It describes how the process and
tool-flow are used on a variety of SDR and CR projects and
in the development of a software-defined RADAR
environment simulator. It describes how, from a single
Simulink® model, a single deadlock free real-time multi-
processor application is created and executed on a network
of heterogeneous processors. We also describe recent
progress on extending the process/tool-flow to design
digital ASICs and our plans for future extensions. We close
by highlighting the benefits being realized from applying
this design flow to SDR/CR/RADAR projects at ORNL: 1)
a significant reduction in the time required to develop,
prototype, implement and test SDR/CR/RADAR
waveforms, 2) increased reusability/retargetabilty of
SDR/CR/RADAR designs and signal processing library
components, 3) the ability to quickly port SDR/CR/RADAR
waveforms to different hardware systems and processor
types, 4) improvements in documentation, and 5)
traceability of system components back to original
requirements.

1. INTRODUCTION
The process of taking a radio or radar design from initial
concept and requirements capture to final acceptance testing
is fraught with many challenges and difficulties. In
traditional development approaches once requirements are
captured and models of the desired waveforms and signal
processing algorithms are developed, the coding of the
waveforms and algorithms for candidate hardware requires
manual coding which is tedious, time consuming and error
prone. In addition, as manual coding and refinement
proceeds, the implementation often diverges from the
original mathematical models, and it becomes increasingly
difficult to assess the effect the differences will have on
other components of the design at the system level. The
situation becomes even more complex if multiple
heterogeneous processors such as fixed- and floating-point
DSPs, FPGAs and general purpose processors (GPPs) are
used. Optimally partitioning the system across a mixture of
heterogeneous processors requires special knowledge of the
hardware and requires use of vendor specific tools. In this
case additional design issues must be addressed including
inter-processor communication, clock and data
synchronization, loading/booting, memory constraints and
processor specific languages (C, C++, assembly, VHDL,
Verilog). Often, final trade-off design decisions must be
based on performance data obtained from implementation in
actual hardware, which requires rapid prototyping on
candidate hardware. Combine these challenges with the
added need for documentation, testing and requirements
traceability and one begins to get a feel for how daunting
SDR/CR/RADAR development really is.
 Our team faced all the above challenges and more as
we embarked on developing a new radar environment
simulator (RES). Our RES is responsible for presenting to
the radar under test a variety of operator-defined scenarios,
which include radar returns from multiple simultaneous
targets/objects and clutter sources (see Figure 1). The RES
Manager runs on a workstation and provides system control
functions and scenario generation. Scenario generation
feature allows a RES operator to create detailed scenarios
with all the required technical parameters available in a

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

library of environmental and target data. This library
contains the best available models of projectile RCS (radar
cross-section) and clutter (discrete and distributed, fixed and
moving). Scenarios are viewable off-line, and the RES
operator can pause, rewind, and fast forward the scenario
during operation. Real-time signal/return generation is
accomplished by a network of heterogeneous processors in
the RES Processor Chassis. The RES will generate a
simulated environment that exceeds the performance of the
radar under test, which includes many simultaneous targets,
and extends beyond the radar’s maximum range.
 The primary RES design goal is the creation of a
Simulink®®-based executable simulation framework with
real-time hardware acceleration on a network of
heterogeneous COTS processors with the following
characteristics: 1) open systems architecture, 2) model-
driven, 3) automatic multi-processor code generation for
from a single Simulink®® model, 4) use of modular
reconfigurable COTS hardware, and 5) model/code re-use.
While our initial evaluation of candidate hardware and
design tools failed to identify a tool-set/design-flow and
hardware that fully met the above criteria we found enough
key parts of a solution that if combined would and so
decided to lead an effort to combine them and fill in a few
missing elements.
 What follows is a description of where we are in the
process.

2. MODEL-DRIVEN APPROACH

The model-driven design approach provides an array of
benefits including a system view of all code/components, a
seamless testbench, requirements traceability, auto-code
generation and a host of others.
 The system-wide view – that is, block-diagrams or
schematic capture views of all of the subsystems and their
connections – gives developers a more comprehensive view
of the system while providing well-defined interfaces for
separating functions. This simultaneously reduces the

complexity for individual tasks while fostering the
coordination required for large teams to develop code
jointly. This approach automates not only code generation
but also interface definitions among subsystems.
 The seamless testbench allows developers to start with
subsystems that have well defined interfaces, while the
functionality of those subsystems are still in their infancy.
Thus, providing the infrastructure for end-to-end testing
before the entire code has been generated. By providing on-
screen scopes and data results, it also provides the developer
with the immediate feedback required to reduce
development time.
 As discussed below, requirements traceability is
another attribute that provides much greater accountability
for top-down assessments of the status of the development.

3. TOOL-FLOW

In this section we highlight requirements capture and
traceability using Rhapsody® and DOORS® and the code
development process including both a discussion of how the
tools are integrated as well as giving examples of the
benefits of the model-driven approach. Figure 2 depicts our
general design flow which was adapted from the Telelogic
Harmony™ Process.

3.1. Capturing & Tracing Requirements

Use Cases Analysis is used to gather, analyze and capture
requirements that are tracked using the Rhapsody® Gateway
and DOORS®. In addition to common Use Cases, additional
UML diagrams are used to document requirements (Object
Diagrams, Sequence Diagrams, Collaboration Diagrams,
State Charts, and Flow Diagrams). Requirements
traceability and coverage are tracked using a combination of
DOORS® and Rhapsody® Gateway.
 This provides both the developers as well as the users
the ability to track and understand the progress and status of
the project. It also helps bridge the communication gap that
typically hampers discussions between developers – who by
necessity are deep into the details of the signal processing –
and users/customers that have more of a black-box view of
the system.
3.2 Modeling & Simulation

Figure 1 Diagram of RES components. Figure 1 Diagram of RES components and Radar Under
Test.

Figure 2 Design flow.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

All models are created using Simulink®. This provides the
seamless testbench and developer environment that crosses
all DSP target devices, as well as providing scopes and
other data viewing windows that give developers the
immediate feedback they need.

3.3 Partitioning and Assignment of Tasks using PARS

PARS is a companion toolbox for The MathWorks™
Simulink® enabling the generation of a multi-DSP/FPGA
application from a single Simulink® model. PARS was
originally designed by Sundance as part of a development
contract for the US Navy. At ORNL’s request, Sundance is
adding additional capabilities to support the RES
development. These capabilities include 1) support for
Simulink® HDL Coder™, 2) support for Real-Time
Workshop® Embedded Coder™ (RTW-EC), which enhances
real-time signal processing capabilities and efficient
compact code generation, 3) implementation of profilers
that allow access to low-level clock timing for DSP and
FPGA tasks and 4) MEM blocks that allow developers to
instantiate look-up tables necessary for the RES.
 After the application model is designed and verified in
the Simulink® environment, the developer uses PARS to
aggregate and assign subsystems to the desired processor
elements in the target hardware system, DSP (fixed- or
floating-point) or FPGA of the host processor. Multiple
tasks/subsystems may be assigned to a single DSP or
FPGA. MATLAB/Simulink® users can quickly design and
simulate platform-independent models and then
automatically generate code to rapidly prototype on
candidate multi-DSP, multi-FPGA hardware.
 Another critical element in the RES design is the ability
to create and access multiple large look-up-tables. PARS
MEM blocks allow the user to manipulate large amounts of
data in static arrays at run-time. PARS MEM blocks can be
implemented on both DSP and FPGA tasks. During user
task operation, the protocol parser is able to access the
contents of memory arrays. With added calls within the user
task loop, it is also able to synchronize access to the static
memory arrays. The generated code for PARS MEM block
is automatically synchronized with code generated by
Simulink® for the developer’s model. By utilizing PARS
MEM block, developers can download/upload a section of
memory inside a DSP or FPGA at any time irrespective of
the state of the underlying task. For example, the memory
can be uploaded when the task is waiting for input,
processing or waiting for output.
 The following operations can be performed
transparently for I/O and data processing: 1) initialize data
block (at compile/link time), 2) write data block (at run-
time), 3) read data block (at run-time) and 4) synchronize
processing with static array access (at run -time).

3.4 Code Generation

Auto-code generation is the biggest potential time-saver for
developers but also has had to overcome a decade or more
of being oversold to the community. The tools described in
this paper go beyond providing programmers with
subroutine skeletons and naming conventions to actually
provide the complete code required to produce the desired
functionality. With recent advances in the quality of the
tools, they have also addressed historic concerns regarding
their ability to handle real-time signal processing and
limited computational resources.
 Automatic code-generation requires that a restricted
subset of available blocks/tools (libraries) be utilized.
While this was a more severe restriction in recent years, the
rapid increase in available libraries significantly reduces the
impact. Developers have to be aware of the extent of
available libraries and “toolboxes” and make sure that they
acquire all appropriate libraries. This exercise alone
significantly improves development time by providing
developers with the greatest functionality in the shortest
time.
 PARS auto-generates the final code by calling target-
specific tools, such as RTW-EC, Xilinx® System Generator,
HDL Coder™, and Code Composer Studio™ (CCS). RTW-
EC generates C and C++ code optimized for embedded
systems from Simulink®, Stateflow®, and embedded
MATLAB® models. Simulink® HDL Coder™ generates
bit-true, cycle-accurate HDL (VHDL and Verilog) from
Simulink®, Stateflow®, and embedded MATLAB®. CCS
generates C and C++ code optimized for Texas Instruments
DSPs.

3.5 Code Compilation and Loading

PARS compiles a single application by invoking the
Diamond tools from 3L which include Diamond DSP and
Diamond FPGA. Diamond is an optimized microkernel
RTOS based on Communicating Sequential Processes
(CSP) and has been the de facto parallel processing RTOS
from the time of Transputers [4]. Diamond FPGA has the
ability to encapsulate FPGA cores as tasks within its process
flow. This means that interfaces between FPGA and DSP
tasks are now completely ubiquitous and transparent [1].
 Diamond configurer uses the PARS generated
configuration file and tasks to map the tasks onto processing
elements and task communications channels on physical
connections.

3.6 On-Hardware Task Performance Profiling

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Our first objective is to create a single complete Simulink®
model running on a host processor to verify functionality
and requirements compliance, with the understanding that
this instantiation of the model will not meet the real-time
performance requirements. Once we are assured that the
Simulink® model is functionally accurate, we begin a
process of profiling and timing analysis to determine the
processing time and memory consumed by the various
elements of the model. We use this information to
iteratively repartition the model to meet final performance
and timing requirements.
 PARS is capable of profiling multiple parallel tasks
during runtime, whether those tasks are assigned to a DSP
or FPGA. On demand PARS generates suitable code to
extract low-level timing information during run time. This
timing information is then sent to the host computer via a
synchronized channel so that transmission does not affect
the timing of the tasks.
 Table 1 shows an example of profiling statistics
obtained for a sample model. They are accurate according
to the actual time taken on hardware. PARS-Profile is
available for both DSP and FPGA tasks.

Table 1 Example performance data obtained
PARS profiling (Type O: output, I: input, P: process).

Task Type Processor

Clock
Frequency
(cycles/sec) Time (sec) Calls

Time/Call
(sec)

DSPinput I ROOT 1000000000 1.40826568 11 0.128024153

DSPinput P ROOT 1000000000 0.000013888 11 0.000001263

DSPinput O ROOT 1000000000 0.000006632 11 0.000000603

DSPoutput I ROOT 1000000000 1.407937192 11 0.12799429

DSPoutput P ROOT 1000000000 0.000004216 11 0.000000383

DSPoutput O ROOT 1000000000 0.000011728 11 0.000001066

CalcSignalDelay I FPGA1 50000000 1.94540186 12 0.162116822

CalcSignalDelay P FPGA1 50000000 0.00000024 12 0.00000002

CalcSignalDelay O FPGA1 50000000 0.00000044 12 0.000000037

3.7 Configuration Management and Version Control

Subversion, an open source version control system, is used
to provide version control and tracking for all elements of
the RES incuding documentation, models, and code.

3.8 HWIL Code Verification

Hardware-in-the-loop (HWIL) methodologies are an
inherent part of the above-described design process. That
is, by targeting actual computing elements with individual

components of the Simulink® model, the model actually
runs on the target system (as opposed to a general purpose
processor.) There are several advantages to this approach,
1) the model is bit-true and cycle-accurate to the final
design, 2) target resource limitations (both clock rate and
gate count) are dealt with during the model design process
and 3) the models run at real-time signal processing speeds,
which is typically 104 or more faster than general purpose
processors running the same models.

3.9 Documentation

Automatic documentation of designs and test results are
generated using a combination of Simulink® Report
Generator™, MATLAB® Report Generator™ and
Rhapsody® and DOORS®.

4. RESULTS

ORNL has successfully worked with key vendors to
integrate their tools into a complete end-to-end model-
driven design and simulation framework for
SDR/CR/RADAR waveform design. The current
framework includes re-use of legacy code, auto-generation,
compilation, and creation of a single real-time executable
application, task profiling, and baseline performance
demonstrations on multiple DSPs and FPGAs in prototype
hardware. In the case of RES, baseline performance data is
being gathered from actual hardware and will be used to
determine the number, type and configuration of processors
for the final system. Work is ongoing to further improve
and extend the capabilities of the process and design flow.
A few of these are highlighted in the next section.

5. FUTURE EXTENSIONS

There are several ongoing tasks to further improve and
extend the tool flow to enable support for the following:
• PICO E-15 FPGA CardBus card [6]
• Co-simulation and code generation for Power PC cores

and digital fabric/cores within Xilinx FPGAs
• Tilera TILE64™ Processor [7]
• Digital ASIC design
• Field Programmable Analog Arrays (FPAA)
• Field Programmable Neuron Arrays (FPNA)
• Extended Analog Computer (EAC)

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

5.1 PRELIMINARY ASIC RESULTS

UTK, in collaboration with ORNL, has successfully
synthesized a digital filter example using VHDL generated
by HDL Coder for both a Xilinx FPGA using Synplicity
Synplify Pro® and an ASIC process using Synopsys.
 Pre-synthesis simulation was performed using
ModelSim and post-synthesis with ModelSim was pending
at the time of writing.
 The design uses about 5% of a Xilinx xc2v500fg256-6
which is roughly 25K system gates (See Figure 3 FGPA
layout).
 The ASIC implementation in the TSMC (Taiwan
Semiconductor Manufacturing Company) 180-nm process
takes 4146 standard-cells total; 47K pairs of fets or 94,218
fets/4 = 23K nand-gates. The ASIC layout consists of 4193
components arranged into 80 rows and uses four of the
available 8 layers of metal for routing (see Figure 4 ASIC
layout). The area consumed is 1,126,013 x 851,140 db
units or approximately 11.26 mm x 8.5 mm = 95.8 mm2.
 Eventually, the design will be combined with an
existing VHDL core and taken through to an ASIC layout
and post-layout simulation, but the results achieved so far
establish the flow to ASIC as feasible.

Figure 3 FPGA layout of digital filter generated using
HDL Coder.

5.2 FPAA/FPNA/EAC

Work is underway to extend the current tools and design
flow to be able to target FPAAs [9], FPNAs [10] and EACs
[11],[12].
 FPNAs based on floating-gate technology enable one to
rapidly design and prototype analog circuits in much the

same way FPGAs have enabled digital circuit design and
prototyping.
 While similar to FPAAs, FPNAs utilize reconfigurable
analog blocks designed to mimic biological neurons (soma,
axons and dendrites) and enable the implementation of
biomimetic computation and signal processing, which is
implicit and inherently parallel in nature.
 The EAC accelerates computation using implicit
functions inherent in the materials from which it is
fabricated. According to Rubel, the EAC is a family of
special-purpose devices that computes specific functions by
analogy: heat conducting plates, soap films, vibrating
strings and membranes, plasmas, slime mold, neural tissue,
DNA and so forth [13]. All of these connect a user’s
problem to a natural object that solves it by means of a
specific analogy.
 Generally-applicable EACs [13] have been built that
are useful in a wide range of application domains. Their
generality requires users to draw an analogy between the
EAC and its applications that divides its operation into two
parts: (1) the EAC configuration, which constrains the
properties of matter and energy that perform the
computation, and (2) the meaning ascribed to those physical
processes. Each of these two parts is necessary to define
computation by analogy [11]. By ascribing problem-specific
meanings to an EAC configuration, that configuration may
solve many different problems. For example, one EAC
configuration, unchanged, can compute butterfly wing
morphogenesis, aircraft recognition, and small instances of
the NP-complete problem Hamiltonian cycle.
 Making the capabilities these technologies have to offer
readily accessible to researchers and engineers will radically
change the performance and capabilities of SDR/CR and
RADAR systems of the future.

Figure 4 ASIC layout of digital filter generated using
HDL Coder for TSMC 180 nm process.
Figure 4 ASIC layout of digital filter generated using
HDL Coder for TSMC 180 nm process.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

6. CONCLUSIONS

The benefits realized to date by development and
implementation of the integrated model-driven design
process and tool-flow described above include: 1) a
significant reduction in the time required to develop,
prototype, implement and test SDR/CR/RADAR
waveforms, 2) increased reusability and retargetability of
SDR/CR/RADAR designs and signal processing library
components, 3) the ability to quickly port SDR/CR/RADAR
waveforms to different hardware systems and processor
types, 4) improvements in documentation, and 5)
traceability of system components back to original
requirements.
 While the benefits are significant, one thing to keep in
mind is the process described in this paper is a departure
from more traditional design approaches and as with any
new approach, there is a learning curve associated with
adopting and implementing it. But, it is our opinion that the
benefits far outweigh the cost of learning and implementing
this approach.
 The importance of the relationship between the user
requirements, the RES developers (led by ORNL) and the
tool provider (Sundance) cannot be overstated. The
dynamic interaction between these three entities resulted in
a complete end-to-end tool that is already resulting in a
paradigm shift in the way that complex real-time signal
processing challenges are tackled.

6. REFERENCES

[1] D. Neumann, Sr Principal Engineer and C. Nelson, DSP

Engineer, U.S. Navy, SPAWAR Systems Center - Charleston,
N. Nakhaee, Chief Executive Officer and B. Vacaliuc, Chief
Technology Officer, Sundance DSP Reconfigurable
Approach Wins for Adaptive Beamforming
http://www.cotsjournalonline.com/home/article.php?id=1006
47&pg=1

[2] M. Ahmadian, N. Nakhaee, and A. Nesterov. Rapid
Application Development (RAD) and code optimization
technique. Global Signal Processing Conference (GSPx),
2004.

[3] M. Baleani, A. Ferrari, L. Mangeruca, A.L. Sangiovanni-
Vincentelli, U. Freund, E. Schlenker, and H.J.Wolff. Correct-
by-construction transformations across design environments
for model-based embedded software development.
Proceedings of Design, Automation and Test in Europe,
2:1044 – 1049, 2005.

[4] Information on Diamond RTOS for Sundance Products is
available from the 3L Web site:
http://www.3l.com/Diamond/Sundance/diamond_for_sundanc
e.htm

[5] Subversion Project Wed site: http://subversion.tigris.org/
[6] Pico Computing, Inc. Card Product Web site:

http://www.picocomputing.com/products/cards.php
[7] Information on about the TILE64™ PROCESSOR FAMILY

is available on their Web site:
http://www.tilera.com/products/processors.php

[8] C.M. Twigg, P.E. Hasler, I.F. Baskaya: A Self-Contained
Large-Scale FPAA Development Platform. ISCAS 2007:
1187-1191

[9] C. Gordon, E. Farquhar, and P. Hasler, “A family of floating
gate adapting synapses based upon transistor channel
models,” in Proceedings of the 2004 International Symposium
on Circuits and Systems, 2004. ISCAS ’04., vol. 1, May 2004,
pp. I–317–I–320.

[10] E. Farquhar, C. Gordon, and P. Hasler, “A field
programmable neural array,” in Proceedings of the
International Symposium on Circuits and Systems, Kos,
Greece, May 2006.

[11] J. Mills. The architecture of an extended analog computer
core. Fourth Workshop on Unique Chips and Systems (UCAS-
4), April 2008.

[12] J. Mills, (in press). The nature of the extended analog
computer. Physica D (to appear July 2008).

[13] A. Adamatzky et al., Unconventional Computing 2007.
Luniver Press (2007).

[14] B. Himebaugh, Design of the EAC,
www.cs.indiana.edu/~bhimebau (2005).

http://www.cotsjournalonline.com/home/article.php?id=100647&pg=1
http://www.cotsjournalonline.com/home/article.php?id=100647&pg=1
http://www.3l.com/Diamond/Sundance/diamond_for_sundance.htm
http://www.3l.com/Diamond/Sundance/diamond_for_sundance.htm
http://subversion.tigris.org/
http://www.picocomputing.com/products/cards.php
http://www.tilera.com/products/processors.php

	Home
	Papers By Alpha
	Papers By Session

