

PROPOSAL FOR AN EFFICIENT SOFTWARE OPTIMIZATION METHOD

FOR SOFTWARE-DEFINED RADIO

Yuji IKEDA*, Kosuke YAMAZAKI*, Toshiyuki MAEYAMA**, Yoshio TAKEUCHI*

*KDDI R&D Laboratories, Fujimino, Japan
**Takushoku University, Hachioji, Japan

Email: *{yj-ikeda, ko-yamazaki, takeuchi}@kddilabs.jp, **tmaeyama@es.takushoku-u.ac.jp
 Topic Section Number: 15.2 Processor Concurrence, Latency, real time optimization,

power optimization, memory optimization

ABSTRACT

 Recently, various digital signal processors (DSP) for
Software defined Radio (SDR) have been released. To
develop SDR software, the processing time must be within
the interval required by the wireless communication system.
If this period is too short, the SDR software needs to be
optimized to maximize the potential of the DSP. However,
as each DSP has its own specialized hardware architecture,
the software optimization takes a very long time. Moreover,
the software optimized for one DSP does not work well on
other DSPs.
In this paper, we propose an efficient method for

optimizing the SDR software. Our proposal enables a
reduction in the amount of work required to optimize the
SDR software for the target DSP. In the proposed method,
the information needed to execute the optimization, while
taking into consideration the hardware architecture of the
target DSP, is added to the target source code. The source
code optimization tool (SCOT) executes optimization
automatically using both the added information and the
information about the characteristics and the constraints of
the hardware architecture of the target DSP. Using the
proposed method, all the software programmer has to do is
add the information to the source code. Accordingly, the
amount of work required for optimization can be reduced.
Moreover, we made a prototype of SCOT and evaluated

the performance of the optimization. The results showed
that by using the prototype, the processing time of several
operations was reduced by about 75% from that of non-
optimized source code and the work needed for
optimization was reduced by about 90% compared with that
of optimizing manually.

1. INTRODUCTION

The demand for high-speed and wide capacity wireless
communication systems has been growing. In the 3GPP2
(3rd Generation Partnership Project 2) [1], the CDMA2000
1x EV- DO Rev. 0 was standardized in 2002 [2] and has

since been very widely utilized. Meanwhile, the next
generation communication system, CDMA2000 1x EV- DO
Rev. A was standardized in 2006 [3]. With such rapid
evolution, devices for wireless signal processing must be
replaced very soon after being developed, which
significantly increases the initial cost of the system. SDR
can be a very effective solution to this problem. SDR is a
technique which enables digital signal processing related to
a wireless communication system via software alone. The
SDR technique makes it possible to achieve a wireless
communication upgrade via software updates only, without
any hardware replacement. Because updating software is
much less costly than updating hardware, both initial and
maintenance costs can be reduced.
In general, the required interval for real-time operation is

very short in a wireless communication system. In order to
satisfy this requirement by means of software, use of a DSP
is very effective. This is because in a wireless
communication system, multiplication operations, such as
the convolution operation, are executed numerous times.
However, as each DSP has very unique characteristics, the
SDR software has to be optimized in order to utilize it. For
example, the number of cores, the connection method of
each core and the memory structure, and so on, differ
between each DSP. Moreover, some DSPs have a unique
extended instruction set or an accelerator. Although
software optimization is executed by the compiler, it is not
enough to maximize the potential of the target DSP. Thus it
is necessary to optimize the SDR software manually in
consideration of the hardware architecture of the DSP.
Traditional approaches related to SDR implementation

employ a variety of optimization schemes according to the
target processor's architecture [4, 5, 6]. For example, in the
case of the SB3010 [7], its multi-core architecture is fully
taken into account. One of the effects of using multi-core
architecture is parallelization of operation. In order to utilize
this feature, processing is assigned to each core so that the
load on each core is equalized as much as possible. In
addition, memory re-assignment is also executed. SB3010
has several types of internal and external memory. Although

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

external memory has a large capacity, access requires many
cycles. The variables and functions that are used frequently
are assigned to internal memory in order to reduce the
access latency.
The software optimization mentioned above takes a very

long time. Moreover, the software already developed does
not work well on other DSPs. Accordingly, if the target
DSP is replaced, the SDR software must be optimized again.
This redundant cost, related to the need to re-modify the
SDR software, will occur every time a used processor is
replaced. Such development costs and longer lead-time are
treated as a part of the total cost for new SDR software
development [8].

2. PROBLEM OF AUTOMATIC OPTIMIZATION

In order to resolve this problem, we studied an automatic

software optimization method [9]. When optimizing the
SDR software, it is imperative to select the required
information from the target source code in order to utilize
the characteristics and to consider the constraints of the
DSP. This is because the information required for software
optimization differs very significantly depending on the
target DSP. For example, to utilize multi-core architecture,
information on the minimum unit of processing which is
executed by one of DSP cores is essential. Also, to use an
accelerator effectively, information which processing can
apply to the accelerator and what variables are inputs or
outputs of the accelerator need to be determine .In order to
select such information correctly from the source code,
human experience and judgment are both absolutely
imperative. Thus, it is very difficult to optimize SDR
software automatically for the target DSP.

3. PROPOSED METHOD

To overcome this problem, we propose a method of
optimizing SDR software for the DSP that is more effective
compared with executing software optimization manually.
Fig.1 shows the architecture of the proposed method. As
this figure shows, the proposed method is characterized by
the fact that the source code information is added to the
non-optimized source code, which is written in a high-level
language such as C or C++. The source code information is
that which is needed to optimize software in order to utilize
the target DSP, as mentioned in the previous section. This
information is added by the software programmer because
the required information differs vastly depending on the
target DSP. Examples of the source code information are
shown below.
• Information on a unit of processing that should be

executed by an accelerator or one DSP core
• Information on the I/O variable used in the processing
 Information o• n the iteration number of the processing

The p the
roposed method is shown below.

formation
First, the software programmer analyzes the non-optimized

taking the
c

izing SDR software
 The source code optimization tool (SCOT) executes the

oth the non-optimized
s

s whether the DSP has an accelerator or is multi-
re.

•
• s of the hardware, such as

w
y size.

In

 in as the processing unit or the I/O values
epending on the characteristics of the target DSP. The

S

DE
OPTIMIZATION TOOL

In order to demonstrate the applicability of the proposed

method, we made a prototype of the SCOT.

Fig 1. The architecture of the proposed method

rocedure of optimizing SDR software using

p

Step1 : Adding the source code in

source code and selects the information
haracteristics of the target DSP into consideration. Then,

the software programmer embeds the result of analysis as
the source code information within the non-optimized
source code.

Step2 : Optim

optimization automatically using b
ource code with the source code information and the

hardware information, which together constitute the
characteristics and constraints of the DSP hardware
architecture. Examples of hardware information are given
below.
• Information on the hardware architecture characteristics,

such a
co
 Information on whether a unique variable can be used.
 Information on the constraint
the idth of the bus, the number of ports, and the
memor

 step1, it is only necessary to pick up a limited amount of
formation such

d
COT executes optimization automatically in order to

maximize its potential. By using the proposed method, all
the software programmer has to do is add the source code
information (step1). Thus, the amount of work can be
reduced compared with manual optimization.

4. PROTOTPYE OF SOURCE CO

Source Code
Optimization Tool

(SCOT)

Source code
Information

Hardware
Information

Non-optimized
Source Code

Optimized
Source Code

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Table 1 : Examples of the hardware information

.1 Ha

as used. This processor has a programmable logic device
LD) called ISEF (Instruction Set Extension Fabric). The
atures of this unit are shown below.
• In this unit, a customized instruction set can be defined

rti
a v cing processing time. When
p
In

pro
ite information are shown
i

on, the key point of optimizing the S5530 is
d ng the processing operations that should be
xecuted by ISEF. Fig.2 shows an example of the non-

the tags and Table 2 shows
e

Step 1: Calculate how many variables can be packed into a

code. The procedures
f this step are shown in Fig.3.

 for the tag “calc-input” and

 F

) The prototype tool calculates how many variables can
be packed into a WR. For example, if the type of
variable which is added to the tag “calc-input” is short,

n be
packed in (128 bits length) variable.

In
opti
the
code
all the customized instructions. Fig.4 shows the optimized

procedure is
s

d instructions.
) If the tag “init” is picked up, a customized instruction

deration that the number

(5) tag “calc-input” is picked up, a customized

4 rdware information
The S5530 processor manufactured by Stretch Inc [10]

w
(P
fe

by users in C/C++.
• The width of the interface of this unit is 128 bits. This

type of variable is called a wide register (WR). By
packing certain variables into a single WR,
parallelization can be realized.

In pa cular, parallelization of the operation using ISEF is
ery effective means of redu

assing the argument to ISEF, WR must be used.
 order to utilize the S5530, it is vital to discover the
cessing operations that are repeated many times by the

ration loop. Examples of hardware
n Table 1. The prototype tool already contains this

information.

4.2 Source code information
In the trial, tags are added to the non-optimized source

code as the source code information. As described in the
previous secti

iscoveri
e
optimized source code added
xamples of the tags.

4.3 Behavior of the prototype tool
The prototype tool picks up the tags added to the source

code and executes optimization automatically. The behavior
of the prototype tool is shown below.

WR
In this step, the prototype tool calculates how many

variables can be packed into a WR (128bit) before
optimizing the non-optimized source
o

(1) The prototype tool searches

detects the processing input variable.
(2) The prototype tool searches for the tag “alloc” and

extracts the data size of the input variable.

 ig.2 : Examples of the non-optimized source

code added the tag

(3

eight short-type (16 bits length) variables ca
to a single WR-type

Step 2: Optimizing the source code for S5530

this step, the prototype tool picks up the tag and
mizes the non-optimized source code for S5530. Here,
optimized source codes for S5530 are composed of the
s that define customized instructions and that which

c
source codes for S5530. The optimization
hown below. Here, the number of each item corresponds to

that in Fig.3.

(1) If the tag “start” is picked up, the prototype tool starts

optimization.
(2) If the tag “alloc” is picked up, the variable that added

this tag is defined in the source code that defines
customize

(3
Init-func(), which executes initialization, is defined and
called.

(4) If the tags “loop-init,” “loop-condition,” and “loop-
renew” are picked up, the description of the iteration
loop is output taking into consi
of repetitions which is reduced by packing a certain
variable into a WR
If the
instruction Calc-func(), which executes the processing,
is defined and called. Furthermore, the description of
packing a certain variable into a WR is output in the

Hardware information
s a PLD called ISEFS5530 ha

Customized instructions n be used in ISEFca
The width of the interface of this unit is 128 bits
This unit has 3 interfaces for input and 2 for output

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Fig.3 : The procedure of step1

source code, which calls customized instru
description of extracting variables from a WR in ISEF is
output in the source code that defines the customized

(6)

f the processing executed by ISEF to a WR, is

(8)

the rce code, the prototype tool executes
ptimization automatically based on the procedure

d

FORMANCE EVALUATION

5.1 Target operations

everal operations are optimized through use of the
prototype tool and can be used to evaluate performance. The

rget operations are shown below.
(i) Squ

In this operation, the square of the absolute value of the
ated. That is, if the input value is X1

(

his operation, the logical addition of 3 inputs is
 is, if the input bits are D1, D2 and D3, the

utput bit Y2 is calculated as below.

operation of the input
ector and the tap vector is executed. That is, if the input

are X2 and L1, the output vector
3 is calculated as below.

ctions and the 5. PER

instruction. Here, if the number of “calc-input” tags
exceeds 4, the prototype tool judges this processing
cannot be executed by ISEF and stops optimizing
because ISEF has only 3 interfaces for input.
If the tag “calc-exe” is picked up, the description added
this tag is copied in a customized instruction Calc-
func().

 ta

(7) If the tag “calc-output” is picked up, a customized
instruction Output-func(), which executes storage of the
results o
defined and called. Moreover, the description of
extracting this result from a WR is output in the source
code, which calls the customized instructions. Here, if
the number of “calc-output” tags exceeds 3, the
prototype tool determines that this processing cannot be
executed by ISEF and stops optimizing because ISEF
has only 2 interfaces for output.
If the tag “end” is picked up, the prototype tool ends
the optimization.

In this trial, once the software programmer adds the tag to
non-optimized sou

o
escribed in section 4.3. Accordingly, the amount of work

required for the optimization can be reduced.

S

are of the absolute value

complex figure is calcul
complex figure), the output value Y1 is calculated as below.

 *

111 * XXY =

Here, ” * “ means the complex conjugate.

(ii) OR circuit
 In t
executed. That
o

 ⎧Y
 ⎩
⎨ = : 12

12

otherwY

 (iii) FIR Filter
 In this operation, the convolution
v
vector and the tap vectors
Y

 ∑

−

=0
1][*]

j
jLj

====

0 : 0 32

ise
DDDif

−=
1

23 [][
N

iXiY

(1)Searching for the tag “calc-input” to
detect the input value of the ope tionra

(2)Searching for the tag “alloc” to extra
the data size of the input value

ct (3)Calculating how many variables
can be packed into a WR

WR = 128bit

shortshort

8 variables can be packed
(short type = 16bit)

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Here, N is the length of the tap vector.

5.2 Result of performance evaluation
Table 3 shows the results of the performance evaluation. In

f the reduced cycle time is shown.
his figure is calculated based on how much the cycle time

is reduced compared wit he results without optimization
e operation “Square

f the absolute value” and “OR circuit” was repeated 8192
, the lengths of the

i

the software programmer”, the software
p

dding the tag was about 10
m

to
consideration, is added to the target source code. The SCOT
executes the optimi in order to utilize

e potential of the DSP using both the source code
i

optimiz 530,

urce code information. The results showed that by using
e prototype tool, processing time for several operations
as reduced drastically compared with that of non-
ptimization. Moreover, compared to manual optimization,
e reduction in cycle time ranged from about 5%-10%. On

Ps that

] 3GPP C.S0024-A Ver.3.0 “cdma2000 High Rate Packet Data
Air Interface”, S

[4] Gweon-Do JO, Min-Joung SHEEN, Seung-Hwan LEE, and

PCI Systems Product Guide, July–

[6] Andrew DULLER, Daniel TOWNER, Gajinder PANESAR,

[7] Daisuke KAMISAKA, Singo WATANABE, and Yoshio

[8] Tokihiko YOKOI,

this table, the percentage o
T

h t
and are shown as a percentage. Here, th
o
times, and in the “FIR filter” operation
nput vector X2 and the tap vector L1 were 8192 and 48,

respectively. Moreover, the input values (X1, X2, D1, D2, D3,
L1) are the short type, so the eight parallel operations can be
realized in ISEF.
As this table shows, the performance of the prototype tool

is a little worse than that of the optimization by the software
programmer regardless of the type of operation. This is
mainly because the prototype tool developed in this paper is
an abridged edition, and it picks up the tags and only
replaces the description for S5530. In the case of
“optimization by

rogrammer codes while taking the location of each
description into consideration so that the code can be
executed more effectively. If the prototype tool is developed
further, the difference in the cycle time, “optimization by
the prototype tool” and “optimization by the software
programmer” may be reduced.
On the other hand, by using the proposed method, the

amount of work required to optimize the source code is
reduced by about 90% compared with “optimization by the
software programmer”. In optimization by the software
programmer, the amount of time required was about one or
two hours. In the optimization using the prototype tool, the
amount of time required for a

inutes. In terms of the work required for the optimization,
it can be said that the proposed method is very efficient.

6. CONCLUSION

This paper presents a method of optimizing the software

for SDR. In the proposed method, the source code
information that is needed to execute optimization, taking
the hardware architecture of the target DSP in

zation automatically
th
nformation and the hardware information which means the

characteristics and constraints of the hardware architecture
of the DSP. Using the proposed method, the amount of
work required for the optimization can be reduced because
all the software programmer has to do to optimize the SDR
software is to add the source code information. In order to
demonstrate the applicability of the proposed method, we
made a prototype tool and evaluated the performance of the

Table 3: Results of the performance evaluation

Square of absolute value 72 77
OR circuit 79 83
FIR filter 71 80

Optimization by the
prototype tool

Optimization by the
software programmer

Percentage of the reduced cycle time [%]

ation. In the trial, the processor used was the S5
and the tags were added to the target source code as the
so
th
w
o
th
the other hand, the amount of work required to optimize the
source code is reduced by about 90% compared with the
optimization by the software programmer. Considering the
drastic reduction of work, the proposed method is very
efficient. In particular, it is very effective for DS
have an accelerator or a PLD. This is because we only have
to select the part that should be executed by the accelerator
or PLD and then add sufficient source code information.
On the other hand, for DSPs that have multiple-core
architecture, we should also consider the composition of the
software in order to assign the processing to each core
effectively. And for some processing, synchronization of
each core may be required. Such optimization is more
complex, so a method for optimizing DSPs having multiple-
core architecture will be proposed in the future.

7. REFERENCES

[1] 3rd Generation Partnership Project 2 : 3GPP2,
“http://www.3gpp2.org”

[2] 3GPP C.S0024-0 Ver.4.0 “cdma2000 High Rate Packet Data
Air Interface”, Oct.2002

[3
ept.2006

Kyoung-Rok CHO， ``A DSP-Based Reconfigurable SDR
Platform for 3G Systems，'' IEICE Trans. Communications,
Vol. E88-B No. 2, pp. 678-686, February 2005.

[5] Bob KRAFT, “A high-performance SDR Implementation for
Compact-PCI”, Compact
August 2002.

Alan GRAY and Will ROBBINS, ``picoArray technology:
the tool's story'', Design, Automation and Test in Europe,
2005, pp.106–111 Vol.3

TAKEUCHI, ``Study on Software Optimization for Software
Defined Radio using Multiple-core DSP'', GSPx 2006.

 Yoshimitsu IKI, Jun HORIKISHI, Katsuji
MIWA, Yoshio KARASAWA, Akira FUKUDA, Jun-ichi
TAKADA, Yuichi KURODA, Takayasu SHIOKAWA,
Yukitsuna FURUYA, Shigenari SUZUKI, Yasuhiro SENBA,

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Yoshihide YAMADA, Hiroshi HARADA, Yasuo SUZUKI
and Hiyomichi ARAKI “Software Receiver Technology and

adio

0 June

[9] Kosuke YAMAZAKI, Shingo WATANABE and Yoshio

[10]

ples of the tags

 Fig.4 : The optimized source code for S5530

purpose
start,end Indicating the part that should be executed by ISEF

alloc tin

Its Applications (Special Issue on Software Defined R
and Its Technologies)”, IEICE transactions on
communications 2000 Vol.83 Num.6 p.1200–1209, 200

TAKEUCHI, ``A Study of Software Portability for Software
Defined Radio，'' IEICE Society Conference, B17-19, 2007.

 Stretch Inc, http://www.stretchinc.com

Table 2 : Exam

tags

Indica g the variable that is used in a customized instruction
init Indicating the variable that should be initialized

loop-init Indicating t initial value he of the iteration loop
loop-condition Indicating the cond on whether the iteration looiti p is continued

loop-renew Indicating the condition of the renewing of the value
loop-end Indicating the end of the iteration loop

calc-input,calc-output Indicating the I/O variables of ISEF
calc-exe Indicating the position of the calclation

(2) Description
by the tag “alloc”

The non-optimized source code
added the tags

The source code that defines
customized instructions

(3) Description
by the tag “init”

(4) Description by the
tags “loop-init”, ”loop-

condition”,“loop-renew”

(5) Description by the
tag “calc-input”

(7) Description by the
tag “loop-end”

(8) Description by the
tag “calc-output”

The source code which calls
customized instructions

Optimization

(3) Description
by the tag “init”

(5) Description by the
tag “calc-input”

(6) Description by the
tag “calc-exe”

(8) Description by the
tag “calc-output”

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

	Home
	Papers By Alpha
	Papers By Session

