
Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

TECHNIQUES FOR COMMERCIAL SDR WAVEFORM DEVELOPMENT

Anna Squires

Etherstack Inc.

145 W 27
th

 Street

New York NY 10001

917 661 4110

anna.squires@etherstack.com

ABSTRACT

Software Defined Radio (SDR) hardware platforms have

been used in commercial defence and Land Mobile Radio

(LMR) communications for several years now. However the

real value of SDR - software reusability, upgradeability and

portability – is still often not achieved because the software

itself fails to exploit the full potential of these platforms.

 This paper introduces SDR software development

practices successfully used in commercial radio projects to

maximise software portability, maintainability and

performance (PMP), and to minimise software cost. These

involve the application of specialist expertise, tools and

procedures at each of the specification, design,

implementation, integration and maintenance phases.

 The practices described have been developed to address

real problems found in industry, such as managing the

deployment of a waveform across multiple disparate

hardware platforms that may include heterogeneous devices

or use the Software Communications Architecture (SCA).

1. INTRODUCTION

Wireless voice communications can be broadly divided into

three industries: cellular, defence and Land Mobile Radio

(LMR). The emergence of large-scale commercial cellular

communications set a precedent in all three industries for

bigger networks with more users and features, which

coincided with a need for improved spectrum efficiency and

utilization. These factors demand more intelligent radios,

and intelligent radios require more software. Accordingly,

all three industries began to shift from traditional analogue

to digital technology.

 In the commercial cellular industry, this shift from

analogue (AMPS/ETACS/NMT450) to digital happened

swiftly, helped by high sales volumes that meant the newly

essential software intelligence was available to

manufacturers already incorporated into dedicated function

integrated chipsets. Unfortunately such a solution was

unavailable in the lower-volume defence and LMR

industries, which instead built software capable platforms

out of affordable technology developed for the first

generation of digital cellular devices: low-cost, low-power

and high-peripheral count generic solid-state processors

such as GPPs, DSPs and FPGAs.

 As this shows, the commercial use of SDR is not new.

Rather SDR platforms – that is, those that use generic

processing nodes such as GPPs, DSPs and FPGAs to

execute radio function in software – have been commercially

available since the first digital Land Mobile Radio (LMR)

mobile and base stations went to market approximately eight

years ago.

 Out of the first SDR hardware platforms an entire field

has grown. However research in SDR software – or SDR

waveform – development has lagged behind progress in

SDR hardware and platform technology. Most waveform

developments still involve cobbling together software design

techniques and tools from other fields and various different

vendors, rather than offering an integrated approach geared

for SDR.

 As more radio function is implemented within the

waveform and the value of the waveform therefore grows, it

is worth considering how the wireless communications

industries might improve the execution of waveform

development in order to protect this value. The dedicated

SDR tools and techniques introduced in this paper have been

developed by a commercial SDR waveform company in

order to optimise waveform portability, maintainability and

performance and thus ensure best return on investment in

waveform development.

2. WHAT IS A COMMERCIAL SDR WAVEFORM?

According the SDR Forum’s draft nomenclature [1] a

waveform is:

a) The set of transformations applied to information to be

transmitted and the corresponding set of transformations

to convert received signals back to their information

content.

b) Representation of a signal in space

c) The representation of transmitted RF signal plus

optional additional radio functions up to and including all

network layers.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

 In practice, the term ‘waveform’ is applied to a range

of different software implementations, from a single

signal processing algorithm or group of algorithms to a

commercial SDR waveform product. However in terms

of structure and complexity, these are entirely different.

 Firstly, the signal-in-space component itself can vary

widely in intricacy. A production-level commercial SDR

waveform deployed on a radio used within a real

communications network is substantially more complicated

than, for example, the operation of just the Physical Layer of

that waveform in demonstration in a controlled environment.

It requires a great deal of additional complexity at the

Network Layer, and must also co-ordinate the behaviour of

many algorithms and higher control functions across all

layers of the waveform.

 Secondly, and more significantly, in addition to meeting

complex signal-in-space and co-ordination requirements, a

commercial SDR waveform must manage the relationship

between hardware and software in order to optimise:

2.1. Portability

The waveform should be developed in a manner that ensures

it will be compatible with and therefore reusable across as

many current and future hardware platforms as possible. It

should also be developed in a manner that minimises the

work required to integrate it to any one potential hardware

platform.

 An important aspect of portability is deployability: the

ability to divide the waveform into arbitrary processor and

tasking entities so that during deployment it can be split in

different ways over a combination of platform processing

resources. If you design correctly for optimal portability you

also get reusability – the ability to reuse modules of

waveform code in other developments – for free.

 Optimal portability allows the maximum value to be

derived from the waveform relative to the cost of its

development, as the waveform can be reused on multiple

platforms and repeat development due to redesign of a

hardware platform is avoided. Also, an optimally portable

waveform prevents waveform considerations from

constraining hardware design decisions.

2.2. Maintainability

The waveform should be developed in a manner that allows

it to be maintained. This ensures the waveform can be

upgraded with fixes and new features, and therefore has a far

longer lifespan. Portability and testability are important pre-

requisites for maintainability.

2.3. Real-time Embedded Performance

The waveform should be designed and implemented in a

manner that will allow best real-time embedded performance

to be achieved across a range of potential platforms

unknown at the time of development.

Note that the aim of SDR waveform development is to

optimise these three factors. Some trade-off between them

may be required (although not necessarily; often they

reinforce one another) and as long as innovations in

hardware continue, waveform design will always be chasing

a moving target. Best-practice development is about

accommodating these practicalities to derive maximum

value from the waveform relative to the cost of its

development.

3. INDUSTRY STATUS OF SDR WAVEFORM

DEVELOPMENT

Designing and implementing a commercial SDR Waveform

that both meets the signal-in-space requirements of the

corresponding communications standard or specification and

correctly manages the relationship between the hardware

and the software is extremely complex.

 Despite this, most focus in SDR research and industry is

on SDR hardware and on standardisation of the interfaces

between hardware and software. Of roughly 120 papers that

were submitted to the 2007 SDR Forum SDR Technical

Conference, only a handful considered aspects of SDR

waveform design and none looked at the problem in entirety.

 Many initiatives – including the JTRS program and the

resultant Software Communications Architecture (SCA) –

have the outcome, if not the stated intent, of providing

guidance on waveform design. However again, the benefits

the SCA can offer in this regard are limited to the interfaces

between the waveform and the SDR/SCA platform, whereas

the majority of gains in Portability, Maintainability and

Performance (PMP) are achieved during design and

implementation of the waveform itself. Building an SCA-

compliant waveform does not therefore guarantee these have

been optimised.

 The most likely explanation for this ‘hardware-up’

approach lies in wireless communications’ heritage in

analogue technology. As this has been the norm for many

decades, more industry expertise is found in hardware

design.

 As a result, the complexity of SDR waveform software

is often poorly understood and SDR waveform development

poorly executed, leading to spiralling development times,

spiralling costs, and inferior products. For example, the

commercial development of non-SDR, fixed platform

complex radio software such as GSM, TETRA or APCO

P25 is generally measured in tens of millions of US dollars.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

This figure is for software that can only be deployed on a

single platform and does not factor in the added complexity

required of a useful, generic SDR waveform

implementation. To see more widespread adoption of SDR

waveform development best-practice, and an attendant

improvement in waveform products and reduction in

waveform cost, the wireless communications industries must

mature on two fronts.

 Firstly, SDR Waveform specialisation must be

cultivated. Secondly, the true and complete separation of

SDR hardware and SDR waveform development must occur.

3.1. SDR Waveform Specialisation

Just as hardware design is executed by hardware experts, so

commercial SDR waveform design should be executed by

waveform experts.

 SDR Waveform Engineers are familiar with a wide

variety of different wireless communications standards and

specifications. They also specialise in wireless technology

and embedded software design best-practice for SDR

hardware platforms.

 A well defined wireless communications standard or

specification is the starting point of any waveform. This is

fundamental for interoperability; without it, no two

independently developed waveforms or radios will

communicate correctly or completely. Many problems stem

from poorly defined standards, and thus attention during

development of the standard or specification should be paid

to exhaustively describing the air interface, rather than

detailing how the waveform should be implemented.

 That job belongs to the SDR Waveform Engineer. Due

to their expertise, waveform engineers are efficient at taking

a communications standard and:

a) Interpreting it.

b) Identifying deficiencies in the standard and compensating

for these.

c) Combining the standard and additional proprietary

customer features into a unified waveform requirements

specification.

c) Deriving from this a design that is modular and optimises

PMP.

d) Ensuring that the waveform will suit embedded platforms

and not compromise embedded performance or resource use.

e) Designing and using appropriate SDR test and other tools

to develop, verify and maintain the waveform.

f) Writing documentation to accompany the waveform.

These are each specialist skills that an SDR Waveform

Engineer refines over many years and multiple waveform

developments and deliveries.

3.2. Separation of Waveform and Platform Development

Optimal waveform design is achieved in complete isolation

from a target or reference hardware platform.

 In most waveform programs, the target or reference

hardware platform is known during development. This can

only degrade the quality of the waveform, because any

design decisions made in order to accommodate the

platform will immediately compromise the waveform’s

portability. Once this occurs, the waveform is married to the

hardware and will not have a life beyond it.

 Optimal waveform design is achieved when the

waveform is developed in complete isolation from the

platform, by planning from the specification or standard

down rather than from the platform up.

 This does not mean that the hardware is disregarded –

an SDR Waveform Engineer must consider the particular

characteristics of embedded platforms at every design

decision. Rather, it means that embedded best performance

for SDR platforms is planned into the design from the

outset, in conjunction with portability and maintainability.

4. COMMERCIAL SDR WAVEFORM DESIGN AT

ETHERSTACK

Etherstack is an independent, specialist commercial SDR

waveform company that has been developing waveforms for

radio manufacturers and defence clients internationally since

the outset of commercial SDR.

 As an independent waveform supplier, Etherstack is

driven by commercial imperative to design SDR waveforms

that are as flexible, portable, reusable and maintainable as

possible – and that can also be optimised for best

performance on small form factor embedded radio

platforms. Etherstack also needs to be able to execute

waveform development efficiently in order to minimise

waveform cost.

 Etherstack has independently built and then refined over

many waveform deliveries the tools and development

methodologies necessary to successfully optimise PMP.

These are introduced below.

4.1. Specification and Design

As mentioned earlier, it is not the role of a communications

standard or specification to describe how a waveform should

be implemented. Usually too a customer will have

proprietary features that require incorporation into the

waveform design. Developing a new waveform therefore

involves deriving specific waveform requirements from the

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

combined requirements of the standard and the client, and

then interpreting these in a design.

 At Etherstack, the first step in this process of

interpretation is to represent the design as functional layers

that accord with those in the OSI model, if and where

practical. These layers are then divided into many

communicating modules by applying a disciplined and

structured process of decomposition into consistent design

entity types and collaborating patterns of entities. This

process continues iteratively until the functional complexity

of each entity is minimised. At this stage radio functions that

are potentially susceptible to platform dependency have

already been identified and isolated.

 From there, the information flow between each

communicating entity in the waveform is represented as a

group of thoroughly defined interfaces, in order to

implement the scenarios or use cases identified in the

original waveform requirements. This process is illustrated

in Figure 1.

Figure 1: Functional Waveform Decomposition

4.2. Implementation

Once the design is complete, it is implemented as a Base

Waveform.

 The Base Waveform is the golden code from which

each subsequent Target Waveform is derived during

deployment on a new hardware platform. This approach is

key for maximising the lifetime of the waveform: if a client

updates or redesigns their hardware, the Base Waveform is

deployed afresh on the new platform, rather than trying to

move software designed solely for a legacy platform across

to it. The Base Waveform also acts as a central repository

for all waveform maintenance, and provides a reference for

regression testing and Target Waveform integration

verification.

 The Base Waveform is built by mapping the design

entities into well defined implementation entity types

provided by Etherstack’s Core Services. These Core

Services are a set of sophisticated structural blocks and

mechanisms, and combine to allow almost complete

abstraction of the waveform from the underlying operating

system and hardware platform. They also facilitate the

isolation of each functional entity in the waveform to

maximise deployment flexibility, and introduce to the

waveform intrinsic diagnostic and test support that is

compatible with Etherstack’s Development, Simulation and

Automated Test Environments.

 The Base Waveform is implemented entirely in a

general purpose programming language such as ANSI C to

allow for efficient test and development cycles. As

illustrated in Figure 2, it executes within Etherstack’s

Development and Simulation Environment on a laptop or

desktop computer in concurrent operation with Etherstack’s

Automated Test Environment.

Figure 2: Testing of Implemented Base Waveform

4.3. Integration

It is at the integration stage that the advantages of the PMP

design methodologies applied during the design and

implementation phases are reaped.

 The correct division of the waveform into isolated

communicating entities of minimum functional complexity

allows the waveform engineer complete flexibility to

position different waveform entities over the different

processing nodes on a heterogeneous platform in a manner

dictated by the requirements of the platform itself. This is

illustrated in Figures 3 to 6.

 Integrating the Base Waveform to a target platform (and

thus deriving the Target Waveform) therefore involves

firstly deciding which waveform entities will execute on

which radio devices according to resource availability and

compatibility between particular entity functions and

available processing nodes. The next step is to ensure the

Transceiver, Audio, Data, Security, Database and

Application waveform-to-platform interfaces are

compatible. Lastly, the waveform entities are integrated to

each relevant processing node on the platform, and

optimised for best performance on that node if necessary.

LAYER 3

LAYER 2

LAYER 1
CORE

SERVICES

ETHERSTACK

AUTOMATED
TEST

ENVIRONMENT

LAYER 3

LAYER 2

LAYER 1

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

 The integrated Target Waveform is verified on the

hardware platform via automated testing, using Etherstack’s

Automated Test Environment and identical test scripts to

those applied to the Base Waveform. The thorough

definition of interfaces between waveform entities during the

design and implementation phases allows each to be tested

in isolation, as well as for the waveform to be tested as a

whole. This is illustrated in Figure 7, and testing is described

further in Section 4.4.

 It is worth recalling that due to Etherstack’s Core

Services, the operating system used on each processing node

is immaterial; the waveform is almost entirely operating

system and hardware platform independent.

Figure 3: Integration of Entire Waveform to DSP

Figure 4: Integration of Entire Waveform to GPP

Figure 5: Integration of Waveform to GPP and DSP

Figure 6: Integration of Waveform to GPP, DSP and FPGA

4.4. Maintenance

Any benefits gained due to the application of correct SDR

waveform development methodology rely on a test

environment built on the same principles. This must be

compatible with both the simulation environment and all

potential target platforms in order to verify the waveform

during development, prove its correct implementation as a

Base Waveform, prove the correct deployment of Target

Waveforms and provide regression testing for ongoing

maintenance of Base and Target Waveforms.

 As with Etherstack’s Core Services, Etherstack’s

Automated Test Environment took tens of engineer years to

develop. During its development, the following features

were identified as essential in order to support optimal

waveform PMP:

a) A library of human-readable test scripts for each

waveform that comprehensively covers the behaviour

captured in the corresponding waveform requirements

specifications. Each of Etherstack’s test scripts contains

many hundreds of test vectors that are applied to both

internal and external interfaces on the waveform under test,

in the process deriving human-readable test outputs.

b) Automation. To be exhaustive, waveform testing should

be automated just as hardware verification is automated.

This involves the automatic execution of each test script in a

library in sequence, and of each test vector in a test script –

accompanied by automated verification of the results.

c) Identical automated testing of the Base Waveform in

simulation and a Target Waveform deployed on an

embedded hardware platform. Etherstack builds intrinsic

support for hardware agnostic testing into every waveform

via the Core Services. Support for testing on the target

hardware is similarly built into the Automated Test

Environment. This allows the same test scripts to be

executed via the Automated Test Environment over both the

LAYER 3

LAYER 2

LAYER 1
CORE

SERVICES

GPP

DSP

FPGA

LAYER 3

LAYER 2

LAYER 1
CORE

SERVICES

GPP

DSP

FPGA

LAYER 3

LAYER 2

LAYER 1
CORE

SERVICES

GPP

DSP

FPGA

LAYER 3

LAYER 2

LAYER 1
CORE

SERVICES

GPP

DSP

FPGA

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Base Waveform in simulation on a PC, and over each Target

Waveform on each target hardware platform. This is key for

verifying not only that the Base Waveform meets the

specifications, but that the Target Waveform does also – and

that the behaviour of the two is entirely consistent.

d) The ability to replicate a problem scenario discovered

during a Target Waveform’s operation on an embedded

platform in the Base Waveform, by executing a live log

derived from the target hardware platform in the Base

Waveform simulation environment.

e) Every internal interface must be testable. This ensures

that the resolution of the software under test can be varied

from the entire waveform down to a single entity – key if

entities or groups of entities may be deployed on different

processing nodes in a platform.

f) Graphic tools for visual representation of all signalling

and state activity output during testing. These are valuable

for diagnostics and as an aid to help clients understand the

operation of the waveform. In addition to interface activity,

Etherstack’s test environment outputs diagnostic information

about the waveform such as internal entity state, registered

variable state, timer expiry and so on – all of which can be

viewed graphically.

It is also worth noting that in addition to automated testing,

successful maintenance of the Base Waveform and each of

its Target Waveforms requires highly controlled source code

management and versioning.

Figure 7: Testing of Waveform on Target Hardware

5. PORTING TO THE SOFTWARE

COMMUNICATIONS ARCHITECTURE (SCA)

If a waveform has been designed correctly, porting it to the

SCA in order to make it SCA compliant is uncomplicated.

At Etherstack, this is achieved by merely identifying how the

waveform will be divided into SCA Resources and Devices,

and then applying “SCA Wrappers” that convert the

identified modules into the relevant Resource or Device.

This is illustrated in Figure 8. Using this approach,

manufacturers can deploy the save waveform, with exactly

the same features, on both SCA and non-SCA radios.

 Etherstack’s Automated Test Environment is also

capable of executing the test script suite over the SCA ports

of the ensuing SCA waveform, so the full benefits of a non-

SCA deployment are retained.

Figure 8: Porting an SDR Waveform to the SCA

6. CONCLUSION

Commercial SDR Waveforms involve complex signal-in-

space and co-ordination functions, and a carefully managed

relationship between hardware and software that aims to

optimise waveform PMP - Portability, Maintainability and

Performance.

 To improve the quality and longevity of SDR

waveforms in light of these requirements, this paper

advocates the cultivation of SDR waveform development as

an independent, specialist enterprise within the wireless

communications industries.

 It also recommends specific practices to apply at each

phase of waveform development through specification,

design, implementation, integration and maintentance, in

order to optimise PMP and therefore capitalise on the value

of SDR.

7. REFERENCES

[1] SDR Forum Cognitive Radio WG, Cognitive Radio

Definitions and Nomenclature - DRAFT, SDRF-06-P-
009-V0.5.0, 30 May 2008.

LAYER 3

LAYER 2

LAYER 1
CORE

SERVICES

SCA WAVEFORM

GPP

DSP

FPGA

XML
Assembly

Controller

Layer 2

Resource

Layer 1

Resource

Layer 3

Resource

GPP

DSP

FPGA

ETHERSTACK

AUTOMATED

TEST

ENVIRONMENT

	Home
	Papers By Alpha
	Papers By Session

