
DATAFLOW PROGRAMMING: BUILDING PORTABLE AND EFFICIENT DESIGNS IN
HETEROGENEOUS PROGRAMMABLE PLATFORMS

Jörn W. Janneck, Christopher H. Dick

Xilinx, Inc.
San Jose, CA, U.S.A

{jorn.janneck,chris.dick}@xilinx.com

ABSTRACT

The development of modern electronic systems increasingly
faces qualitative pressures coming from a growing techni-
cal diversity and heterogeneity of the computational elements
used to build them, as well as move toward parallel comput-
ing resulting from the fact that sequential processors are not
becoming faster at the rate they used to. These two devel-
opments require a fundamental shift in the way systems are
conceived and implemented. We propose a dataflow design
methodology built around a notion of transactional execution
of asynchronously communicating elements (”actors”). This
model permits efficient implementation on a variety of com-
putating platforms. It is based on simple, understandable ab-
stractions which are a natural medium for expressing the var-
ious levels of parallelism in an application. Its parallelism
naturally scales with application size, i.e. larger programs
tend to include more parallel execution than smaller ones. In
addition, this dataflow methodology also provides the foun-
dation for an entirely new approach to the profiling and anal-
ysis of concurrent programs, which can be used to guide the
implementation of a dataflow program and its mapping to a
computing platform.

1. INTRODUCTION

The diverse set of processing tasks associated with complex
wireless systems like WiMax, 3G, 3G LTE is often realized
using a heterogeneous processing platform comprising DSP
processors, general purpose processors (GPP) and field pro-
grammable gate arrays (FPGA). One of the challenges associ-
ated with mapping a complete wireless application compris-
ing, among other things, of IP (internet protocol)-centric pro-
cessing tasks, wireless medium access control (MAC) func-
tions and complex real-time signal processing datapaths, is
the ability to rapidly perform design space exploration in or-
der to deliver the functionality within the required envelope
of performance, power and cost.

Further, the subsequent step of taking a specific instance
in the design space and generating the required combination
of software for DSP processors and GPPs, and hardware de-

scription language (HDL) modules for an FPGA together with
all of the implied interfaces is a complicated process using
current generation design flows and tools. In practice, it is
common for a set of platform specific (DSP processor, GPP,
FPGA) tools to be employed for design capture and indepen-
dent simulation of each of the functions to be mapped to the
multiple processing domain, and it is often difficult, if not
impossible, to perform a holistic simulation of the aggregate
code base spanning the heterogeneous processing targets.

We observe that by employing a heterogeneous process-
ing platform, the nature of the programming task is now one
of design capture, simulation and code generation for a par-
allel computing platform, exploiting a hierarchy of compu-
tational and data parallelism present in the problem. Each
silicon device in the system, be it a DSP processor, GPP or
FPGA, is typically a concurrent computing machine in its
own right. For the case of the DSP and GPP there is an trend
to incorporate multiple cores in each device (multi-core pro-
cessors). The FPGA is a massively parallel device compris-
ing many hundreds of arithmetic units. So in addition to the
aforementioned requirements of the programming model, it is
also a requirement to generate efficient code that can be fac-
tored across the pool of parallel resources in each processing
device on the platform.

This paper introduces a parallel programming model
(section 2), and a typical stream-oriented application (and
MPEG-4 decoder, section 3). It then presents techniques for
obtaining metrics about the parallel program by profiling and
analyzing its execution, before finally discussing its imple-
mentation in hardware and software (section 5).

2. DATAFLOW MODEL

The work in this paper is based on a dataflow programming
model, in which (dataflow) programs consist of computa-
tional kernels, called actors, which are connected to each
other by lossless directed FIFO channels. These channels at-
tach to actor (input or output) ports and are used to send pack-
ets of data, called tokens (Fig. 1). This model is embodied in
actor languages such as CAL [1], which is the one we used

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



Fig. 1. A dataflow network with actors connected by FIFOs,
and the inner components of one actor, its actions, ports, and
state.

for the work presented here. Depending on the implementa-
tion platform, the FIFOs may be bounded or unbounded, and
size constraints may or may not apply to individual tokens.
An actor in turn consists of

• input ports,

• output ports,

• internal state,

• a number of transition rules called actions.

It executes by making discrete, atomic steps or transitions.
In each step, it picks exactly one action from its pool of ac-
tions (according to whatever conditions are associated with
that action), and then executes it, at which point it may do
any combination of the following things:

• consume input tokens,

• produce output tokens,

• modify the state of the actor.

The state of an actor is strictly local, i.e. it is not visible to
any other actor. This is what allows actors to run relatively
independently of each other without concern for whether the
order in which they end up executing their actions causes race
conditions on their state.

Actors are similar to objects in object-oriented program-
ming in the sense that they encapsulate some state and asso-
ciate it with the code manipulating it (the actions). They differ
from objects in that actors cannot call each other. There is no
transfer of control from one actor to another, each actor can
be thought of as its own independent thread.

3. EXAMPLE: AN MPEG-4 SP DECODER

The example used here for illustration is an MPEG-4 Sim-
ple Profile video decoder, a computational engine consuming
a stream of bits on its input (the MPEG bitstream), and pro-
ducing video data on its output. At 30 frames of 1080p per
second, this amounts to 30 ∗ 1920 ∗ 1080 = approx. 62.2

Fig. 2. Top-level view of the MPEG decoder, depicting parser,
AC/DC reconstruction, IDCT, and motion compensation.

million pixels per second. In the common YUV420 format,
each pixel requires 1.5 bytes on average, which means the de-
coder has to produce approx. 93.3 million bytes of video data
(samples) per second.

Fig. 2 shows a top-level view of the dataflow program
describing the decoder.1 The main functional blocks include a
parser, an reconstruction block, a 2-D inverse discrete cosine
transform (IDCT) block, and a motion compensator. All of
these large functional units are themselves hierarchical com-
positions of actors—the entire decoder comprises of about 60
basic actors, which together take approximately 4,000 lines
of code (LOC).

The parser analyzes the incoming bitstream and extracts
the data from it that it feeds into the rest of the decoder. It is by
far the most complex block of the decoder, more than a third
of the code is used to build the parser. The reconstruction
block performs some decoding that exploits the correlation of
pixels in neighboring blocks. The IDCT, even though it is the
locus of most of the computation performed by the decoder,
is structurally rather regular and straightforward compared to
the other main functional components. Finally, the task of
the motion compensator is to selectively add the blocks issu-
ing from the IDCT to blocks taken from the previous frame.
Consequently, the motion compensator needs to store the en-
tire previous frame of video data, which it needs to address
into with a certain degree of random access.

One interesting aspect of this application is that it exer-
cises a broad range of language features and application re-
quirements. It contains control-dominated parts such as the
parser, heavy-duty computational elements with little or no
state but high throughput requirements such as the IDCT, and
state-heavy parts that contain and access a large amount of
memory such as the motion compensator. In the IDCT, com-
putation and the flow of data is very regular and even statically
analyzable, while in the motion compensator it is very much
data dependent, and the sequence of operations in the parser
is effectively entirely controlled by the incoming data.

1The source code for the decoder discussed in this paper is available at
http://opendf.sf.net.

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



Fig. 3. Part of a trace of an MPEG-4 decoder.

4. PROFILING

This section discusses some techniques for producing quan-
titative data from runs of a dataflow program, which are pre-
sented in greater detail in [2].

4.1. Traces

Unlike procedures/functions in a sequential program, the ba-
sic building blocks of a dataflow program, the actions, do not
transfer control to each other, there is no caller/callee relation-
ship between them, and there is consequently no hierarchical
call-graph that form the basis of most sequential profilers.

However, that does not mean that action executions are
independent of each other. For instance, in a system where
actor A produces tokens that actor B consumes, the actions in
B are clearly dependent on those in A because for any token
going from A to B, the action producing it must have occurred
before the action consuming it. Every token, therefore, estab-
lishes a token dependency between two action executions, viz.
the one that produced it, and the one that consumed it.2 Typ-
ically, the actions in question will be in two different actors,
but they need not be: in case of direct feedback, where an ac-
tor directly consumes tokens it produces, action executions of
the same actor will be token-dependent on each other.

Two action executions within the same actor may or may
not be independent. If they access shared state, or if they use
the same input or output ports to communicate tokens, they
are said to be related by a state dependency or a port depen-
dency, respectively. In that case, the sequence of their execu-
tion by the actor matters, otherwise they may be executed in
any order.

A causation trace (or simply trace) of a dataflow pro-
gram is a directed acyclic graph such that

• every node is a step of one actor in the program,

• every edge from v1 to v2 is a dependency (either through

2If a connection fans out to several consumers, the tokens gets copied to
each and thus creates a dependency of each consuming action on the same
producing action.

a token, state or port) from v2 on v1, implying that there-
fore v1 has to be executed before v2.

Fig. 3 shows part of the trace of a real-world application,
in this case an MPEG4 decoder, in which dependencies flow
from top to bottom. The trace was extracted from an execu-
tion of a dataflow model of the decoder, by tracking the pro-
duction and consumption of tokens, and the access to ports
and actor state.3 The initial segment at the top is relatively
thin and linear, denoting a more sequential part of the com-
putation (in this case, the parsing of the MPEG bitstream).
Following that segment are clusters of computation that are
much wider, as a result of the fact that more steps are inde-
pendent of each other and can therefore be executed at the
same time, permitting more parallel implementations (in this
case, these clusters represent IDCTs).

Depending on the application, traces can be of consid-
erable size—for instance, in the case of the MPEG-4 decoder
that we used in our experiments, the computation correspond-
ing to two frames of QCIF video (176x144 pixels), one i-
frame and one p-frame, resulted in a trace with approximately
260,000 nodes.

Once we have obtained a trace from the execution of a
dataflow program, we need to analyze it to gain insight into
performance aspects of the dataflow program. The next sec-
tion discusses a few basic techniques for analyzing causation
traces.

4.2. Structural analysis

In media processing, many dataflow programs only have a
small number of input and output ports, e.g. the MPEG-4 de-
coder has one of each: an input port consuming bytes of an
MPEG-4 stream, and an output port generating macroblocks
(16x16 blocks) of video pixels. Since the output is also sub-
ject to strict real-time requirements (a certain amount of video
has to be generated in a given amount of time), we may want
to investigate aspects of the computation required for each
piece of output, in our case for each macroblock. A trace of

3The source code of the decoder and the execution infrastructure is avail-
able at opendf.sf.net.

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



1

2

3

4
5

1

2

3

4

5

Fig. 4. Output-tagged trace.

such a system generally has the structure shown in Fig. 4. All
computation happens between a sequence of input steps (the
squares) and a sequence of output steps (the circles). We now
output tag the trace by the following procedure: Starting from
the first output step, we tag every step that it depends on, di-
rectly or indirectly, with 1. Then, proceeding with the second
output step, we tag every untagged step it depends on with 2
and so forth. In this manner, we divide the entire computation
into output regions, containing steps contributing to specific
tokens of the output, as shown in Fig. 4.

Fig. 5. Input consumed for each macroblock by the MPEG
decoder, in bytes.

We can use an output-tagged trace in various ways. For
instance, we can count how many input steps occur in each
region, which provides us with a measure of how much input
is required for each piece of output. The result for the first two
frames on an MPEG-4 stream are shown in Fig. 5. The x-axis
in this graph (and those following) represents the output to-
kens of the system in order, in the case of the MPEG decoder
each tick is a macroblock. The y-axis represents some mea-
sure of the corresponding region in the trace. In Fig. 5 it is
the number of input bytes consumed in the region. As the first
frame is an i-frame and the second is a p-frame, the amount
of input drops sharply in the middle of the output sequence,
due to motion compensation.

The size of the regions in the output-tagged trace corre-
sponds to the number of steps we need to perform for each
macroblock. If we want to use this as a measure for the com-
putational effort, we might want to weigh each step according

Fig. 6. Computational cost for each macroblock in an MPEG-
4 decoder.

to the effort required to execute it. In the example, all weights
are 1, and the resulting graph is shown in Fig. 6. Again, we
can see that the motion-compensated p-frame requires much
less computation, but we also see that the variability is much
higher.

Looking at the output regions individually, we may de-
termine the longest path in them. It represents the minimal la-
tency for a particular macroblock, i.e. at maximal paralleliza-
tion (which also means that no step is waiting for a resource),
this is the time required for the computation. If we divide
the number of steps by length of that minimal latency, we ob-
tain a measure of the parallelizability of the computation—
the shorter the minimal latency, and the more work is done in
total, the more work can be done on average at the same time.

Fig. 7. Minimal additional latency per macroblock in an
MPEG-4 decoder.

We can combine post-mortem scheduling with the
output-tagged trace in a number of interesting ways. For in-
stance, the longest path of a region by itself is not a very use-
ful figure, since in a parallel implementation some of the com-
putation usually happens concurrently with the computation
of previous regions. However, for a given schedule we can
determine the time between the production of macroblocks,
which is a more meaningful metric. Fig. 7 shows how much

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



time expires between two successive macroblocks.

5. IMPLEMENTATION

This section discusses some aspects of implementing
dataflow programs in hardware and in software.

5.1. Hardware synthesis

When generating hardware implementations from networks
of CAL actors [3], we currently translate each actor sepa-
rately, and connect the resulting RTL descriptions using syn-
chronous or asynchronous FIFOs. Consequently, we do not
employ any cross-actor optimizations.

Actors interact with FIFOs using a handshake protocol,
which allows them to sense when a token is available or when
a FIFO is full. We do not synthesize any static schedule be-
tween actors, which means that the resulting system is entirely
self-scheduling based on the flow of tokens through it, and the
content of the FIFOs.

The translation of each CAL actor into a hardware de-
scription follows a three-step process:4

1. instantiation
2. precompilation
3. RTL code generation

During instantiation, elaborating the network structure
yields a number of actor instances, which are references to
CAL actor descriptions along with actual values for the for-
mal parameters. From this, instantiation computes a closed
actor description, i.e. one without parameters, by moving the
parameters along with the corresponding actual values into
the actor as local (constant) declarations. It then performs
constant propagation on the result.

Precompilation consists of some simple actor canoni-
calization steps, in which several features of the language
are translated into simpler forms and other sou rce-to-source
transformations, e.g. inlining procedure and function calls.
Then the canonical, closed actors are translated into XLIM,
an intermediate XML format for describing a collection of
communicating threads, each of which represented as an im-
perative program in static single-assignment (SSA) form.

The final phase of the translation process generates an
RTL implementation (in Verilog) from a set of threads in
SSA form. The first step simply substitutes operators in ex-
pressions for hardware operators, creates the hardware struc-
tures required to implement the control flow elements (loops,
if-then-else statements), and also generates the appropriate
muxing/demuxing logic for variable accesses, including the
Φ elements in the SSA form.

4The code for instantiation and precompilation is available on
http://opendf.sf.net.

Size Speed Code size Time
slices, BRAM kMB/S kLOC MM

CAL 3872, 22 290 4 3
VHDL 4637, 26 180 15 12

The above table shows the quality of the result produced
by the RTL synthesis engine for the MPEG decoder, com-
pared with a hand-written decoder in VHDL. Note that the
code generated from the high-level dataflow description actu-
ally outperforms the VHDL design in terms of both through-
put (in thousand macroblocks per second, kMB/s) and silicon
area.

5.2. Software synthesis

In [4] Roquier et al. present Cal2C, a compiler translating
individual CAL actors into software implementations in the
C programming language. Actors are turned into individual
threads, which can be scheduled with respect to one another
either cooperatively or preemptively.

Translating the functions, procedures, and actions con-
tained within the description of an actor produces a single C
file. The way Cal2C uses the C language implies some limita-
tions for the code that can be translated by this compiler, such
as functional and procedural closures, which have no direct
correspondence in C, and which Cal2C will not translate.

The translation process reuses many of the front end pre-
processing steps of the HDL code generator. After some pre-
processing, type inference is performed on the actor code, in
preparation for performing a number of type-dependent trans-
formations: functions that return lists are inlined, and list
sizes are computed statically.

The resulting transformed and annotated AST is then
translated into the C Intermediate Language (CIL) [5], and
functional constructs of CAL are replaced by imperative ones.
C code is generated by calling the pretty-printer included in
the CIL framework.

For the 4,000 LOC of the CAL decoder, Cal2C gener-
ates about 10,400 LOC in C. The compiled program runs
on a SystemC-based cooperative task scheduler running on
a 2.4GHz Pentium at about 2 kMB/s, compared to the 290
kMB/s of an implementation that runs entirely in reconfig-
urable logic.

6. CONCLUSION

In this paper we have presented a dataflow programming
paradigm for stream-oriented computation that permits the
description of systems in such a way that they can be mapped
efficiently to both programmable hardware as well as software
targets. We have demonstrated this capability by translating
an at-size real world application with a broad range of appli-
cation characteristics to both programmable hardware as well
as software.

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



Since a dataflow program is in essence a concurrent de-
scription of an algorithm, traditional profiling techniques are
no longer applicable. We have introduced an approach to pro-
filing based on a explicit description of the structure of a com-
putation, and shown a analysis technique for obtaining a num-
ber of metrics from that structure.

A natural extension of this work is the implementation
of dataflow systems in a combination of programmable hard-
ware and software, asynchronously interacting through FIFO
channels. We would use profiling to identify throughput-
critical components, and implement those in hardware, while
the rest could be realized as software on either a soft or a hard
processor. The fact that we have automatic translators that
can target software and hardware from the same source allows
us to efficiently, and with minimal user intervention, explore
different implementation options, realizing different resource
cost/performance tradeoffs without rewriting the application.

7. REFERENCES

[1] Johan Eker and Jörn W. Janneck, “CAL language re-
port,” Technical Memo UCB/ERL M03/48, Electronics
Research Lab, University of California at Berkeley, De-
cember 2003.

[2] Jörn W. Janneck, Ian D. Miller, and David B. Parlour,
“Profiling dataflow programs,” in Proceedings of the
2008 IEEE International Conference on Multimedia and
Expo (ICME), 2008.

[3] Jörn W. Janneck, Ian D. Miller, David B. Parlour, Ghis-
lain Roquier, Matthieu Wipliez, and Mickaël Raulet,
“Synthesizing hardware from dataflow programs: an
MPEG-4 simple profile decoder case study,” in Proceed-
ings of the 2008 IEEE Workshop on Signal Processing
Systems (SiPS), 2008.

[4] Ghislain Roquier, Matthieu Wipliez, Mickaël Raulet,
Jörn W. Janneck, Ian D. Miller, and David B. Parlour,
“Automatic software synthesis of dataflow programs: an
MPEG-4 simple profile decoder case study,” in Proceed-
ings of the 2008 IEEE Workshop on Signal Processing
Systems (SiPS), 2008.

[5] George C. Necula, Scott McPeak, S. P. Rahul, and West-
ley Weimer, “CIL: An infrastructure for c program analy-
sis and transformation,” in Proceedings of Compiler Con-
struction (CC) 2002.

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved


	Home
	Papers By Alpha
	Papers By Session



