# TESTING METHODS AND ERROR BUDGET ANALYSIS OF A SOFTWARE DEFINED RADIO By Richard Overdorf

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



Agilent Technologies

# **SDR Considerations**

#### Data rates

- Voice
- Image
- Data
- Streaming Video
   Environment
- Distance
- Terrain
- High traffic/Low traffic
   Priority





Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



Agilent Technologies

# **SDR's Flexibility**

Interoperability

• One radio with ability to communicate with everyone.

Upgradable



Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



Agilent Technologies

# **Frequency Configurable – Cognitive Radio**

Front ends that are configurable require one of the following

- Very wide bandwidth
- Flexible front-end



Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



# **SDR Testing**



Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



### **Golden Box Testing**

- •Quantitative data is not available
- •Makes statistical process control difficult
- Inability to separate impairments
- •Can easily "mask" other problems with radio
- •Can lead to interoperability issues



Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



### What is "Residual" BER?



**Agilent Restricted** Month ##, 200X

# **BER Testing Methods**

- Loopback Testing
- Easy Measurement...
- Measures Overall Performance
- Issues in Loopback BER
  - Some impairments are additive across the wireless system.





- Loop-back tests remove impairments, leading to false results.
- System budgets are essential for interoperability.
- Bit Error Ratio Tester (BERT)
- Agilent ADS
- Signal Sources digital/analog/RF



EVM





Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



Agilent Technologies

## Waveforms



SCM

Development

Flexibility

Troubleshooting



CDMA

Security

Ability to carry multiple users

Transmit more efficiently



### OFDM

Robust in the presence of SCM interferes

Adapt and handle challenging channels

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



# **Digital Impairments**

| SystemVue Linear System (t1 BandPass FIR),                                                                                |                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| File Edit Preferences DSP Mode Filters Laplace Sy                                                                         | 🗞 SystemVue BandPass DSP Filter Design 🛛 🛛 🔀                                                 |
| No. Numerator Coeffs No. Denominato                                                                                       | BandPass FIR Filter<br>Frequencies are a fraction of the filter input sample rate.           |
| Clear NumeratorClear                                                                                                      | Rel Freq         Rel Freq         Rel Freq           0.1         0.2         0.3         0.4 |
| Coefficient: z-0         Coeff           4.38250005341377E-03         0) 1           D) 4.38250005341377E-03         0) 1 | Gain (dB)<br>0.0                                                                             |
| 1) -3.33650689150224E-03<br>2) 4.17800550166152E-03<br>3) -1.65515056308226E-02                                           | Gain (dB)<br>40.0                                                                            |
| Frequency Response: Gain in dB vs Freq in Hz (d                                                                           | H Relative Frequency (Hz) 0.5                                                                |
|                                                                                                                           | -40.0                                                                                        |
| -20                                                                                                                       | In-Band Ripple (dB) Initial No.Taps Elanix Auto Optimizer                                    |
| -40                                                                                                                       | Max Iterations Est Taps = 22 Enabled                                                         |
|                                                                                                                           | 25 Update Est Finish Cancel                                                                  |
| -80 - 08-                                                                                                                 | yMm: 112.3 dB F = 100 ?                                                                      |
| -100                                                                                                                      | FFT: 8192 pts OK                                                                             |
| 0 100e+3 200e+3 300e+3 400e+3                                                                                             | 600e+3 Bescale Update Plot Cancel                                                            |

#### **Filters**

Filter ripple, rolloff, filter rejection

- Better filter requires more filter taps
  - More taps means more multiplies
    - •Multiplies increase word length

Agilent System Vue Filter Design tool

- Overflows
- Truncation reduces DR

#### FPGA resources vs signal quality



**Ripple:** typically removed by receiver equalizer but can effect signal quality

**Overflows:** distort signals and will reduce **BER/EVM** 

**Truncation:** reduces DR, reduced S/N effects EVM/BER

**Insufficient rejection or rolloff:** cross channel interference reducing BER/EVM in co-channels



• Rounding requires additional operations



# **Digital Impairments**

#### FPGA resources vs signal quality



#### NCO – Numerically controlled oscillators

Frequency resolutions

•Improve with larger LUT size

Amplitude Quantization spurs

• Improve with greater word length or dithering

Phase truncation (quantization)

•Improve with enhanced dithering techniques or greater LUT resolution



Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



### **Noise Effects**

**Noise Figure** 



**Phase Noise** 



#### Phase Noise in OFDM

- Results in each subcarrier interfering with other subcarriers
- Modulates each sub-carrier to the point that they no longer look like simple sinusoids within the FFT interval
- Causes the nulls of the sin(x)/x spectrum to fill in, creating interference between every subcarrier and its neighbors



Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



**Agilent Technologies** 

# **Other Impairments**

**Channel Loss** 

Interference

AM/AM Distortion

**AM/PM Distortion** 

**Delay Distortion/ISI** 

| ۲        |  |
|----------|--|
| 0        |  |
| <b>~</b> |  |
|          |  |
| ::       |  |

| Primary           | Secondary             |
|-------------------|-----------------------|
| Range             | Natural Barriers      |
| Spurious          | Power Supply          |
| PA                | ADC Quantization      |
| PA                | PA Leveling Stability |
| <b>BB</b> Filters | IF Filters            |

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



# System Budget Concept



- Allows the engineer to separate the modulator, transmitter, receiver, and demodulator issues
- Helps ensure interoperability between different receivers or transmitters
- Essential for assuring customer premises equipment units will not dribble years after the base station is installed
- Gives the ability to upgrade modem and ensure that the current RF will support it
- Budgeting helps control costs
- It mathematically relates key analog metrics to digital bit errors used to evaluate the system

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



**Agilent Technologies** 

## **RF Design vs. DSP**

Many times you can cut costs by implementing tracking and equalizing Cost come in development and DSP power



| 802.16 OFDMA Demodulation Properties                                                                                       |                                                                                                                                                          |  |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Format Zone Definition Time Advance<br>✓ IQ Normalize<br>Mirror Frequency<br>Spectrum<br>Symbol Timing Adjust:<br>-3.125 % | ced Burst Profiles<br>Use Default Settings<br>Include inactive subchannels<br>Pilot Tracking:<br>I♥ Track Amplitude<br>I♥ Track Phase<br>I♥ Track Timing |  |
| C Subset     Offset:     I Interval:     I                                                                                 | Equalizer Training:<br>Preamble Only<br>Preamble, Data & Pilots<br>Preamble & Pilots Only<br>Equalizer Smoothing                                         |  |
|                                                                                                                            | Data Tone Modulation<br>Automatic<br>Manual (see burst definitions)                                                                                      |  |
| Decode ULMAP     Decode ULMAP                                                                                              |                                                                                                                                                          |  |

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



Agilent Technologies

# **Testing Impairments in SDR**

ADS model to input multiple waveforms

#### Variable impairments



Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



# **Impairments – Using ADS**



Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



🔄 Agilent Technologies

## Using EVM to trouble shoot the radio



Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Agilent Technologies

## Phase Noise effects on CDMA and WiMAX

• Example of effects of BER in a SDR



#### \*Waveforms are NOT equal in data throughput

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



#### **BER vs 2<sup>nd</sup> LO PN vs Amp gain for WiMAX**



Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



# How to Test Impairments in SDR

#### 89601A

SD

R

- Digital Impairments
- IQ impairments
- IF/RF impairments

DSP

Logic Analyzer

Digital (SSI)



Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



Agilent Technologies

## **Phase Noise Measurements Techniques**

- •Spectrum analyzer technique
- •Phase detector techniques
  - discriminator method
  - PLL/reference source method



#### **Direct Spectrum**





Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



Agilent Technologies

## **Other Measurements**

#### • CCDF

•Peak to average power measurement

•Fully characterize the power statistics of a digitally modulated signal

•Vital in setting signal power specifications for mixers, filters, amplifiers

#### • ACP

- •Test for leakage into other channels
- •Inter-modulation products
- •Phase Noise
- SEM
  - •Test for unwanted emissions







### **Conclusions and Review**

The dynamic nature of SDR requires in depth testing

Multi-dimensional system budgeting is highly recommended to drive down costs

Beneficial to have tools that work from start of design to deployment

