
Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

  

A SOFTWARE DEVELOPMENT AND VALIDATION FRAMEWORK                     

FOR SDR PLATFORMS 

 

Jeroen Declerck (IMEC, Leuven, Belgium; jeroen.declerck@imec.be); Erik Umans 

(IMEC, Leuven, Belgium; erik.umans@imec.be); Antoine Dejonghe (IMEC, Leuven, 

Belgium; antoine.dejonghe@imec.be); Martin Trautmann (IMEC, Leuven, Belgium; 

martin.trautmann@imec.be); Miguel Glassee (IMEC, Leuven, Belgium; 

miguel.glassee@imec.be); Liesbet Van der Perre (IMEC, Leuven, Belgium; 

liesbet.vanderperre@imec.be) 

 

 
ABSTRACT 

 

The trend towards reconfigurable radio has moved the 

software design for radio systems to a new level of 

complexity. Not only have some of the hardware 

components been replaced by software kernels on general 

purpose or application specific processors, but also the 

system level software has moved down the latter from MAC 

level towards the PHY level. This paper describes the 

software framework used for the PHY and MAC software 

development, simulation and validation on the IMEC SDR 

platform and illustrates it with several use cases.  

 

1. INTRODUCTION 

 

Anything, anywhere, anytime: the query is not new. Still, 

offering ubiquitous wireless connectivity and seamless 

access to multimedia services is not yet a reality. From a 

terminal perspective, a major enabler of this vision is 

software defined radio (SDR): a reconfigurable and multi-

purpose radio implementation, which should offer support 

for a large variety of wireless standards in a flexible and 

cost-effective way. As a matter of fact, the combination of 

the increasing need for functional flexibility in 

communication systems (the number of wireless standards to 

be supported is large - Fig. 1 - and can be expected to grow) 

and the exploding cost of system-on-chip design will make 

implementation of wireless standards on such reconfigurable 

radios the only viable option in the coming years [1], [2]. 

 Due to the evolution from hardware to software 

processing and control, the software design of radio systems 

has moved to a new level of complexity. On the one hand, 

the hardware radio has been replaced by several general 

purpose or application specific processors running 

optimized kernels that fulfill one task in the data processing 

chain and can be changed at runtime to support different 

wireless standards. On the other hand, the system software 

that used to delegate the data between the host system and 

the hardware radio adding Medium Access Control (MAC)  

 

 

 

 

 

 

 

 

 

 

 

 

 

1995 2000 2005 2010

10 kbps 100 kbps 1 Mbps 10 Mbps 100 Mbps 1 Gbps

WIMAX

Low 
speed/

Stationary

2G
(digital)

3G
Multimedia

3G+

1G
(analog)

Medium 
speed

802.16e

2.4 GHz
WLAN

5 GHz
WLAN

High rate 
WLAN

GSM
CDMAone

Bluetooth

60 GHz 
WPAN

4G
research 
target

UMTS
CDMA2000

High 
speed GPRS

EDGE

3GPP-
LTE+

UWB 
WPAN

1995 2000 2005 2010

10 kbps 100 kbps 1 Mbps 10 Mbps 100 Mbps 1 Gbps

WIMAX

Low 
speed/

Stationary

2G
(digital)

3G
Multimedia

3G+

1G
(analog)

Medium 
speed

802.16e

2.4 GHz
WLAN
2.4 GHz
WLAN

5 GHz
WLAN
5 GHz
WLAN

High rate 
WLAN

GSM
CDMAone

Bluetooth

60 GHz 
WPAN

4G
research 
target

UMTS
CDMA2000

High 
speed GPRS

EDGE

3GPP-
LTE+

UWB 
WPAN

 

 
Fig. 1: The variety of wireless standards 

 

has moved to a lower level. On a SDR this system software 

is now also responsible of routing the data through the 

different hardware cores towards the antenna interface. As a 

result, the physical layer (PHY) is now partly implemented 

in the system software instead of solely in hardware. 

 This paper describes a software framework used for the 

development, implementation and validation of the system 

level software of an SDR platform. In section 2, the IMEC 

SDR platform is introduced in order to provide a concrete 

set of assumptions (without loss of generality). The 

proposed software framework is then introduced in section 

3. Section 3.1 first briefly covers the component-level 

software design and the overall platform design/validation 

(as this is not the main focus of the present paper; the 

interested reader is referred to [3] for an extensive 

presentation). Section 3.2 then presents our approach for 

system-level software design in great details. Section 4 

exemplifies the proposed framework in several use cases, 

illustrating its effectiveness and flexibility. This covers 

802.11n PHY (section 4.1), 802.11n MAC (section 4.2), 

new architecture exploration (section 4.3) and energy 

profiling (section 4.4). Section 5 finally concludes the paper. 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

2. THE IMEC SDR PLATFORM 

 

In the present section, we briefly introduce the IMEC SDR 

implementation, covering both a reconfigurable analog 

front-end and an SDR digital baseband platform.  

 

2.1. Reconfigurable Analog Front-end 

 

For the reconfigurable analog front-end, architectures and 

circuits should be designed to offer flexibility in carrier 

frequency, channel bandwidth and noise performance with 

minimal penalty in power consumption. Such a 

reconfigurable zero-IF analog front-end was presented in 

[12], covering frequencies from 174 MHz to 6 GHz, and the 

RF specifications of the following standards: 

802.11a/b/g/j/n, 802.15.1,4, 802.16e, UMTS-TDD/FDD, 

HSDPA, 3GPP-LTE, DAB/ DMB/DVB-H.  

 

2.2. Digital Baseband platform 

 

A heterogeneous multi-processor system-on-chip (MPSOC) 

SDR digital baseband platform was conceived, achieving 

both functional flexibility and energy efficiency through 

opportunistic partitioning (see Fig. 2) [3], [1], [4]. This 

platform is referred to as BEAR: Baseband Engine for 

Adaptive Radio. It features the following elements: 

 

• A 32-bit segmented Advanced Microcontroller Bus 

Architecture (AMBA) connecting the different cores, 

and two Direct Memory Access (DMA) controllers for 

transferring date between the different cores. 

• Three Digital Front-End (DFE) cores responsible for 

the interface with the analog front-end, synchronization 

and automatic gain control upon reception of packets. 

This DFE includes a synchronization processor, which 

is a dedicated ASIP programmable in assembly. [5] 

• Two baseband processors (‘BB engine’) for data 

processing, which are optimized instantiations of 

IMEC’s ADRES core, i.e., a 2-dimensional VLIW with 

4x4 functional units featuring SIMD instructions 

offering a high degree of parallel processing [6]. 

• Four Outer Modems (OMD) cores (two TX and two 

RX) taking care of Forward Error Correction (FEC), 

scrambling/descrambling and CRC calculations.  

• One ARM926 processor for event-based control flow, 

inter-core data transfer, and MAC. This ARM processor 

can be considered as the main platform controller.  

Based on incoming interrupts, it can start/stop the other 

components and organize/program data transfers.  

 

 

 

 

 

 

 

 

 

 
Fig. 2: IMEC SDR digital baseband platform 

 

 

3. DEVELOPMENT AND VALIDATION TOOLS 

 

We first briefly introduce our approach for component-level 

software design and overall platform design/validation 

(section 3.1). We then introduce the proposed framework for 

the development, simulation and validation of the system 

level software of an SDR platform (section 3.2).  

 

3.1. Component-level software design and overall 

platform-level design/validation 

 

Software is developed for different components on the 

platform (baseband processor, DFE).  For the baseband 

processor software in particular, short deployment time yet 

excellent performance/power is achieved, thanks to the 

innovative C-compiler associated with the ADRES 

processor [7]. Thanks to a systematic Matlab-to-C design 

flow, C code running on the ADRES architecture can be 

obtained starting from Matlab code. We refer the interested 

reader to [8] for a detailed description of the associated 

methodology. 

 For the overall platform design and validation, the 

CoWare ConvergenSC toolset [10] is used. This toolset 

allows the co-simulation of hardware and software 

components. The different cores can be described at 

different levels of abstraction using different description 

languages (e.g., SystemC, VHDL). This enables executable 

models with parts at different level of abstraction and, 

consequently, early architecture exploration, hardware/ 

software verification and progressive refinement from 

programmer view down to hardware verification view (full 

VHDL model).  The interested reader is once again referred 

to [9] for further details.  

 For the purpose of testing the components and the 

overall platform integration (e.g., verification of critical 

timing requirements in the data path), a hardware API was 

developed on the ARM processor. It is referred to as 

BEAGLE (“BEAr proGramming LayEr”) and enables 

running tests on both the TLM and VHDL models.  



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

3.2. System Software Design and Validation framework 

 

Under system software design, we understand the design of 

the software that runs on the ARM processor (C 

programming language) and that is responsible for the 

implementation of the data path on the SDR for the 

considered wireless standards. Considering the TX path, this 

means providing the necessary headers to the data, 

programming the different components (OMD, BB, DFE), 

transferring all data to this components over the AMBA bus 

up to the DFE.  In terms of OSI layering, this comes down to 

implementing a part of the physical layer (PHY) and the 

time critical-part of the MAC in software on the ARM 

processor.  

 

3.2.1 Hardware Abstraction Layer 

In order to enable efficient PHY/MAC development, a 

proper abstraction of platform specific issues is needed (e.g., 

register bitmaps, bus and memory addresses, interrupt 

handling ...). For that purpose we defined a Hardware 

Abstraction Layer (HAL) API, providing an interface 

between the platform components and all the higher level 

system software on the platform. The system software code 

only uses the HAL API to access the platform components. 

The HAL is implemented on the platform by using the 

BEAGLE API (see the platform-centric simulation in Fig. 

3).  

 The HAL API is defined with two programming 

concepts in mind: Object-Oriented Programming and Data 

Hiding. Every platform component is treated as an object 

with an associated state stored in hardware, software or both. 

As the code is written in C, the software state is stored in a C 

structure. Each object is represented in the system code by 

its handle, a pointer to the structure storing the software 

state. Several methods, implemented as C functions taking 

the handle as argument, instruct the hardware and change its 

state. Using methods, the implementation details of the 

structure can be hidden to the system software, only 

exposing a pointer.  

 The collection of methods embodies the object HAL. 

The method declarations and handle data type embodies the 

objects HAL API. In practice it means that software 

components like the PHY or MAC will never access 

hardware blocks directly (by writing to registers for 

example), but will call specific methods defined in the HAL 

API. To call those methods, only functional information 

about the hardware is needed. For example, the PHY system 

software does not have to program all the registers of the 

DMA controller. Instead, the MAC will open a DMA object 

and call a “Dma_start()” function with size, source- and 

destination address as an argument.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PHY SYSTEM SOFTWARE

SIMULATION 
FRAMEWORK

TLM VHDL

PLATFORM/COMPONENT-CENTRIC 
SIMULATION

SYSTEM/NETWORK-CENTRIC 
SIMULATION

TEST CODE
+ BASIC MAC

HAL

HAL 
IMPLEMENTATION 

USING 
BEAGLE

HAL 

IMPLEMENTATION 
USING 
SIMULATOR 

FRAMEWORK 

BEAGLE

BEAR PROGRAMMING 
LAYER (BEAGLE) IMPLEMENTATION

S
I
M
U
L
A
T
I
O
N
 

P
L
A
T
F
O
R
M
 

I
N
D
E
P
E
N
D
E
N
T
 

C
O
D
E

S
I
M
U
L
A
T
I
O
N
 

P
L
A
T
F
O
R
M

D
E
P
E
N
D
E
N
T
 

C
O
D
E

TIME CRITICAL MAC SOFTWARE

S
Y
S
T
E
M

S
O
F
T
W
A
R
E

 

 
Fig. 3: System software layers (ARM processor) and their 

relation with the different simulation levels. 

 

3.2.2 A System-Level Platform Simulator 

Simulating the platform with the CoWare ConvergenSC 

design toolset is very effective to check the platform in an 

instruction accurate or even gate level accurate way. All data 

processing algorithms can be verified up to bit level. 

However, there are several drawbacks when moving to the 

design and simulation of system software. First, the   

simulation focuses on one single SDR terminal. So there are 

no means to simulate interaction between several network 

nodes. Second, the simulation speed is far to slow to 

simulate MAC and PHY system software. This mainly 

comes from the fact that the data processing algorithms are 

completely simulated, i.e. data is really modulated, 

demodulated, interleaved, etc... From a platform simulation 

point of view, this is needed; however this is an unnecessary 

overhead for simulating the system software.  

 These two drawbacks lead us to the development of a 

new platform simulator explained and illustrated in more 

detail in the remainder of the present paper. The level of 

abstraction for this new simulator is illustrated on the left 

side of Fig. 3. The idea is to mimic the behavior of the HAL 

API towards the system software, meaning that from the 

system software point of view, the HAL should behave the 

same as it does when simulating the system software on the 

TLM or VHDL model. The proposed simulator is network 

transparent. It runs on a host as a service and accepts socket 

based connections. Several simulated systems can then 

connect to this simulator (referred to as the Simulator 

Server) and use the three services it provides: a time model 

service, an ether bandwidth service and a logging service 

(see Fig. 4).  



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

 Time service: The first service is the time model that the 

simulation server provides. The server offers a uniform way 

to register events that take up a specific amount of time, 

called the time model (Fig. 4). When implementing the HAL 

for the DMA controller for example, it is known that a 

transfer of X amount of bytes will take ∆T amount of time. 

So when implementing the “Dma_start()” function that is 

part of the DMA HAL API as mentioned before, at some 

time an event is registered to the system simulation server 

that takes ∆T amount of time. When registering this event, 

the model also provides a callback function that will be 

called when the ∆T time has elapsed. After ∆T time, this 

callback function is called by the system simulator server 

and the DMA model signals to the higher software layer (the 

PHY) that the transfer was done. This way the DMA HAL 

API has the same behavior to the higher software as on the 

real platform, i.e. it takes the same amount of time to do a 

DMA transfer. For all components (BB, DFE, OMD…) the 

corresponding HAL implementation makes use of this event 

registering to model their behavior towards the system 

software layers.  

 The timings used when registering events are obtained 

from the platform simulations in ConvergenSC (see section 

3.1). This way, all the timings on the system simulated 

platform closely matches the timings of the “real platform”. 

Note finally that this timing API of the simulation server is 

used by all the simulated terminal/node instances to register 

their events. That way several terminals/nodes can be 

simulated in a synchronized way.  

 Ether Bandwidth Service: with the time model of the 

simulation server it is possible to synchronize several 

simulated terminals/nodes. However, as long as they do not 

share a medium and exchange date, the PHY/MAC system 

software cannot be properly simulated. This medium 

connection is needed in the HAL implementation of the DFE 

where data is normally send to the analogue front-end and 

send over the air. To simulate this, the simulation server 

offers the ‘ether bandwidth’ service. When the HAL DFE 

model sends data to this service, the other simulated 

nodes/terminals will receive this data. The service also 

includes features for carrier sensing, instantiating several 

antennas’, transmitting on several channels and collisions. 

Furthermore, the ether bandwidth model can be extended by 

adding a channel model in the form of a dynamic loadable 

library. This way, the system software can be simulated 

under different channel conditions. 

 Logging Service: when running system-level software 

on the platform with the CoWare ConvergenSC tools, the 

main visualization and debugging tool is the ARM debugger 

console. To facilitate development/validation, the simulation 

server provides a logging interface (see Fig. 4). Log 

messages from all simulated nodes/terminals are collected in 

the log reflector of the simulation server.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Low level Xl MAC

BBE

Abstraction layer

DFE

Abstraction layer

DMA

Abstraction layer

Timer

Abstraction layer

SYSTEM SIMULATION OF A WIRELESS TERMINAL

OMD

Abstraction layer

XMSF Interface (API)

HAL

SIMULATION SERVER

TIME MODEL
ETHER BANDWIDTH 

MODEL
LOG REFLECTOR

Low level Xl MAC

BBE
Abstraction layer

DFE
Abstraction layer

DMA
Abstraction layer

Timer
Abstraction layer

SYSTEM SIMULATION OF A WIRELESS TERMINAL

OMD
Abstraction layer

XMSF Interface (API)

HALPHY SYSTEM SOFTWARE

BBE
ABSTRACTION 

LAYER

DFE
ABSTRACTION 

LAYER

DMA
ABSTRACTION 

LAYER

TIMER
ABSTRACTION 

LAYER

SYSTEM SIMULATION OF A WIRELESS TERMINAL

OMD
ABSTRACTION 

LAYER

SIMULATION SERVER API

HAL

TIME CRITICAL MAC SOFTWARE

S
Y
S
T
E
M

S
O
F
T
W
A
R
E

 

 
Fig. 4: Simulating several terminals using calls to the system 

simulation servers API 

 

Logging applications can then connect to the server, collect 

all the log messages and process them for display. The 

simplest logging application used is a small routine that 

dumps the log messages to the screen or in a file. The result 

is comparable with the fprintf statement in C, with the 

difference that the output of all terminals is centralized.  For 

more advanced logging purposes, an application was written 

in the JAVA programming language, using an open source 

charting library [11]. This application can interpret some 

predefined log message formats and display them on a graph 

in a window. 

 

4. USE CASES 

 

The proposed system simulation server and its API were 

used to implement the HAL and model all the platform 

components in a behaviorally-correct way. The server, the 

simulated nodes and the JAVA application can run on 

different WINDOWS/LINUX/UNIX hosts in a network, but 

can also run on one single (laptop) PC. This allows making a 

trade off between simulation speed or demo purposes. The 

present section exemplifies the proposed framework in 

several use cases, illustrating its effectiveness and flexibility.  

 

4.1. 802.11n PHY 

 

Based on the proposed framework, the first layer of system 

level software (the part of the PHY that is implemented in 

software) was developed, considering the 802.11n standard 

as an example. This software controls the 

reception/transmission of a data packet from the antenna 

interface to the MAC layer and vice versa. This data path is 

shown in Fig. 5 for the transmission of a packet. The PHY 

performs several tasks. It takes the payload data from the 

MAC layer and constructs the signal field and preamble. 

Then it programs all the platform components and delegates 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

the data up to the DFE over the AMBA bus using the DMA 

controllers.  

 Fig. 6 shows the simulation results obtained from the 

JAVA application for the transmission of a packet. The 

above subplot (DFE.T2) shows the state of the second DFE 

tile (upper bar) and the state of the analog front-end (lower 

bar). The state information of the analog front-end is shown 

through de DFE, as the DFE is the interfacing block for the 

analog front-end. The second subplot (DMA2.1) gives 

information about channel 1 of DMA controller number 2. 

High indicates when it is transferring data over the bus. As 

this is a simulation result for MIMO, there are two data 

streams going to two antennas. The third subplot (DFE.T1) 

gives the DFE and antenna information for the other DFE 

tile and the front-end antenna it is connected to. The fourth 

subplot (BB) shows the status information of the BB. The 

step function indicates when it actually processes data. The 

upper bar shows whether it is modulating of demodulating 

and the lower bar shows the modulation order (BPSK, 

QPSK). The first step shows the modulation of the signal 

field in BPSK and the next steps show the modulation of the 

payload data in QPSK. The fifth subplot shows the hardware 

timer information. When the stop function is high, the timer 

is counting, the arrows pointing downwards is when the 

timer elapses. The PHY software uses this timer to trigger 

the start of the transmission as the arrow coincides in time 

with the analogue front-end starting to transmit data.  

 

4.2. 802.11 MAC (DCF) 

 

After the development of an 802.11a and 802.11n PHY 

system software layer, the focus was on the next OSI layer, 

i.e., the 802.11 MAC layer, but only the time critical part. 

The Distributed Coordination Function (DCF) was 

developed only using calls to the underlying layer, i.e., the 

802.11a PHY software layer (see section 4.1).  

 Fig. 7 shows some simulation results for one terminal. 

The lower subplot in the picture shows the status 

information of the PHY layer, or in other words the 

802.11a/n PHY. The ‘W’ states that it is in a ‘Wait’ state, 

i.e. not receiving a packet, nor transmitting one. First the 

terminal receives two packets, indicated by the ‘Rx’ and 

then it gains access to the channel and transmits a packet, 

indicated by the ‘Tx’. Shortly after the transmission it 

receives a very small packet which is the acknowledgment 

that was send by the addressed receiver of the packet within 

the Short InterFrame Space (SIFS). Thereafter, it again 

transmits a packet, but after the reception of the 

acknowledgment, the terminal goes into the ‘Cs’ state which 

stands for ‘Carrier Sensing’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FEC 

Encoding

Interleave +
Mapping

IFFT

BBE

T
X
 T
ile
 1

T
X
 T
ile
 2

T
X
 T
ile
 3

R
X
 T
ile
 1

R
X
 T
ile
 2

R
X
 T
ile
 3

T
X
 F
IF
O
 1

T
X
 F
IF
O
 2

T
X
 F
IF
O
 3

R
X
 F
IF
O
 1

R
X
 F
IF
O
 2

R
X
 F
IF
O
 3

BBE MEM

Analog FE

DFEOMD

CRC

F
IF
O
 O
U
T

F
IF
O
 IN

Main 

Memory

P
a
y
lo
a
d
 D
a
ta

P
re
a
m
b
le

S
ig
n
a
l F
ie
ld

Scrambler

FEC 

Encoding

Interleave +
Mapping

IFFT

Encoder Parser

 

 

Fig. 5: The data path through the main platform components 

for the transmission of an 802.11n data packet. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Time

T
M
R

B
B

D
F
E
.T
1

D
F
E
.T
2

D
M
A
2
.1

QPSKBPSK

Analogue Front-End Status Bar

Digital Front-End Status Bar

Sleep State Transmit State

Transmit State

Sleep

Hardware timer elapses

 

 

Fig. 6: Simulation results for the transmission of a data packet 

in MIMO mode. 

 

 This means that the PHY detected an error during 

reception and lost synchronization with the channel. It then 

starts sensing the channel (the ‘Cs’ state) until it senses that 

the channel is not occupied by another terminal any longer. 

When the channel is freed, it backs off from the channel by a 

time indicated by the MAC layer. The upper subplot 

indicates requests from the MAC layer to the PHY to back 

off from the medium following the 802.11 standard.  

 

4.3. Platform Exploration 

 

The system simulator can also be used to perform a platform 

exploration for future SDR platform candidates. This means 

replacing the current IMEC SDR platform template by 

future/generic platform candidates.  



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

As an example the HAL layer and PHY layer software were 

replaced by two C++ modules that interface with the above 

described 802.11 MAC as a higher layer and the system 

simulator API as a lower layer (see Fig. 8). One C++ 

module performs the function simulation of the PHY 

software on packet granularity. The other module simulates 

timing by modeling the packet processing steps as task 

graphs and by executing them on a target platform.  

 Since the platform exploration uses the same 802.11 

DCF MAC software than the other use cases, it can share 

existing test benches for traffic generation. Interfacing the 

system simulator API enables the reuse of the ether 

bandwidth model as well as the existing JAVA application 

for visualizing the log messages. The use case of using the 

Simulator Framework for platform exploration clearly shows 

that the framework is flexible enough to allow replacement 

of components with ones that are implemented in a different 

style and which are modeled on a different granularity.  

 

4.5. Energy Profiling 

 

In the implementation of the HAL on the system simulator, 

the code sends log messages to JAVA application about the 

energy it has consumed. The graphical logger then uses this 

energy information to generate plots about the power 

consumption of the system and its components.  

 Fig. 9 illustrates this for the BB and a DFE tile. As the 

power consumption of the IMEC SDR platform is very 

dynamic, depending of the settings of the different 

components, this allows viewing the power for different 

scenarios, i.e. receiving terminal, a transmitting terminal, a 

busy terminal, an idle terminal etc… 

 

5. CONCLUSION 

 

Software design is one of the key challenges in 

implementing wireless access schemes on SDR’s. This paper 

described the different levels of software design, simulation 

and validation: component level, platform level and system 

level. It introduced a simulation framework that allows the 

design, simulation and validation of system level software 

(PHY/MAC) interacting with connected nodes (network 

centric simulation) while the impact on the platform 

components can be monitored. For the future, this 

framework will also be used to profile the energy 

consumption of SDR architectures for different wireless 

scenarios. It is also being used for future SDR platform 

exploration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

P
H
Y

N
A
V

Time

Receive
Wait Carrier SensingWait

Receive Transmit

 

 

Fig. 7: Simulation results for a DCF 802.11 MAC terminal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

802.11 DCF MAC

transmit/receive

COARSE
FUNCTION
MODEL

TASK GRAPH
BASED 
TIMING

SIMULATION

synchronize 
timing (at end)5

SIMULATION SERVER API

redundant model 
of environment 
timing

preamble/dat
a processing

 

 

Fig. 8: Layout of a generic platform architecture simulated 

with the system simulation server and reusing the 802.11 DCF 

MAC software layer 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Using the system simulation framework for energy 

profiling 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

5. REFERENCES 

 

[1] A. Dejonghe, B. Bougard, S. Pollin, L. Van der Perre, F. 

Catthoor, ” Green Reconfigurable Radio Systems: Creating 

and Managing Flexibility to Overcome Battery and Spectrum 

Scarcity,”  IEEE Signal Processing Magazine, special issue 

on Resource-Constrained Signal 

Processing,Communications, and Networking 

[2] G. Desoli and E. Filippi, “An Outlook on the Evolution of 

Mobile Terminals,” CAS Magazine, second quarter 2006. 

[3] L. Van der Perre et Al., ‘Architectures and Circuits for 

Software Defined Radios: scaling and scalability for low cost 

and low energy’, ISSCC 2007, Febr. 2007, San Francisco, 

USA 

[4] B. Bougard, D. Novo, F. Naessens, L. Hollevoet, T. Schuster, 

M. Glassee, A. Dejonghe, L. Van der Perre, “ A scalable 

programmable baseband platform for energy-efficient reactive 

software-defined radio”, Crowncom, June 2006.  

[5] B. Bougard, L. Hollevoet, F. Naessens, A. Ng, T. Schuster, L. 

Van der Perre, “A low power signal detection and pre-

synchronization engine for energy-aware software defined 

radio”, Software Defined Radio Forum Technical Conference, 

Nov. 2006.  

[6] D. Novo, W. Moffat, V. Derudder, L. Van der Perre 

“Mapping a multiple antenna SDM-OFDM receiver on the 

ADRES coarse-grained reconfigurable processor”, IEEE 

Workshop on Signal Processing Systems, Nov. 2005. 

[7] B. Mei et al., "Exploiting loop-level parallelism on coarse-

grained reconfigurable architectures using modulo 

scheduling," IEEE Proc. on Computers and Digital 

Techniques, Vol. 150, pp. 255-261, 2003.  

[8] L. Van der perre, M. Glassee, V. Ramon, B. Bougard, H. 

Cappelle, S. De Rore, A. Dewilde, A. Folens, R. Vandebriel, 

T. Van der Aa, “Effecient SW desing and SW design 

efficiency: Fuel for Software Defined Radios”, International 

Symposium on Spread Spectrum Techniques and 

Applications, invited paper, Bologna,  Italy, 2008. 

[9] A. Ng, J. Weijers, M. Glassee, T. Schuster, B. Bougard, L. 

Van der Perre, “ESL design and HW/SW co-verification of 

SDR platforms”, International Conference on 

Hardware/Software Codesign and System Synthesis - 

CODES-ISSS, Salzburg, Austria, Oct. 2007.  

[10] www.coware.com 

[11] www.jfree.org/jfreechart 

[12] J. Craninckx1, M. Liu1, D. Hauspie1, V. Giannini1, T. Kim2, 

J. Lee2, M. Libois1, B. Debaillie1, C. Soens1, M. Ingels1, A. 

Baschirotto3, J. Van Driessche1, L. Van der Perre1, P. 

Vanbekbergen1 ‘A Fully Reconfigurable Software-Defined 

Radio Transceiver in 0.13µm CMOS’, ISSCC 2007, San 

Francisco, USA, Feb. 2007 

 

 

 




	Home
	Papers By Alpha
	Papers By Session



