A COMPARATIVE STUDY OF TWO
SOFTWARE DEFINED RADIO PLATFORMS

Gael Abgrall (ENSIETA, BREST, FRANCBpgralga@ensieta)frFrédéric Le Roy
(ENSIETA, BREST, FRANCHeroyfr@ensieta.; Jean-Philippe Delahaye (CELAR,
BRUZ, FRANCE jean-philippe.delahaye@dga.defense.goywan-Philippe Diguet
(Lab-STICC, LORIENT, FRANCEgan-philippe.diguet@univ-ubs)frGuy Gogniat

(Lab-STICC, LORIENT, FRANCEguy.gogniat@univ-ubs )r

ABSTRACT Architecture (SCA). The SCA [1] is based on several
software technologies as Common Object RequesteBrok

The aim of this paper is to compare the performsuoééwo  Architecture (CORBA), POSIX Operating System (C8jd
free SDR platforms: GNU Radio and OSSIE which aresoftware engineering techniques as model basedrdasid
deployed on the same computer. SDR applicationsbject-oriented programming. The SCA specifications
development or waveforms conception are prettyeclos define the Operating Environment (OE) software. The
these two systems but the software architecturescdally  specification mainly defines the Core Framework )(CF
different. In order to quantify the cost of intesmsponents responsible for the management, the control, the
communication, the same waveform has been chaizader configuration and deployment of the waveform agmgilans
on both platforms. Three critical points are evddda and hardware platforms.
latency, CPU load and memory utilization. The ressgshow  Today, many commercial software products are abvigla
that the average CPU load in OSSIE is five timeghdsi related to SCA software. The academic research also
than GNU Radio. The issue is the same for the -interprovides free software implementation of the SCvoTof
component latency where GNU Radio is almost 25 gimethe most popular free implementations of SCA rugron a

faster than OSSIE. PC workstation are the SCARI OPEN [2] implementatio
from the CRC and the OSSIE [3] implementation pided
1. INTRODUCTION by the Wireless research lab of Virginia Tech.

The Software Radio concepts imply complex signalAnother approach of designing waveform applicatomes
processing performed in software with real timefrom the free software community with the GNU Scitey
requirements and constraints of embedded systenpmveer Radio [4] project. The GNU Software Radio is adityr of
consumption, memory and throughput capacity lindtet.  free software codes that define radio waveforms dor
The amount of software involved has quickly incezhén  software receiver. GNU Software Radio Applicati®tA)
the new Software Defined Radio (SDR) transceivex thu modules are written in C++, while the functions ttha
this shift of paradigm from hardware to softwareheT configure the RA modules into a functioning radice a
reconfigurability and the flexibility of SDR systesmare written in Python [5].
among the main goals of defining application bytwafe.
The technological answer is the introduction oftwafe  This paper presents two implementations of a raferd-M
technologies and industrial standards into thensoft radio  receiver waveform using the two different approact&CA
application design. Standards have been introdteceackle  with OSSIE as shown in [6] and GNU. Both
the implementation issues of large software apfitineover  implementations are based on a PC running Linuxthed
complex heterogeneous and distributed hardwaréopted. receiver front end is a Universal Software Radicigheral
The software engineering for the Software DefinedliB is  [7]. This paper is discussing, the pro and consheftwo
driven by some key software concepts such as thapproaches, in terms of waveform architecture, rawity,
portability, and the reusability of waveform applions scalability, portability and performances. It aldiscusses
code. It also aims at using software standardedoge the the differences of goals and features. The two @gpres
development time and cost. have been tested in educational perspectives taaeaheir
learning facilities for new engineers in field dbB, and to
The main software effort in SDR standardizatiorobgk to  evaluate these technologies for future studeneptsj
the Joint Tactical Radio System (JTRS) Joint Pnogra
Executive Office (JPEQ), which defines the speatfien of  The remainder of this paper is organized as folld@esction
a software infrastructure: the Software Communicati 2 gives an overview of the FM waveform, signal gsging

Proceedings of the SDR '08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved



details, architecture and coding consideration iothb

use to regenerate the 38 kHz for stereo FM demtidnldn

implementations GNU Software Radio and SCA softwarehis waveform, a set of decimation filters has beasead to
based on OSSIE. Section 3 presents our analysis ektract from the bilateral stereo broadcast's spettthe
waveform performances and impact of SCA and GNUpart of spectrum which is carried half of the suitihe left

implementations in detail, and Section 4 concludes
paper.

2. WAVEFORM AND HARWARE / SOFTWARE
PLATFORM

The main objectives of this section are to defile t
application waveform and its different refinemembbserve
the influence of the application granularity onbe fatency
and the OSSIE host computer load.

This work is based onto the “FM broadcasting dentatéhn
waveform” presented in [8] and [4]. The FM waveiocaib
received from an antenna connected to the anapmg of a
“BasicRx"” daughter board of a USRP developed fa th
GNU Radio project. This board is used for couplihg
antenna with one of the four 12-bit analog to digit
converter of the USRP mother board.

2.1. RF signal features

The French FM broadcasting band spreading froro 88
108 MHz is sampled without any filter at 64 MHz.igh
under sampling band [9] produces four aliases efltand
between -32 MHz and 32MHz. The sum of theses aiase
not destructive between 20 and 24 MHz, so with shiem,
it is possible to demodulate the French radio atatbcated
between 88 and 92 MHz.

After conversion the signal is first decimated atmlvn-
converted to a baseband signal by a DDC (DigitaiDo
Converter) before sending it through a USB chipieethe

and right sound records.
2.2. Description of the FM receiver waveform

The complete FM receiver waveform, shown in Figlrs
used to extract the mono part of the stereo sigealhalf of
the sum of the left and right sound records desdriin the
last sub section. This waveform has been tested tne
two’s platforms OSSIE and GNU Radio.

1 cH I DEC ;::L:ir DEC ]";m I
FILT DR £85) 2 12} STER
.L Real -L Cpl
N L | I
32 ksps
T il

f——— Complex

320 k 64 k:

Figurel- FM receiver waveform

This waveform is composed with:

* an access block to the URSP,

» aset of fir decimation filters ,

» one frequency demodulator,

* one access block to the sound board of the

computer

On the USRP block, the sampled signal is transposed to
baseband. This block configures the DDC and the
decimation factor of the USRP mother board filtersbtain
the desired rate and carrier frequency. The fiost pass
filter called CHAN FILT, which has a 100 kHz bandwidth,
preserves the integrality of the bilateral stereoadcast’s

GPP under which OSSIE is working. Each DDC compbnenband received by the USRP. ThkI DEM block is used to

produces a complex signad(t)+jQ(t) where I(t) is the

demodulate the frequency modulated signal. The C++

inphase signal anQ(t) is the quadrature phase signal. Thesource code of this block calculates the phasedmetivand

maximum rate to the software side is limited by th8B
chipset to 32 MB/s. TheandQ samples are coded in 16-bit
signed integer so the complex at the output ofRDBXC is
then coded with one 32-bit integer. The maximum giem
rate across the USB results to 8 Msps.

The bilateral stereo broadcast's spectrum recelwedhe
software spreads over a 200 kHz bandwidth. Mostig
spectrum is composed with a bilateral sub-spectremered
on DC with no carrier and a bandwidth of 30 kHzisTpart
of the spectrum carried half of the sum of the &ftl right
sound records. The stereo spectrum is thus compuitie
bilateral suppressed sub-carrier sub-spectrum i@htsn 38
kHz with a 30 kHz bandwidth. This sub spectrum iearr
half of the difference of the left and right souretords. A
19 kHz pilot tone transmits in the spectrum, whids a
phase relation to the 38 kHz suppressed sub-cacaer be

Q samples described in the last sub section. Ther dthv
pass filters calledUD FILT 1 andAUD FILT 2 make the
rest of the filtering process. The filters are saped with
decimatorsDEC 1-2 to limit the filters orders. The last
component of all the waveforms is ttf®OUNDCARD
which is represented by a speaker on the Figure.

The access block to the computer’s sound boardfereht
on the two platforms. On the GNU Radio side, thametwo
inputs of type float to access to the left and trigihannels of
the sound board whereas in OSSIE the block hasojuest
complex input to the same two channels. It is #zson why
on the OSSIE waveform it is necessary to use &htatied
MONO 2 STER to copy the demodulate signal onto the real
and imaginary part of the block input. The inputerao
sound board blocks is fixed to 32 ksps for bothfptans.

Proceedings of the SDR '08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved



2.3. OSSIE and GNU Radio software suite

2.3.1. OSSE

The granularity is related to the portability oéthvaveform
which is one of the goal of SCA and one of the key
challenges today in waveform design. The granylafitthe
waveform is investigated in this section to studyirnpact in

OSSIE is an object-oriented SCA OE for which signalterms of performances.

processing components are written in E+Fhis OE works
on a Linux OS and the software’s dependencies fzoers
on Figure 2. This entire stack is used by OSSIEnduthe
waveform execution. Each part of the stack impahts

The Figure 3 illustrates the five different vanets of the
granularity, of the original Figure 1 waveform thate
consider in this study. They are numbered from fthe-
grained waveform WF1 with nine components to a s®ar

memory and the host computer's load. To know thegrained one (WF6) with just three components.

overhead produces by CORBA’'s
(principally OmniORB [10]), the distribution of thi

software’s stack on the host computer must be medsu
Every OSSIE’'s component can be considered havimg tw

distinct parts: one part realizing the signal pesteg and
another managing the SCA infrastructure. As ir5&A OE,
the OSSIE waveforms are described in an XML file.

OSSIE USRP
l Requires !
(7]
:
o
XERCES-C++ -
OmniORB sDcc i
o]
OmniORBpy SWIG »
Amara
l Installed on l 1
FEDORA CORE 6

Figure 2 - OSSIE dependencies
2.3.2. GNU Radio

GNU Radio project provides a Python library of sin
processing blocks and specially a clgss f | ow_gr aph
to tie together the signal processing blocks of ef@ims.
Theses blocks are executed by the computer on v
libraries have been installed. To minimize the icait
execution time of a complete waveform, blocks ariten
in C++. The interconnection blocks graph (IBG) dam
compared to the OSSIE waveform. The python apjidicat
script uses thgr. f1 ow_graph class that gives to the
waveform designer the ability to describe a data fyraph
of the waveform he wants to describe. To wrap Cloeks
in Python the script must import the extension nhesiu
SWIG (Simplified Wrapper and Interface Generatat]]1
The next subsection describes different granuéaritf the
FM demodulation.

2.4. Granularity variation of the OSSIE waveform

! Each component can be written with C++ template
generated by the “WaveDev” tool of the OSSIE’sesuit

communications

AUDIO FILT 1 +
DECTH (5)

AUDIO FILT 2 +
DECIN (2)

Mo
2 USER CHIN i B I
FILT DI Ein

3 USER CHaN s FM AUDI0 FILT FULL
FILT DEM
4 U CHEH FILT + FH AUDIO FILT FULL
FM DEMID
3 USFR CHAN FHN DEDD + BUDI0_FILT
FILT
6 SRR FHN DEMDD FULL }_,m

Figure 3 - Wavefor msrefinements
2.5. Wavefor ms measur ements performances

In OSSIE, every component is considered like a ggsdy
the OS. With a simple “top” Linux system’s command
can see a process for each component with their &Rl
memory utilization. In GNU Radio it is not possilie see
the different components when using this same carmdma
All GNU blocks are gathered under one Python praces
Different metrics have been defined to characte@SSIE
and GNU Radio. Indeed, it is very important to knbaw
these two systems work and the differences betivesm.

The first parameters to know are the needs of thesforms
in terms of CPU and memory allocation. In a firgpeoach,
the “top” Linux system’s command can show an ediona
of the instantaneous CPU and memory usage of all th
components of the waveform. As mentioned abovengloi
this test with GNU Radio does not have a strongrést
because of the use of Python. On the other sidagabis
measure with OSSIE can give some preliminary arswer

In order to have more accurate results, we useoflgur
This kind of software allows the user to know psety the
CPU utilization of every process which runs on $lystem
(including the system himself if specified optidgal As in
[6][12], OProfile [13] has been used to characterthe
OSSIE host computer's memory and load. For GNU &®adi
it's the Hotshot [14] profiler which has been usta
characterize these same parameters. Indeed, dbe tmly

Proceedings of the SDR '08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved



process created by the GNU Radio waveform applinati memory usage is a good point to start this studgt Bf all,

the use of OProfile is not relevant to obtain thesiced it is possible to look at these two parameters w&itsimple
metrics. On the other hand, the Hotshot libraryPgthon  “top” command on Linux. Table 1 shows the resutts 4l
does not allow seeing the global system but onhatwh the waveforms (for a packet size of 8192 sampléEbgse
happens inside the Python script. measures have been carried out on the five waveform
The other crucial parameter to know in the systenthe described earlier for OSSIE in Figure 3 and for WWE2
latency caused by the inter-components communitstio waveform of the Figure 3 for GNU Radio. The results
[15][16]. To realize the latency measurement, sseawbly displayed are the CPU load and the memory utitisatf
routine has been used: RDTSC [17] (ReaD Time Stamthe entire waveform. A simple calculation is readisto
Counter). This counter is incremented at the CPU’'obtain the average value of the memory used by one
frequency. It allows us to know accurately the tiet@psed component for each waveform. With these resultsis it
between two calls of this counter (with a CPU freagy of  possible to see some differences between waveforimes.
3GHz, the counter accuracy is about 333fs). In &I8S value of CPU usage is obviously not the same fafahese
component, there are two functions for receivingd an waveforms but the variation is not linear. For wavms
transmitting the data (respectivelyGet () and WF3 and WF4, the CPU usage is higher than WF1 aRd W
Push_Packet ()). In one component the measure is donewvhich have more components. With GNU Radio, the CPU
beforePush_Packet () and in the next component of the uses 6% of its capacity to execute the Python pooéthe
waveform, the measure is realized affet () as shown in WF2 waveform. So, for the same waveform, the CPU
Figure 4. The time elapsed between the two meagsiges requires five times more capacity with OSSIE thaithw
obtained by a simple difference of the two couisteelues. GNU Radio.

com(;:);:ent comc;;;ent Waveforms Number| %CPU %Memdry C'Z)‘Lrlr?;gi:esik l’/g\(/)l;r;/
o . 1 36 4.4 7 0.63
|| & 5 2
& SIGITAL = ‘f 2 = SIGNAL ‘: 2 32 3.2 5 0.64
E| PROCESSING E é 3 E PROCESSING é 3 47 2 3 0.67
° B N 4 45 13 2 0.65
5 28 1.4 2 0.7
= N j > 6 22 0.7 1 0.7
Table 1 - OSSIE hardwar e resour ces utilisation
(2 rea=ChO 1 without USRP and SoundCard components
Figure4 - Latency measure with OSSIE With this table, it is also possible to see the mgnusage.

) ) ) In GNU Radio, the measured value for the waveform
In GNU Radio, The counter read is realized befdre t number 2 is 1.7%. By calculating the relation betehe
ret_urn command for one component and after thenumber of OSSIE components and the memory usage, it
variables declaration for the ot'her._ appears that every component uses approximatedp @f7
The_ measure of these metrlt_:s IS presented_on_ the N&he host memory. Increasing the components numlier w
section. They have been obtained with a Pentlum.tlzt a inevitably increase the memory usage of the wavefor
ClOCk, speeq O,f S,GHZ and 1 GB of memory workinghwit But a simple Linux command can not reveal all the
the Linux distribution Fedora Core 6. parameters necessarily to know entirely the bottesys.
So, to understand this difference, profiling deepI$SIE is
necessarily. This operation is realised with OReoflhe
Figure 5 presents the percentage of CPU load in a

. . . X : component which is used by the SCA infrastructure
the previous section, this section will present thsults.

o, management part (non-signal processing part). vath
Most of them concern OSSIE, the GNU Radio’s MEASUre ariation of the data encapsulation‘s packet sltes size,

hgve been dong to allow the comparison but OSSUE ka defined by an attribute of the USRP component mwaer
bigger research interest for us because of thefuSEA. of two because of a restriction of OSSIE, and thieimal
size is 128 samples per packet due to USB restni¢ti6].
Three components are presented: one with a signtfic

; ) amount of signal processinGdAN_FILT) and two with a
The CORBA'’s level of SCA seems to bring some ovadhe tiny signal processing parDEC and MONO_2 STER).

when running a waveform. Measuring the CPU load tard For the filter, the measured value is under 10% nwtie

3. RESULTSANALYSIS

The methodology for the measures have been presénte

3.1. CPU and memory utilisation

Proceedings of the SDR '08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved



packet size exceeds 8192 samples but for the ther®t
components, even when the packet size is very (igh
more than 32768), the value of non-signal procgs§iRU
load stays over 70%. This result shows the impoeaof
having a certain amount of signal processing inside

component in order to limit the effect of the SCA

100

infrastructure management part.

Q"

80

70r

B0 —+— M2S WF1
—4— M2S WF4
Decim WF1
—+—FIR F WF1
—+—FIR F WF2
FIR F WF4
—+—FIR F WF5

50+

%CPU

wf

30F

20

1 I I 1 L 1
10000 20000 30000 40000 50000 60000 70000

Packet Size
Figure 5 - Non-signal processing CPU load

With GNU Radio, profiling the application is totall
different. Hotshot which is another profiler is dst see
every function call made by the application and th
corresponding CPU time. Because the waveform
contained in only one process, Hotshot gives jnsbuline

of how GNU Radio works. This measure tells that the

function, which used the bigger part of the CPUths
python script itself. These measures have only bbealised
with one packet size which is 3584 samples (defsim# in
GNU Radio). In a first approach, it can be notitedt it is
easier to study how OSSIE (multi-thread) workstieddy to
GNU Radio (mono thread).

There is another point which can not be explaingtien

profiling the USRP component with OSSIE, the percentage

of CPU usage of the non-signal processing pars$ fatien
the packet size is 32768 samples (ie. 128 kB) as/ishn
Figure 6. For higher size, the measure returns t@lae
which is in the continuity with the other measur@sis
anomaly has been obtained for all waveforms ofRigeire
3. It can be interpreted like the optimal packeesfor a
waveform using the USRP.

As shown above, for the same waveform, the rattasden
OSSIE and GNU is 5 for the CPU load and 2 for th
memory. It is incontestable that OSSIE is heaviantGNU
Radio in terms of hardware resource demands. Sg it
interesting to see if there is the same trend with inter-
components latency.

e

€

100

—+ —USRP WF1 (Est) | |
—+— USRP WF1 (Real)

0L

%CPU

L L L
150000 200000 280000

Packet Size

L L
50000 100000 300000

Figure 6 - USRP Component (OSSIE): non-signal
processing part CPU load

3.2. Latency

This parameter has been measured between thdfilfist
and the FM demodulator components. This channetagp
on waveforms WF1, WF2 and WF3 in OSSIE and also in
the GNU Radio waveform. The results are presemtdd/o
figures. The Figure 7 shows the latency for paskat from
128 samples (256 for WF1, 128 do not work due to an
overload of the CPU) to 65536 samples. The Figure &
zoomed part of the Figure 7 for packet size infetto4096
.samples; it is also possible to see on these fgthe

ISmeasured value for GNU Radio.

1400

1200

1000 |

Latency (us)

—+—WF1
——WF2
—E—WF3

(¥) GNUR

L
60000

L L L
30000 40000 50000

Packet Size

I
20000 70000

% U 10000

Figure 7 - I nter-components latency

While observing the curves obtained, a linear contmpent

can be seen for high packet size. The increadeedftency

for little packet is explained by the increase &flCload. If

the packet contains a lot of samples, there ars les
communications in terms @et () andPush_Packet ()
request, so the CPU is less solicited. It can hee that

the three OSSIE waveforms have the same comportment
The measure done with GNU Radio gives a resultlyota
different. for a packet size of 3584 samples, thkricy
between the end of the filtering and the beginhthe FM

Proceedings of the SDR '08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved



demodulation is around 5.7us. With OSSIE, the tes
around 146us for 4096 samples per packet. Accortting
these measures, the inter-components communication

in our future work the implementation of CORBA on a
Network On Chip to take advantages of this kind of
architecture to increase the CORBA performances and

GNU Radio is 25 times faster than in OSSIE. This ba
explained by the use of OmniORB. Indeed, it is \ide
admitted that CORBA leads to an important latencyeal
time system communications. It is in particular daethe

implementation of the GIOP/IIOP where the CORBA

overhead comes in addition to the Ethernet TCP hmaet
[20]. In GNU Radio, the inter-components commuridarat
can be compared to a simple parameter transfer when
OSSIE, there is a real protocol to transmit aneixexdata.

1201 ™

——WF1

——WF2

—8—WF3
+ GNUR

1000

800+

600+

Latency (i)

400

200+

—_—

. L L L L L I L
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Packet Size

Figure 8 - Inter-component latency (small packet size)
4. CONCLUSION

We have started this work to acquire a deep knaydeaf
the SCA and to understand the pros and the corthiof
standard. This work allows a better understandihghe
CORBA impact in OSSIE (and in SCA in general) ahd t
limits in terms of signal processing and packe¢ $a&r more
reliable design of our future SCA based systemitacture.
The latency and the computer resources usage iamergial
performances in a real-time radio system. We showhis
paper that the granularity study has consequenoeth®
performances so it has to be considered as an famgor

parameter when designing a waveform. With the tgsul

obtained up to now, a fine grain implementationaofull
duplex waveform like GSM is not realizable now dioe
CORBA. The first thing to do is to think at a conmization
system which can alleviate CORBA and

consequently the performances of a SCA based rad

system. While increasing the communication architecof
the hardware platform, it will be able to take auteges of
CORBA and accelerate its GIOP protocol.

5. FUTURE WORK

The good knowledge of SCA through our
experimentations will help us to investigate furthredetails

OSSIE

especially the mapping of the GIOP onto the NoC gxtul
hardware transport mechanisms.

6. REFERENCES

[1] “Software Communications Architecture Specifioa”,
Final/l5 May 2006 V.2.2.2, JTRS Standard, Joint grRm
Executive Office of the Joint Tactical Radio System
http://jtrs.spawar.navy.mil/sca

[2] CRC SCARI Open,
http://www.crc.ca/en/taxonomy/term/379

[3] OSSIE, Open Source SCA Implementation :: Emieedd
http://ossie.wireless.vt.edu/

[4] GNU Software Radio project.
http://www.gnu.org/software/gnuradio/

[5] Python, http://python.org

[6] P.J. Balister, M. Robert, .J. H. Reed, “Impaftthe use of
CORBA for the Inter-Component Communication in SB8ased
Radio”, SDR Forum proceedings 2006.

[7] Ettus Research LLC, http://www.ettus.com/

[8] SDR Documentation, Dawei Shen
http://www.nd.edu/~jnl/sdr/docs/

[9] Rodney G. Vaughan, Neil L. Scott, and D. Rod i#h“The
Theory of Bandpass Sampling”, IEEE Transactions Signal
Processing, Vol 39, NO. 9, September 1991

[10] OmniORB : Free High Performance ORB,
http://omniorb.sourceforge.net/

[11] SWIG, http://www.swig.org/

[12] P.J. Balister, C. Dietrich, .J. H. Reed, “MemdJsage of
Software Communication Architecture Waveform”, SBRrum
proceedings 2007.

[13] OProfile, http://oprofile.sourceforge.net/

[14] Python library reference, Part 25.8, “Hotshet High
performance logging profiler”, http://docs.pythamib/module-
hotshot.html

[15] Thomas Tsou, Philip Balister, Jeffrey Reed,aténcy
Profiling for SCA Software Radio”, SDR Technical iGerence
2007

[16] Thomas Schmid, Oussama Sekkat, Mani B. Sivast“An
Experimental Study of Network Performance Impactnafreased
Latency in Software Defined Radio”, WINTECH'07, Sember
2007

[17] P. Work, K. Nguyen, “Measure Code Sectionsnidghe
Enhanced Timer,” Intel Corporation, Tech. Rep.

[18] G. Gaillard, H. Balp, M. Sarlotte, F. VerdietMapping
Semantics of CORBA IDL and GIOP to Open Core Pratdor
Portability and Interoperability of SDR Waveform i@ponents”,

increasd?esign Test and Automation 2008 Conference, DATEOS.

19] Rahul Dhar, Gesly George, Amit Malani, PeteeeBkiste,
upporting Integrated MAC and PHY Software Develgmt for
the USRP SDR”, IEEE Workshop on Networking Techgae for
Software Defined Radio (SDR) Networks, Septemb@&620
[20] Milan  Zivkovic, Chunhui Liu, and Rudolf Mathar
“Implementation of OFDM Power Allocation Strategy GNU
Radio Framework”, 5th Workshop on Software Radiégsrch
2008, Karlsruhe Germany

Proceedings of the SDR '08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved






	Home
	Papers By Alpha
	Papers By Session



