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ABSTRACT 
 
The aim of this paper is to compare the performances of two 
free SDR platforms: GNU Radio and OSSIE which are 
deployed on the same computer. SDR applications 
development or waveforms conception are pretty close in 
these two systems but the software architectures are totally 
different. In order to quantify the cost of inter-components 
communication, the same waveform has been characterized 
on both platforms. Three critical points are evaluated: 
latency, CPU load and memory utilization. The results show 
that the average CPU load in OSSIE is five times higher 
than GNU Radio. The issue is the same for the inter-
component latency where GNU Radio is almost 25 times 
faster than OSSIE. 
 

1. INTRODUCTION 
 
The Software Radio concepts imply complex signal 
processing performed in software with real time 
requirements and constraints of embedded systems, as power 
consumption, memory and throughput capacity limitations. 
The amount of software involved has quickly increased in 
the new Software Defined Radio (SDR) transceiver due to 
this shift of paradigm from hardware to software. The 
reconfigurability and the flexibility of SDR systems are 
among the main goals of defining application by software. 
The technological answer is the introduction of software 
technologies and industrial standards into the software radio 
application design. Standards have been introduced to tackle 
the implementation issues of large software application over 
complex heterogeneous and distributed hardware platforms. 
The software engineering for the Software Defined Radio is 
driven by some key software concepts such as the 
portability, and the reusability of waveform applications 
code. It also aims at using software standards to reduce the 
development time and cost. 
 
The main software effort in SDR standardization belongs to 
the Joint Tactical Radio System (JTRS) Joint Program 
Executive Office (JPEO), which defines the specification of 
a software infrastructure: the Software Communication 

Architecture (SCA). The SCA [1] is based on several 
software technologies as Common Object Request Broker 
Architecture (CORBA), POSIX Operating System (OS), and 
software engineering techniques as model based design and 
object-oriented programming. The SCA specifications 
define the Operating Environment (OE) software. The OE 
specification mainly defines the Core Framework (CF), 
responsible for the management, the control, the 
configuration and deployment of the waveform applications 
and hardware platforms. 
Today, many commercial software products are available 
related to SCA software. The academic research also 
provides free software implementation of the SCA. Two of 
the most popular free implementations of SCA running on a 
PC workstation are the SCARI OPEN [2] implementation 
from the CRC and the OSSIE [3] implementation provided 
by the Wireless research lab of Virginia Tech. 
 
Another approach of designing waveform application comes 
from the free software community with the GNU Software 
Radio [4] project. The GNU Software Radio is a library of 
free software codes that define radio waveforms for a 
software receiver.  GNU Software Radio Application (RA) 
modules are written in C++, while the functions that 
configure the RA modules into a functioning radio are 
written in Python [5]. 
 
This paper presents two implementations of a reference FM 
receiver waveform using the two different approaches: SCA 
with OSSIE as shown in [6] and GNU. Both 
implementations are based on a PC running Linux and the 
receiver front end is a Universal Software Radio Peripheral 
[7]. This paper is discussing, the pro and cons of the two 
approaches, in terms of waveform architecture, modularity, 
scalability, portability and performances. It also discusses 
the differences of goals and features. The two approaches 
have been tested in educational perspectives to evaluate their 
learning facilities for new engineers in field of SDR, and to 
evaluate these technologies for future student projects.  
 
The remainder of this paper is organized as follows. Section 
2 gives an overview of the FM waveform, signal processing 
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details, architecture and coding consideration in both 
implementations GNU Software Radio and SCA software 
based on OSSIE. Section 3 presents our analysis of 
waveform performances and impact of SCA and GNU 
implementations in detail, and Section 4 concludes the 
paper. 
 

2. WAVEFORM AND HARWARE / SOFTWARE 
PLATFORM 

 
The main objectives of this section are to define the 
application waveform and its different refinement to observe 
the influence of the application granularity onto the latency 
and the OSSIE host computer load. 
This work is based onto the “FM broadcasting demodulation 
waveform” presented in [8] and [4]. The FM wave radio is 
received from an antenna connected to the analog input of a 
“BasicRx” daughter board of a USRP developed for the 
GNU Radio project. This board is used for coupling the 
antenna with one of the four 12-bit analog to digital 
converter of the USRP mother board. 
 
2.1. RF signal features 
 
 The French FM broadcasting band spreading from 88 to 
108 MHz is sampled without any filter at 64 MHz. This 
under sampling band [9] produces four aliases of the band 
between -32 MHz and 32MHz. The sum of theses aliases are 
not destructive between 20 and 24 MHz, so with this system, 
it is possible to demodulate the French radio station located 
between 88 and 92 MHz. 
After conversion the signal is first decimated and down-
converted to a baseband signal by a DDC (Digital Down 
Converter) before sending it through a USB chipset to the 
GPP under which OSSIE is working. Each DDC component 
produces a complex signal I(t)+jQ(t) where I(t) is the 
inphase signal and Q(t) is the quadrature phase signal. The 
maximum rate to the software side is limited by the USB 
chipset to 32 MB/s. The I and Q samples are coded in 16-bit 
signed integer so the complex at the output of the DDC is 
then coded with one 32-bit integer. The maximum complex 
rate across the USB results to 8 Msps. 
 
The bilateral stereo broadcast’s spectrum received by the 
software spreads over a 200 kHz bandwidth. Mostly, this 
spectrum is composed with a bilateral sub-spectrum centered 
on DC with no carrier and a bandwidth of 30 kHz. This part 
of the spectrum carried half of the sum of the left and right 
sound records. The stereo spectrum is thus composed with a 
bilateral suppressed sub-carrier sub-spectrum centered on 38 
kHz with a 30 kHz bandwidth. This sub spectrum carries 
half of the difference of the left and right sound records. A 
19 kHz pilot tone transmits in the spectrum, which has a 
phase relation to the 38 kHz suppressed sub-carrier, can be 

use to regenerate the 38 kHz for stereo FM demodulation. In 
this waveform, a set of decimation filters has been used to 
extract from the bilateral stereo broadcast’s spectrum the 
part of spectrum which is carried half of the sum of the left 
and right sound records. 
 
2.2. Description of the FM receiver waveform 
 
The complete FM receiver waveform, shown in Figure 1 is 
used to extract the mono part of the stereo signal, i.e. half of 
the sum of the left and right sound records described in the 
last sub section. This waveform has been tested over the 
two’s platforms OSSIE and GNU Radio. 
 

 

Figure 1 - FM receiver waveform 

 
This waveform is composed with: 

• an access block to the URSP, 
• a set of fir decimation filters , 
• one frequency demodulator, 
• one access block to the sound board of the 

computer 
On the USRP block, the sampled signal is transposed to 
baseband. This block configures the DDC and the 
decimation factor of the USRP mother board filters to obtain 
the desired rate and carrier frequency. The first low pass 
filter called CHAN FILT, which has a 100 kHz bandwidth, 
preserves the integrality of the bilateral stereo broadcast’s 
band received by the USRP. The FM DEM block is used to 
demodulate the frequency modulated signal. The C++ 
source code of this block calculates the phase between I and 
Q samples described in the last sub section. The other low 
pass filters called AUD FILT 1 and AUD FILT 2 make the 
rest of the filtering process. The filters are separated with 
decimators DEC 1-2 to limit the filters orders. The last 
component of all the waveforms is the SOUNDCARD 
which is represented by a speaker on the Figure. 
The access block to the computer’s sound board is different 
on the two platforms. On the GNU Radio side, there are two 
inputs of type float to access to the left and right channels of 
the sound board whereas in OSSIE the block has just one 
complex input to the same two channels. It is the reason why 
on the OSSIE waveform it is necessary to use a block called 
MONO 2 STER to copy the demodulate signal onto the real 
and imaginary part of the block input. The input rate to 
sound board blocks is fixed to 32 ksps for both platforms. 
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2.3. OSSIE and GNU Radio software suite 
 
2.3.1. OSSIE 
 
OSSIE is an object-oriented SCA OE for which signal 
processing components are written in C++1. This OE works 
on a Linux OS and the software’s dependencies are shown 
on Figure 2. This entire stack is used by OSSIE during the 
waveform execution. Each part of the stack impacts the 
memory and the host computer’s load. To know the 
overhead produces by CORBA’s communications 
(principally OmniORB [10]), the distribution of this 
software’s stack on the host computer must be measured.  
Every OSSIE’s component can be considered having two 
distinct parts: one part realizing the signal processing and 
another managing the SCA infrastructure. As in all SCA OE, 
the OSSIE waveforms are described in an XML file. 

 

Figure 2 - OSSIE dependencies 
 
2.3.2. GNU Radio 
 
GNU Radio project provides a Python library of signal 
processing blocks and specially a class gr.flow_graph 
to tie together the signal processing blocks of waveforms. 
Theses blocks are executed by the computer on which GNU 
libraries have been installed. To minimize the critical 
execution time of a complete waveform, blocks are written 
in C++. The interconnection blocks graph (IBG) can be 
compared to the OSSIE waveform. The python application 
script uses the gr.flow_graph class that gives to the 
waveform designer the ability to describe a data flow graph 
of the waveform he wants to describe. To wrap C++ blocks 
in Python the script must import the extension modules 
SWIG (Simplified Wrapper and Interface Generator [11]). 
The next subsection describes different granularities of the 
FM demodulation. 
 
2.4. Granularity variation of the OSSIE waveform 

                                                 
1 Each component can be written with C++ template 
generated by the “WaveDev” tool of the OSSIE’s suite 

The granularity is related to the portability of the waveform 
which is one of the goal of SCA and one of the key 
challenges today in waveform design. The granularity of the 
waveform is investigated in this section to study its impact in 
terms of performances. 
The Figure 3 illustrates the five different variations of the 
granularity, of the original Figure 1 waveform that we 
consider in this study. They are numbered from the fine-
grained waveform WF1 with nine components to a coarse-
grained one (WF6) with just three components. 
 

 
Figure 3 - Waveforms refinements 

 
2.5. Waveforms measurements performances 
 
In OSSIE, every component is considered like a process by 
the OS. With a simple “top” Linux system’s command we 
can see a process for each component with their CPU and 
memory utilization. In GNU Radio it is not possible to see 
the different components when using this same command. 
All GNU blocks are gathered under one Python process. 
Different metrics have been defined to characterize OSSIE 
and GNU Radio. Indeed, it is very important to know how 
these two systems work and the differences between them.  
The first parameters to know are the needs of the waveforms 
in terms of CPU and memory allocation. In a first approach, 
the “top” Linux system’s command can show an estimation 
of the instantaneous CPU and memory usage of all the 
components of the waveform. As mentioned above, doing 
this test with GNU Radio does not have a strong interest 
because of the use of Python. On the other side, doing this 
measure with OSSIE can give some preliminary answers.  
In order to have more accurate results, we use a profiler. 
This kind of software allows the user to know precisely the 
CPU utilization of every process which runs on the system 
(including the system himself if specified optionally). As in 
[6][12], OProfile [13] has been used to characterize the 
OSSIE host computer’s memory and load. For GNU Radio, 
it’s the Hotshot [14] profiler which has been used to 
characterize these same parameters. Indeed, due to the only 
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process created by the GNU Radio waveform application, 
the use of OProfile is not relevant to obtain the desired 
metrics. On the other hand, the Hotshot library of Python 
does not allow seeing the global system but only what 
happens inside the Python script. 
The other crucial parameter to know in the system is the 
latency caused by the inter-components communications 
[15][16]. To realize the latency measurement, an assembly 
routine has been used: RDTSC [17] (ReaD Time Stamp 
Counter). This counter is incremented at the CPU’s 
frequency. It allows us to know accurately the time elapsed 
between two calls of this counter (with a CPU frequency of 
3GHz, the counter accuracy is about 333fs). In a OSSIE 
component, there are two functions for receiving and 
transmitting the data (respectively Get() and 
Push_Packet()). In one component the measure is done 
before Push_Packet() and in the next component of the 
waveform, the measure is realized after Get() as shown in 
Figure 4. The time elapsed between the two measures, is 
obtained by a simple difference of the two counter’s values. 
 

 
Figure 4 - Latency measure with OSSIE 

 
In GNU Radio, The counter read is realized before the 
return command for one component and after the 
variables declaration for the other. 
The measure of these metrics is presented on the next 
section. They have been obtained with a Pentium 4 with a 
clock speed of 3 GHz and 1 GB of memory working with 
the Linux distribution Fedora Core 6. 
 

3. RESULTS ANALYSIS 
 
The methodology for the measures have been presented in 
the previous section, this section will present the results. 
Most of them concern OSSIE, the GNU Radio’s measures 
have been done to allow the comparison but OSSIE have a 
bigger research interest for us because of the use of SCA. 
 
3.1. CPU and memory utilisation 
 
The CORBA’s level of SCA seems to bring some overhead 
when running a waveform. Measuring the CPU load and the 

memory usage is a good point to start this study. First of all, 
it is possible to look at these two parameters with a simple 
“top” command on Linux. Table 1 shows the results for all 
the waveforms (for a packet size of 8192 samples). These 
measures have been carried out on the five waveforms 
described earlier for OSSIE in Figure 3 and for the WF2 
waveform of the Figure 3 for GNU Radio. The results 
displayed are the CPU load and the memory utilisation of 
the entire waveform. A simple calculation is realised to 
obtain the average value of the memory used by one 
component for each waveform. With these results, it is 
possible to see some differences between waveforms. The 
value of CPU usage is obviously not the same for all of these 
waveforms but the variation is not linear. For waveforms 
WF3 and WF4, the CPU usage is higher than WF1 and WF2 
which have more components. With GNU Radio, the CPU 
uses 6% of its capacity to execute the Python process of the 
WF2 waveform. So, for the same waveform, the CPU 
requires five times more capacity with OSSIE than with 
GNU Radio.  
 

 

Waveforms Number %CPU %Memory1 Number of 
Components1 

%Mem / 
Comp1 

1 36 4.4 7 0.63 
2 32 3.2 5 0.64 
3 47 2 3 0.67 
4 45 1.3 2 0.65 
5 28 1.4 2 0.7 
6 22 0.7 1 0.7 

Table 1 - OSSIE hardware resources utilisation 
1 without USRP and SoundCard components 

 
With this table, it is also possible to see the memory usage. 
In GNU Radio, the measured value for the waveform 
number 2 is 1.7%. By calculating the relation between the 
number of OSSIE components and the memory usage, it 
appears that every component uses approximately 0.7% of 
the host memory. Increasing the components number will 
inevitably increase the memory usage of the waveform. 
But a simple Linux command can not reveal all the 
parameters necessarily to know entirely the both systems. 
So, to understand this difference, profiling deeply OSSIE is 
necessarily. This operation is realised with OProfile. The 
Figure 5 presents the percentage of CPU load in a 
component which is used by the SCA infrastructure 
management part (non-signal processing part). with a 
variation of the data encapsulation‘s packet size. This size, 
defined by an attribute of the USRP component is a power 
of two because of a restriction of OSSIE, and the minimal 
size is 128 samples per packet due to USB restriction [16]. 
Three components are presented: one with a significant 
amount of signal processing (CHAN_FILT) and two with a 
tiny signal processing part (DEC and MONO_2_STER). 
For the filter, the measured value is under 10% when the 
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packet size exceeds 8192 samples but for the two others 
components, even when the packet size is very high (ie. 
more than 32768), the value of non-signal processing CPU 
load stays over 70%. This result shows the importance of 
having a certain amount of signal processing inside a 
component in order to limit the effect of the SCA 
infrastructure management part. 

 
Figure 5 - Non-signal processing CPU load 

 
With GNU Radio, profiling the application is totally 
different. Hotshot which is another profiler is used to see 
every function call made by the application and the 
corresponding CPU time. Because the waveform is 
contained in only one process, Hotshot gives just an outline 
of how GNU Radio works. This measure tells that the 
function, which used the bigger part of the CPU is the 
python script itself. These measures have only been realised 
with one packet size which is 3584 samples (default size in 
GNU Radio). In a first approach, it can be noticed that it is 
easier to study how OSSIE (multi-thread) works relatively to 
GNU Radio (mono thread). 
There is another point which can not be explained. When 
profiling the USRP component with OSSIE, the percentage 
of CPU usage of the non-signal processing part falls when 
the packet size is 32768 samples (ie. 128 kB) as shown in 
Figure 6. For higher size, the measure returns to a value 
which is in the continuity with the other measures. This 
anomaly has been obtained for all waveforms of the Figure 
3. It can be interpreted like the optimal packet size for a 
waveform using the USRP. 
As shown above, for the same waveform, the ratio between 
OSSIE and GNU is 5 for the CPU load and 2 for the 
memory. It is incontestable that OSSIE is heavier than GNU 
Radio in terms of hardware resource demands. So, it is 
interesting to see if there is the same trend with the inter-
components latency. 
 

 
Figure 6 - USRP Component (OSSIE): non-signal 

processing part CPU load 
 
3.2. Latency 
 
This parameter has been measured between the first filter 
and the FM demodulator components. This channel appears 
on waveforms WF1, WF2 and WF3 in OSSIE and also in 
the GNU Radio waveform. The results are presented in two 
figures. The Figure 7 shows the latency for packet size from 
128 samples (256 for WF1, 128 do not work due to an 
overload of the CPU) to 65536 samples. The Figure 8 is a 
zoomed part of the Figure 7 for packet size inferior to 4096 
samples; it is also possible to see on these figures the 
measured value for GNU Radio.  

 
Figure 7 - Inter-components latency 

 
While observing the curves obtained, a linear comportment 
can be seen for high packet size. The increase of the latency 
for little packet is explained by the increase of CPU load. If 
the packet contains a lot of samples, there are less 
communications in terms of Get() and Push_Packet() 
request, so the CPU is less solicited. It can be noticed that 
the three OSSIE waveforms have the same comportment. 
The measure done with GNU Radio gives a result totally 
different: for a packet size of 3584 samples, the latency 
between the end of the filtering and the beginning of the FM 
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demodulation is around 5.7µs. With OSSIE, the latency is 
around 146µs for 4096 samples per packet. According to 
these measures, the inter-components communication in 
GNU Radio is 25 times faster than in OSSIE. This can be 
explained by the use of OmniORB. Indeed, it is widely 
admitted that CORBA leads to an important latency in real 
time system communications. It is in particular due to the 
implementation of the GIOP/IIOP where the CORBA 
overhead comes in addition to the Ethernet TCP overhead 
[20]. In GNU Radio, the inter-components communication 
can be compared to a simple parameter transfer when in 
OSSIE, there is a real protocol to transmit and receive data. 

 
Figure 8 - Inter-component latency (small packet size) 

 
4. CONCLUSION 

 
We have started this work to acquire a deep knowledge of 
the SCA and to understand the pros and the cons of this 
standard. This work allows a better understanding of the 
CORBA impact in OSSIE (and in SCA in general) and the 
limits in terms of signal processing and packet size for more 
reliable design of our future SCA based system architecture. 
The latency and the computer resources usage are primordial 
performances in a real-time radio system. We show in this 
paper that the granularity study has consequences on the 
performances so it has to be considered as an important 
parameter when designing a waveform. With the results 
obtained up to now, a fine grain implementation of a full 
duplex waveform like GSM is not realizable now due to 
CORBA. The first thing to do is to think at a communication 
system which can alleviate CORBA and increase 
consequently the performances of a SCA based radio 
system. While increasing the communication architecture of 
the hardware platform, it will be able to take advantages of 
CORBA and accelerate its GIOP protocol. 

 
5. FUTURE WORK 

 
The good knowledge of SCA through our OSSIE 
experimentations will help us to investigate further in details 

in our future work the implementation of CORBA on a 
Network On Chip to take advantages of this kind of 
architecture to increase the CORBA performances and 
especially the mapping of the GIOP onto the NoC powerful 
hardware transport mechanisms. 
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