
Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

A COMPARATIVE STUDY OF TWO
SOFTWARE DEFINED RADIO PLATFORMS

Gael Abgrall (ENSIETA, BREST, FRANCE, abgralga@ensieta.fr); Frédéric Le Roy

(ENSIETA, BREST, FRANCE, leroyfr@ensieta.fr); Jean-Philippe Delahaye (CELAR,
BRUZ, FRANCE, jean-philippe.delahaye@dga.defense.gouv.fr); Jean-Philippe Diguet
(Lab-STICC, LORIENT, FRANCE, jean-philippe.diguet@univ-ubs.fr); Guy Gogniat

(Lab-STICC, LORIENT, FRANCE, guy.gogniat@univ-ubs.fr)

ABSTRACT

The aim of this paper is to compare the performances of two
free SDR platforms: GNU Radio and OSSIE which are
deployed on the same computer. SDR applications
development or waveforms conception are pretty close in
these two systems but the software architectures are totally
different. In order to quantify the cost of inter-components
communication, the same waveform has been characterized
on both platforms. Three critical points are evaluated:
latency, CPU load and memory utilization. The results show
that the average CPU load in OSSIE is five times higher
than GNU Radio. The issue is the same for the inter-
component latency where GNU Radio is almost 25 times
faster than OSSIE.

1. INTRODUCTION

The Software Radio concepts imply complex signal
processing performed in software with real time
requirements and constraints of embedded systems, as power
consumption, memory and throughput capacity limitations.
The amount of software involved has quickly increased in
the new Software Defined Radio (SDR) transceiver due to
this shift of paradigm from hardware to software. The
reconfigurability and the flexibility of SDR systems are
among the main goals of defining application by software.
The technological answer is the introduction of software
technologies and industrial standards into the software radio
application design. Standards have been introduced to tackle
the implementation issues of large software application over
complex heterogeneous and distributed hardware platforms.
The software engineering for the Software Defined Radio is
driven by some key software concepts such as the
portability, and the reusability of waveform applications
code. It also aims at using software standards to reduce the
development time and cost.

The main software effort in SDR standardization belongs to
the Joint Tactical Radio System (JTRS) Joint Program
Executive Office (JPEO), which defines the specification of
a software infrastructure: the Software Communication

Architecture (SCA). The SCA [1] is based on several
software technologies as Common Object Request Broker
Architecture (CORBA), POSIX Operating System (OS), and
software engineering techniques as model based design and
object-oriented programming. The SCA specifications
define the Operating Environment (OE) software. The OE
specification mainly defines the Core Framework (CF),
responsible for the management, the control, the
configuration and deployment of the waveform applications
and hardware platforms.
Today, many commercial software products are available
related to SCA software. The academic research also
provides free software implementation of the SCA. Two of
the most popular free implementations of SCA running on a
PC workstation are the SCARI OPEN [2] implementation
from the CRC and the OSSIE [3] implementation provided
by the Wireless research lab of Virginia Tech.

Another approach of designing waveform application comes
from the free software community with the GNU Software
Radio [4] project. The GNU Software Radio is a library of
free software codes that define radio waveforms for a
software receiver. GNU Software Radio Application (RA)
modules are written in C++, while the functions that
configure the RA modules into a functioning radio are
written in Python [5].

This paper presents two implementations of a reference FM
receiver waveform using the two different approaches: SCA
with OSSIE as shown in [6] and GNU. Both
implementations are based on a PC running Linux and the
receiver front end is a Universal Software Radio Peripheral
[7]. This paper is discussing, the pro and cons of the two
approaches, in terms of waveform architecture, modularity,
scalability, portability and performances. It also discusses
the differences of goals and features. The two approaches
have been tested in educational perspectives to evaluate their
learning facilities for new engineers in field of SDR, and to
evaluate these technologies for future student projects.

The remainder of this paper is organized as follows. Section
2 gives an overview of the FM waveform, signal processing

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

details, architecture and coding consideration in both
implementations GNU Software Radio and SCA software
based on OSSIE. Section 3 presents our analysis of
waveform performances and impact of SCA and GNU
implementations in detail, and Section 4 concludes the
paper.

2. WAVEFORM AND HARWARE / SOFTWARE
PLATFORM

The main objectives of this section are to define the
application waveform and its different refinement to observe
the influence of the application granularity onto the latency
and the OSSIE host computer load.
This work is based onto the “FM broadcasting demodulation
waveform” presented in [8] and [4]. The FM wave radio is
received from an antenna connected to the analog input of a
“BasicRx” daughter board of a USRP developed for the
GNU Radio project. This board is used for coupling the
antenna with one of the four 12-bit analog to digital
converter of the USRP mother board.

2.1. RF signal features

 The French FM broadcasting band spreading from 88 to
108 MHz is sampled without any filter at 64 MHz. This
under sampling band [9] produces four aliases of the band
between -32 MHz and 32MHz. The sum of theses aliases are
not destructive between 20 and 24 MHz, so with this system,
it is possible to demodulate the French radio station located
between 88 and 92 MHz.
After conversion the signal is first decimated and down-
converted to a baseband signal by a DDC (Digital Down
Converter) before sending it through a USB chipset to the
GPP under which OSSIE is working. Each DDC component
produces a complex signal I(t)+jQ(t) where I(t) is the
inphase signal and Q(t) is the quadrature phase signal. The
maximum rate to the software side is limited by the USB
chipset to 32 MB/s. The I and Q samples are coded in 16-bit
signed integer so the complex at the output of the DDC is
then coded with one 32-bit integer. The maximum complex
rate across the USB results to 8 Msps.

The bilateral stereo broadcast’s spectrum received by the
software spreads over a 200 kHz bandwidth. Mostly, this
spectrum is composed with a bilateral sub-spectrum centered
on DC with no carrier and a bandwidth of 30 kHz. This part
of the spectrum carried half of the sum of the left and right
sound records. The stereo spectrum is thus composed with a
bilateral suppressed sub-carrier sub-spectrum centered on 38
kHz with a 30 kHz bandwidth. This sub spectrum carries
half of the difference of the left and right sound records. A
19 kHz pilot tone transmits in the spectrum, which has a
phase relation to the 38 kHz suppressed sub-carrier, can be

use to regenerate the 38 kHz for stereo FM demodulation. In
this waveform, a set of decimation filters has been used to
extract from the bilateral stereo broadcast’s spectrum the
part of spectrum which is carried half of the sum of the left
and right sound records.

2.2. Description of the FM receiver waveform

The complete FM receiver waveform, shown in Figure 1 is
used to extract the mono part of the stereo signal, i.e. half of
the sum of the left and right sound records described in the
last sub section. This waveform has been tested over the
two’s platforms OSSIE and GNU Radio.

Figure 1 - FM receiver waveform

This waveform is composed with:

• an access block to the URSP,
• a set of fir decimation filters ,
• one frequency demodulator,
• one access block to the sound board of the

computer
On the USRP block, the sampled signal is transposed to
baseband. This block configures the DDC and the
decimation factor of the USRP mother board filters to obtain
the desired rate and carrier frequency. The first low pass
filter called CHAN FILT, which has a 100 kHz bandwidth,
preserves the integrality of the bilateral stereo broadcast’s
band received by the USRP. The FM DEM block is used to
demodulate the frequency modulated signal. The C++
source code of this block calculates the phase between I and
Q samples described in the last sub section. The other low
pass filters called AUD FILT 1 and AUD FILT 2 make the
rest of the filtering process. The filters are separated with
decimators DEC 1-2 to limit the filters orders. The last
component of all the waveforms is the SOUNDCARD
which is represented by a speaker on the Figure.
The access block to the computer’s sound board is different
on the two platforms. On the GNU Radio side, there are two
inputs of type float to access to the left and right channels of
the sound board whereas in OSSIE the block has just one
complex input to the same two channels. It is the reason why
on the OSSIE waveform it is necessary to use a block called
MONO 2 STER to copy the demodulate signal onto the real
and imaginary part of the block input. The input rate to
sound board blocks is fixed to 32 ksps for both platforms.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

2.3. OSSIE and GNU Radio software suite

2.3.1. OSSIE

OSSIE is an object-oriented SCA OE for which signal
processing components are written in C++1. This OE works
on a Linux OS and the software’s dependencies are shown
on Figure 2. This entire stack is used by OSSIE during the
waveform execution. Each part of the stack impacts the
memory and the host computer’s load. To know the
overhead produces by CORBA’s communications
(principally OmniORB [10]), the distribution of this
software’s stack on the host computer must be measured.
Every OSSIE’s component can be considered having two
distinct parts: one part realizing the signal processing and
another managing the SCA infrastructure. As in all SCA OE,
the OSSIE waveforms are described in an XML file.

Figure 2 - OSSIE dependencies

2.3.2. GNU Radio

GNU Radio project provides a Python library of signal
processing blocks and specially a class gr.flow_graph
to tie together the signal processing blocks of waveforms.
Theses blocks are executed by the computer on which GNU
libraries have been installed. To minimize the critical
execution time of a complete waveform, blocks are written
in C++. The interconnection blocks graph (IBG) can be
compared to the OSSIE waveform. The python application
script uses the gr.flow_graph class that gives to the
waveform designer the ability to describe a data flow graph
of the waveform he wants to describe. To wrap C++ blocks
in Python the script must import the extension modules
SWIG (Simplified Wrapper and Interface Generator [11]).
The next subsection describes different granularities of the
FM demodulation.

2.4. Granularity variation of the OSSIE waveform

1 Each component can be written with C++ template
generated by the “WaveDev” tool of the OSSIE’s suite

The granularity is related to the portability of the waveform
which is one of the goal of SCA and one of the key
challenges today in waveform design. The granularity of the
waveform is investigated in this section to study its impact in
terms of performances.
The Figure 3 illustrates the five different variations of the
granularity, of the original Figure 1 waveform that we
consider in this study. They are numbered from the fine-
grained waveform WF1 with nine components to a coarse-
grained one (WF6) with just three components.

Figure 3 - Waveforms refinements

2.5. Waveforms measurements performances

In OSSIE, every component is considered like a process by
the OS. With a simple “top” Linux system’s command we
can see a process for each component with their CPU and
memory utilization. In GNU Radio it is not possible to see
the different components when using this same command.
All GNU blocks are gathered under one Python process.
Different metrics have been defined to characterize OSSIE
and GNU Radio. Indeed, it is very important to know how
these two systems work and the differences between them.
The first parameters to know are the needs of the waveforms
in terms of CPU and memory allocation. In a first approach,
the “top” Linux system’s command can show an estimation
of the instantaneous CPU and memory usage of all the
components of the waveform. As mentioned above, doing
this test with GNU Radio does not have a strong interest
because of the use of Python. On the other side, doing this
measure with OSSIE can give some preliminary answers.
In order to have more accurate results, we use a profiler.
This kind of software allows the user to know precisely the
CPU utilization of every process which runs on the system
(including the system himself if specified optionally). As in
[6][12], OProfile [13] has been used to characterize the
OSSIE host computer’s memory and load. For GNU Radio,
it’s the Hotshot [14] profiler which has been used to
characterize these same parameters. Indeed, due to the only

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

process created by the GNU Radio waveform application,
the use of OProfile is not relevant to obtain the desired
metrics. On the other hand, the Hotshot library of Python
does not allow seeing the global system but only what
happens inside the Python script.
The other crucial parameter to know in the system is the
latency caused by the inter-components communications
[15][16]. To realize the latency measurement, an assembly
routine has been used: RDTSC [17] (ReaD Time Stamp
Counter). This counter is incremented at the CPU’s
frequency. It allows us to know accurately the time elapsed
between two calls of this counter (with a CPU frequency of
3GHz, the counter accuracy is about 333fs). In a OSSIE
component, there are two functions for receiving and
transmitting the data (respectively Get() and
Push_Packet()). In one component the measure is done
before Push_Packet() and in the next component of the
waveform, the measure is realized after Get() as shown in
Figure 4. The time elapsed between the two measures, is
obtained by a simple difference of the two counter’s values.

Figure 4 - Latency measure with OSSIE

In GNU Radio, The counter read is realized before the
return command for one component and after the
variables declaration for the other.
The measure of these metrics is presented on the next
section. They have been obtained with a Pentium 4 with a
clock speed of 3 GHz and 1 GB of memory working with
the Linux distribution Fedora Core 6.

3. RESULTS ANALYSIS

The methodology for the measures have been presented in
the previous section, this section will present the results.
Most of them concern OSSIE, the GNU Radio’s measures
have been done to allow the comparison but OSSIE have a
bigger research interest for us because of the use of SCA.

3.1. CPU and memory utilisation

The CORBA’s level of SCA seems to bring some overhead
when running a waveform. Measuring the CPU load and the

memory usage is a good point to start this study. First of all,
it is possible to look at these two parameters with a simple
“top” command on Linux. Table 1 shows the results for all
the waveforms (for a packet size of 8192 samples). These
measures have been carried out on the five waveforms
described earlier for OSSIE in Figure 3 and for the WF2
waveform of the Figure 3 for GNU Radio. The results
displayed are the CPU load and the memory utilisation of
the entire waveform. A simple calculation is realised to
obtain the average value of the memory used by one
component for each waveform. With these results, it is
possible to see some differences between waveforms. The
value of CPU usage is obviously not the same for all of these
waveforms but the variation is not linear. For waveforms
WF3 and WF4, the CPU usage is higher than WF1 and WF2
which have more components. With GNU Radio, the CPU
uses 6% of its capacity to execute the Python process of the
WF2 waveform. So, for the same waveform, the CPU
requires five times more capacity with OSSIE than with
GNU Radio.

Waveforms Number %CPU %Memory1 Number of
Components1

%Mem /
Comp1

1 36 4.4 7 0.63
2 32 3.2 5 0.64
3 47 2 3 0.67
4 45 1.3 2 0.65
5 28 1.4 2 0.7
6 22 0.7 1 0.7

Table 1 - OSSIE hardware resources utilisation
1 without USRP and SoundCard components

With this table, it is also possible to see the memory usage.
In GNU Radio, the measured value for the waveform
number 2 is 1.7%. By calculating the relation between the
number of OSSIE components and the memory usage, it
appears that every component uses approximately 0.7% of
the host memory. Increasing the components number will
inevitably increase the memory usage of the waveform.
But a simple Linux command can not reveal all the
parameters necessarily to know entirely the both systems.
So, to understand this difference, profiling deeply OSSIE is
necessarily. This operation is realised with OProfile. The
Figure 5 presents the percentage of CPU load in a
component which is used by the SCA infrastructure
management part (non-signal processing part). with a
variation of the data encapsulation‘s packet size. This size,
defined by an attribute of the USRP component is a power
of two because of a restriction of OSSIE, and the minimal
size is 128 samples per packet due to USB restriction [16].
Three components are presented: one with a significant
amount of signal processing (CHAN_FILT) and two with a
tiny signal processing part (DEC and MONO_2_STER).
For the filter, the measured value is under 10% when the

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

packet size exceeds 8192 samples but for the two others
components, even when the packet size is very high (ie.
more than 32768), the value of non-signal processing CPU
load stays over 70%. This result shows the importance of
having a certain amount of signal processing inside a
component in order to limit the effect of the SCA
infrastructure management part.

Figure 5 - Non-signal processing CPU load

With GNU Radio, profiling the application is totally
different. Hotshot which is another profiler is used to see
every function call made by the application and the
corresponding CPU time. Because the waveform is
contained in only one process, Hotshot gives just an outline
of how GNU Radio works. This measure tells that the
function, which used the bigger part of the CPU is the
python script itself. These measures have only been realised
with one packet size which is 3584 samples (default size in
GNU Radio). In a first approach, it can be noticed that it is
easier to study how OSSIE (multi-thread) works relatively to
GNU Radio (mono thread).
There is another point which can not be explained. When
profiling the USRP component with OSSIE, the percentage
of CPU usage of the non-signal processing part falls when
the packet size is 32768 samples (ie. 128 kB) as shown in
Figure 6. For higher size, the measure returns to a value
which is in the continuity with the other measures. This
anomaly has been obtained for all waveforms of the Figure
3. It can be interpreted like the optimal packet size for a
waveform using the USRP.
As shown above, for the same waveform, the ratio between
OSSIE and GNU is 5 for the CPU load and 2 for the
memory. It is incontestable that OSSIE is heavier than GNU
Radio in terms of hardware resource demands. So, it is
interesting to see if there is the same trend with the inter-
components latency.

Figure 6 - USRP Component (OSSIE): non-signal

processing part CPU load

3.2. Latency

This parameter has been measured between the first filter
and the FM demodulator components. This channel appears
on waveforms WF1, WF2 and WF3 in OSSIE and also in
the GNU Radio waveform. The results are presented in two
figures. The Figure 7 shows the latency for packet size from
128 samples (256 for WF1, 128 do not work due to an
overload of the CPU) to 65536 samples. The Figure 8 is a
zoomed part of the Figure 7 for packet size inferior to 4096
samples; it is also possible to see on these figures the
measured value for GNU Radio.

Figure 7 - Inter-components latency

While observing the curves obtained, a linear comportment
can be seen for high packet size. The increase of the latency
for little packet is explained by the increase of CPU load. If
the packet contains a lot of samples, there are less
communications in terms of Get() and Push_Packet()
request, so the CPU is less solicited. It can be noticed that
the three OSSIE waveforms have the same comportment.
The measure done with GNU Radio gives a result totally
different: for a packet size of 3584 samples, the latency
between the end of the filtering and the beginning of the FM

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

demodulation is around 5.7µs. With OSSIE, the latency is
around 146µs for 4096 samples per packet. According to
these measures, the inter-components communication in
GNU Radio is 25 times faster than in OSSIE. This can be
explained by the use of OmniORB. Indeed, it is widely
admitted that CORBA leads to an important latency in real
time system communications. It is in particular due to the
implementation of the GIOP/IIOP where the CORBA
overhead comes in addition to the Ethernet TCP overhead
[20]. In GNU Radio, the inter-components communication
can be compared to a simple parameter transfer when in
OSSIE, there is a real protocol to transmit and receive data.

Figure 8 - Inter-component latency (small packet size)

4. CONCLUSION

We have started this work to acquire a deep knowledge of
the SCA and to understand the pros and the cons of this
standard. This work allows a better understanding of the
CORBA impact in OSSIE (and in SCA in general) and the
limits in terms of signal processing and packet size for more
reliable design of our future SCA based system architecture.
The latency and the computer resources usage are primordial
performances in a real-time radio system. We show in this
paper that the granularity study has consequences on the
performances so it has to be considered as an important
parameter when designing a waveform. With the results
obtained up to now, a fine grain implementation of a full
duplex waveform like GSM is not realizable now due to
CORBA. The first thing to do is to think at a communication
system which can alleviate CORBA and increase
consequently the performances of a SCA based radio
system. While increasing the communication architecture of
the hardware platform, it will be able to take advantages of
CORBA and accelerate its GIOP protocol.

5. FUTURE WORK

The good knowledge of SCA through our OSSIE
experimentations will help us to investigate further in details

in our future work the implementation of CORBA on a
Network On Chip to take advantages of this kind of
architecture to increase the CORBA performances and
especially the mapping of the GIOP onto the NoC powerful
hardware transport mechanisms.

6. REFERENCES

[1] “Software Communications Architecture Specification”,
Final/15 May 2006 V.2.2.2, JTRS Standard, Joint Program
Executive Office of the Joint Tactical Radio System,
http://jtrs.spawar.navy.mil/sca
[2] CRC SCARI Open,
 http://www.crc.ca/en/taxonomy/term/379
[3] OSSIE, Open Source SCA Implementation :: Embedded,
http://ossie.wireless.vt.edu/
[4] GNU Software Radio project.
http://www.gnu.org/software/gnuradio/
[5] Python, http://python.org
[6] P.J. Balister, M. Robert, .J. H. Reed, “Impact of the use of
CORBA for the Inter-Component Communication in SCA Based
Radio”, SDR Forum proceedings 2006.
[7] Ettus Research LLC, http://www.ettus.com/
[8] SDR Documentation, Dawei Shen
 http://www.nd.edu/~jnl/sdr/docs/
[9] Rodney G. Vaughan, Neil L. Scott, and D. Rod White, “The
Theory of Bandpass Sampling”, IEEE Transactions on Signal
Processing, Vol 39, NO. 9, September 1991
[10] OmniORB : Free High Performance ORB,
http://omniorb.sourceforge.net/
[11] SWIG, http://www.swig.org/
[12] P.J. Balister, C. Dietrich, .J. H. Reed, “Memory Usage of
Software Communication Architecture Waveform”, SDR Forum
proceedings 2007.
[13] OProfile, http://oprofile.sourceforge.net/
[14] Python library reference, Part 25.8, “Hotshot -- High
performance logging profiler”, http://docs.python.org/lib/module-
hotshot.html
[15] Thomas Tsou, Philip Balister, Jeffrey Reed, “Latency
Profiling for SCA Software Radio”, SDR Technical Conference
2007
[16] Thomas Schmid, Oussama Sekkat, Mani B. Srivastava, “An
Experimental Study of Network Performance Impact of Increased
Latency in Software Defined Radio”, WiNTECH’07, September
2007
[17] P. Work, K. Nguyen, “Measure Code Sections Using the
Enhanced Timer,” Intel Corporation, Tech. Rep.
[18] G. Gaillard, H. Balp, M. Sarlotte, F. Verdier, “Mapping
Semantics of CORBA IDL and GIOP to Open Core Protocol for
Portability and Interoperability of SDR Waveform Components”,
Design Test and Automation 2008 Conference, DATE08.
[19] Rahul Dhar, Gesly George, Amit Malani, Peter Steenkiste,
“Supporting Integrated MAC and PHY Software Development for
the USRP SDR”, IEEE Workshop on Networking Technologies for
Software Defined Radio (SDR) Networks, September 2006
[20] Milan Zivkovic, Chunhui Liu, and Rudolf Mathar,
“Implementation of OFDM Power Allocation Strategy in GNU
Radio Framework”, 5th Workshop on Software Radios, March
2008, Karlsruhe Germany

	Home
	Papers By Alpha
	Papers By Session

