
BRIDGING DESIGN STAGES OF AN FPGA-BASED SYSTEM WITH A STRUCTURED 
ABSTRACTION METHODOLOGY 

 
Karl Wagner (The MITRE Corporation, Bedford, MA, USA; kwagner@mitre.org)  

 
 

ABSTRACT 

Modeling a complex system at increasing levels of 
abstraction reduces cost and schedule risks by providing 
early feedback on the effects of design decisions while also 
speeding up the overall design process, but it also 
introduces complexities to the design flow. Each level of 
abstraction requires a different skill set to design and 
analyze. Even the types of tools used vary between the 
abstraction levels. Transferring system requirements down 
through the levels and propagating results back up can be a 
complicated and error-prone process. Using a well-defined 
incremental approach with design artifacts that overlap the 
abstraction levels simplifies the process while still allowing 
designers to leverage the available features of their 
abstraction level. The MITRE Programmable Radio 
Technology (PRT) Laboratory demonstrated this approach 
through the implementation of a highly portable FPGA-
based high bandwidth high throughput (HBHT) high data 
rate (HDR) modem. 
 

1. INTRODUCTION 

As FPGA-based systems become more complex, often 
spanning multiple FPGAs with varied interconnect fabrics, 
development methodologies must adapt to maintain 
productivity. For designs which must be portable to 
disparate hardware platforms, such as software-defined 
radio waveforms, the process is even more complicated. 
Furthermore, size, weight, and power (SWaP) constraints on 
systems require that designs be as efficient as possible. A 
robust verification environment, a modular design approach 
with a well-defined interface between processing 
components, and the ability to optimize the implementation 
are key enabling factors which mitigate the complexity of 
modern systems [1]. 
 The MITRE PRT Laboratory is a multidiscipline 
electronic system rapid prototyping team focused on risk 
reduction and requirements specification with the mission of 
assisting the government in the successful acquisition of 
state-of-the-art communication and networking systems. 
The High Data Rate – Radio Frequency (HDR-RF) Test 
Waveform was created to ensure that modem hardware 
developed for the HDR-RF program has adequate 
computing resources to implement the proposed operational 

waveforms. The Test Waveform includes basic elements 
common to many HBHT waveforms including acquisition 
and tracking, modulation, filtering, strong forward error 
correction, and several selectable modes of operation. The 
complexity of the Test Waveform requires deployment on 
hardware platforms using several FPGAs. Portability and 
scalability were primary objectives in the development of 
the Test Waveform. 
 This paper describes the layered abstraction approach 
used in the design of the Test Waveform to enhance the 
design process and achieve the goals of portability and 
scalability. 

2. MODULAR DESIGN AND ABSTRACTION 

The development of a complex system can be simplified by 
breaking the system down into smaller self-contained 
subsystems. In this fashion the system can be isolated into 
blocks, each performing distinct aspects of the overall 
system. The blocks can be grouped into three categories: 
those which perform the algorithm, those which interface to 
the platform, and those which connect other blocks. The 
algorithm blocks are the most significant for the design of a 
portable system and are referred to as components in this 
paper. The link to the platform and connections between 
components are jointly described as infrastructure. The 
components and infrastructure rely on well-defined 
interface semantics so that they can be treated uniformly 
throughout the development process.  
 At each lower level of abstraction, the operation of the 
components and infrastructure is approximated in increasing 
detail. Modeling components at higher levels of abstraction, 
that is with less detail, is a common approach to simplify 
complex behaviors [2].  Several benefits are derived from 
the reduced detail including: different layers of a system 
such as hardware and software processes can be modeled 
uniformly; models run faster allowing more design 
iterations; and system-dependent decisions are delayed until 
late in the process improving the portability of the design.  
 One common approach used with high abstraction 
models is to directly convert the high-level description to a 
hardware implementation. Several commercial tools using a 
variety of description methods are based around such a 
transformation. When the overall project goal is to produce 
a prototype quickly, such methods can be highly effective. 
However for complex, robust and efficient designs required 
to be easily ported to alternate platforms, direct conversion 
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Figure 1: Decreasing Levels of Abstraction

has significant limitations. Lack of standardization between 
conversion tools locks a design into a specific tool chain 
and limits the flexibility of future implementations. High 
level languages such as C/C++ or Matlab/Simulink can 
offer a large pool of developers familiar with the language 
and well developed supporting environments. However, 
often only a specific subset of the high-level language is 
supported or a specific usage is required to generate the 
most efficient implementation. This limits the familiarity 
benefits and requires the high-level designer to understand 
the trade-offs made at lower levels. 
 Another approach to using high-level models directly is 
to build designs from a library of predefined components. 
While this approach can provide highly efficient solutions, 
only those options designed into the library are available. It 
is often cumbersome to develop new algorithms or alternate 
approaches. Library-based approaches are also affected by a 
lack of standardization, and connecting library components 
can require the development of nonstandard infrastructure. 
 For high-performance or highly constrained systems, 
being able to best leverage the features of the hardware can 
have a dramatic impact on the performance and SWaP 
characteristics of a design. While experienced FPGA 
designers are familiar with the strategies to optimize an 
implementation, system designers often are not.  

3. CHOICE OF LEVELS 

Various descriptions of abstraction levels have been 
proposed based on different views of the development 
process [2,3]. While any of these choices can benefit 
aspects of the process, the levels discussed here (see Figure 
1) were chosen specifically for the design of portable and 
scalable signal processing applications based primarily in 
FPGA devices. The number of levels was kept small to limit 
the initial development effort required while still providing 
the artifacts necessary to port an application to dissimilar 
hardware platforms. This choice of levels and the 
terminology to describe them does not preclude other 
approaches as it should be possible to map alternate levels 
into the broad categories given here. 
 Each level encapsulates a particular set of skills and a 
distinct methodology used to design an application. By 
splitting the levels in this fashion, designers at a given level 

can concentrate on a specific aspect of the design and are 
not required to make cross-discipline decisions. The 
structured approach to the levels facilitates the 
communication of requirements and choices between the 
different designers. This division is conducive to designing 
a portable application since platform-specific decisions are 
delayed until the lower levels. 

3.1. Signal Processing Model 

At the top level, the signal processing aspects of the 
application are defined. The operations performed by the 
components are modeled while the infrastructure is 
completely abstracted. Although our development focused 
on FPGA-based processing, design at this level applies 
equally to other types of processing. Characteristics such as 
spectral containment, signal to noise ratio, and bit error rate 
(BER) are simulated and explored. Performance relative to a 
specification is visualized and evaluated at this level. The 
signal processing architecture including decomposition into 
discrete components is also defined.  
 Additionally, all design parameters are specified at the 
top level of abstraction. Although some parameters are not 
used at all levels, centralizing their configuration helps to 
streamline the verification process. This top-level 
configuration facilitates the scalability of the application 
and ensures consistency throughout the lower levels. 
 Tools used at this level should target these tasks, 
providing libraries of simulation and analysis utilities. A 
convenient way to chain components together allows the 
signal processing architecture to be explored and elements 
to be added to the chain as required. It should be possible to 
quickly change between algorithms and adjust their 
parameters so the impact of different options can be 
explored. 

3.2. Functional Model 

The functional model bridges the signal processing model to 
the virtual platform model.  The distinction between 
components and infrastructure is more clearly defined and 
the components themselves may be modeled in greater 
detail. Thorough verification is required to ensure a robust 
implementation. This is particularly important when the 
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context of the design may change in the future due to 
porting or reuse as with our Test Waveform. The degree to 
which the functional model must match the intended 
implementation depends on the desired robustness of the 
simulation. We chose to produce bit-accurate functional 
models so the implementation could be compared exactly 
with lower-level models. Even with this constraint, only the 
boundaries of the components must match exactly at each 
level. The internal algorithm can be structured as 
appropriate for the language used by their level. The 
infrastructure portion of the system remains highly abstract 
being represented as simple connections in the functional 
model. 
 The algorithms to be implemented and the connections 
between them have been defined, so the primary goal of the 
functional model is efficient simulation. The functional 
model must be able to process large data sets quickly with 
differing configurations and limited human interaction. 
Compiled software languages such as C/C++ are effective at 
this stage, have well established design practices, and can 
draw from enable a large pool of experienced designers. 
 The supporting environment for the functional model 
includes a collection of routines to stimulate and monitor 
the design. Since the simulations are intended to run 
primarily unattended, the environment does not focus on the 

visualization used in the signal processing model, but rather 
on collecting long-term metrics of performance. Signal
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3.3. Virtual Platform Model 

The virtual platform model further refines the operation and 
structure of the components. It is based on synthesizable 
RTL code. This corresponds to traditional hardware design 
with regard to the components. Selecting RTL code restricts 
the implementation to FPGA- or ASIC-based processing 
resources, although the code still remains independent of 
any specific hardware architecture. The interfaces between 
components remain abstract, relying strictly on their 
prerequisite well-defined interface semantics; thus the 
models produced can easily be targeted to alternate 
platforms.  
 At this level, the hardware implementation of the 
algorithms is defined. The designer must have an 
understanding of hardware structures and how they can be 
arranged. Concepts such as pipelining and parallelism are 
important. The goals at this level include minimizing area, 
maximizing processing throughput, and reducing power 
consumption. Tools to perform netlist synthesis from 
languages such as VHDL or Verilog can effectively address 
these issues. 

3.4. Deployment Model 
Figure 2: Paths between Abstraction Levels

The deployment model is ideally where the handoff from 
the application developer, who implements the components, 
to the porter, who must map the components to a specific 
hardware platform, occurs. When further porting is done, it 
can begin at this level as well, using the artifacts from the 
initial development for the previous levels. At this point in 
the process, specific characteristics of the target platform 
are introduced. The porter maps the virtual platform model 
onto the specific target platform resources. This includes 
mapping individual components and the connections 
between them to FPGA devices and physical links 
respectively. When the components have well-defined 
interfaces, it is not necessary to understand the function of 
the components; they can be treated as black boxes. Only 
the resources required to implement the boxes and the 
bandwidth and flow characteristics between the boxes are 
important. However, a detailed understanding of the target 
platform behavior is required. The abstract models of the 
infrastructure are replaced with models which accurately 
represent the behavior of the physical links. This might 
include writing synthesizable gaskets or wrappers to convert 
the well-defined interface used by the components to the 
particular protocol used by the target platform as well as 
using functional models of the physical hardware. A 
detailed simulation of the final system is produced by 
combining the platform-specific infrastructure models with 

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 



the component models developed at the virtual platform 
level. 
 The resource mapping step lends itself to graphical or 
heuristic-based tools working directly from a high-level 
block diagram of the application. Since this is the last stage 
before moving to the actual hardware platform, the 
simulation must accurately represent the timing 
characteristics of the system. RTL languages such as VHDL 
or Verilog are well suited to this task. 

3.5. On-Platform Test 

Ultimately, the application is more than just a series of 
simulations and must run on an actual hardware platform. 
Final integration is unchanged from other traditional 
approaches. However, if thorough verification has been 
performed at each of the proceeding levels, any 
inconsistencies in the design should have already been 
identified and corrected. This stage consists of loading the 
application onto the target platform and running it. It may 
also involve interfacing to analog portions of the design and 
testing interoperability with legacy systems. 

4. MOVING BETWEEN LEVELS 

The paths for communicating design decisions between the 
levels must be well-defined to reduce redundancy in the 
models while maintaining clean isolation. As illustrated in    
Figure 2, several paths were used in our design to move the 
information down the levels as well as feed results back up 
so they can be evaluated in the most convenient 
environment. Consistency is maintained by overlapping the 

artifacts from each level. The results of upper levels are 
used to validate the implementation of the lower levels, and, 
when necessary, the results from lower levels are fed back 
for analysis in the upper level.  

Figure 3: Artifacts Derived From Architectural Drawing 
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4.1. Architectural Diagram 

Since flexibility and scalability were primary design goals 
in our development, the components in our application 
contain a variety of configurable properties. The particular 
properties available vary by components, but two common 
examples are the bit width of the data path and the 
parallelism of the component algorithms. The bit width 
property is used to trade between resources required and 
signal processing performance. Increasing the bit width 
provides more precision, adding less noise to the 
calculations, but requires more resources to compute and 
required interconnection bandwidth. The parallelism 
property is used to trade between resources required and 
FPGA clocks rate used to achieve the required maximum 
throughput. Each of these properties is a good example of a 
design decision which spans abstraction levels. The benefit 
can most easily be evaluated at the top level while the cost 
is not seen until the lower levels. 
 All component properties and simulation settings are 
specified in the top-level architectural diagram. These 
settings are propagated through to the lower levels, which 
accept the configured values as illustrated in Figure 3. For 
our development, the architectural diagram was specified in 
the Simulink™ design tool from The MathWorks. The 
graphical interface allows easy visualization of the structure 
and a convenient method to navigate the various settings. 
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We use an XML-based intermediate structure to capture the 
information for parsing by scripts used in the lower levels. 
 The graphical interface of the architectural diagram is 
leveraged further to allocate components to processing 
elements during deployment. The components in a flattened 
diagram can be grouped to indicate device subsystem 
boundaries. A porter can take the same flattened diagram 
and quickly choose a different grouping appropriate for 
their target platform. 

4.2. Code Generation 

Implementing the algorithmic code separately at each level 
of abstraction using the language and architecture 
appropriate for that level can give further insight into the 
algorithm. It can also provide verification that the 
specification for the algorithm is correctly interpreted. 
However, implementing the structural code for each level 
can be tedious and error prone and provides no additional 
insight. Working from the architectural diagram, skeletons 
containing the structural code for each component are 
generated. By parameterizing the models, the configuration 
information defined at the top level is passed down allowing 
the design decisions to be incorporated and designers to 
focus on the tasks their level is suited to handle.  
 The component skeletons and supporting code for the 
functional model is generated from the XML representation 
of the architectural diagram. This includes all of the 
interface code to customize and connect each component to 
the simulation infrastructure. The component developer 
writes the underlying parameterized algorithm model as a 
simple C++ object. If a porter chooses to modify 
configurable parameter settings to fit their target platform, 
the code generation updates the simulation without 
modification to the algorithm model. As with the functional 
model, the XML representation is used to generate 
component skeletons for the virtual platform model. The 
developer fills in the algorithm using standard HDL code. 
The porter can later adjust parameters from the top level 
without touching the underlying code. Finally, at the 
deployment level, structural RTL code including the 
required internal infrastructure code is generated based on 
the device boundaries selected in the architectural diagram. 
The developer or porter is presented with a single aggregate 
component subsystem which he connects to his platform-
specific infrastructure to complete the design. 
 The generation of component skeletons and supporting 
code removes the tedium of generating the connecting 
structural code but leaves the developers free to leverage the 
full language used for each level in the development of the 
algorithm. Code generation also allows all configuration 
information to be quickly fed from the top-level description 
without requiring the individual model levels to be modified 
directly.  

4.3. Simulation 

Verification is performed by the developer to ensure that the 
design operates as expected. Similarly, the porter must 
verify the deployment model to ensure the platform-specific 
infrastructure does not impact the behavior. Another 
important aspect of verification for the porter is to ensure 
confidence that the design operates as advertised. Being 
able to quickly generate and run a simulation helps satisfy 
these simulation goals. 
 The primary algorithm verification is done between the 
functional and virtual platform models. The infrastructure 
for the functional model is written using SystemC, a system- 
level language layered on top of C/C++ [4]. SystemC 
provides a convenient mechanism to directly compare the 
functional and virtual platform models. The functional 
models written in C/C++ can be simultaneously simulated 
with the RTL virtual platform models using commercial co-
simulation tools. The user can enable co-simulation on a 
per-component basis from the architectural diagram to 
optimize a simulation for coverage or speed. Scripts allow 
the simulation to be configured, built, and executed with a 
single command to rapidly run through various scenarios. 
 The signal processing model and deployment model are 
linked to the functional/virtual platform models using more 
traditional test vector sets. Sample data sets and their 
expected results are generated by running a simulation at the 
higher level. The input data is then used to stimulate the 
lower-level simulation and the output is verified against the 
expected results. Using simple test vectors provides the 
highest degree of compatibility among tool sets used by 
potential porters. Although fixed vectors can limit test 
coverage, being able to quickly generate new sets for 
different configuration helps mitigate this shortcoming. 
 We have designed our infrastructure to facilitate use of 
test vector files by selectively overriding each component’s 
input and capturing or comparing each component’s output. 
As with other configuration settings, these selections are 
made from the architectural diagram and passed to the 
simulation via generated code. Parsing the captured data in 
the signal processing model also allows visualization of the 
results from other levels. 

4.4. Actual Performance Evaluation 

When a new target platform is more resource-constrained 
than the original platform, it may not be possible to match 
the performance of the original design, but it is still useful 
to port the design with reduced performance for partial 
compatibility. Using the top-down, layered approach, 
alternate settings can quickly be selected and fed through to 
low-level simulations. The captured results can then be 
inserted into the top-level model to characterize the impact 
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of the changes and evaluated against modified system 
constraints. 
 Low-level model feedback is also used when the 
system or functional models do not provide a bit accurate 
representation of the RTL algorithm. While we chose to use 
bit-accurate models throughout the process, it may be easier 
to quickly generate higher-level models which merely 
approximate the end results. The simulation feedback is 
used to characterize the actual performance compared to the 
initial approximation. The simulation environment we 
developed can still be used to verify the design by switching 
from an exact comparison to a windowed one. Although co-
simulation will be less thorough since small inconsistencies 
may pass undetected and the run time of each configuration 
permutation increases since the results must be passed back 
to the top abstraction level for analysis, this approach may 
be reasonable for some designs. 

5. FUTURE WORK 

One of the criticisms of existing commercial tools is the 
lack of standardization which limits flexibility when porting 
a design. While the process and artifacts used here have 
greater flexibility of tool choice and target platform, they 
still rely on a customized environment. Several standards 
exist which address different aspects of the design process. 
For example, specifications from the Object Management 
Group (OMG) [5] present a way to describe the architecture 
of an SDR application. The IP-XACT specification from the 
SPIRIT Consortium [6] addresses representing and passing 
configuration information between different tools. Adapting 
our environment to leverage these standards would extend 
the flexibility of our approach. Also, as commercial tools 
for various aspects of the approach converge on standards, 
they could be integrated into the overall flow. 
 Raising the simulation integration to include both 
hardware and software aspects of a system also provides an 
interesting possibility. Since the functional model is written 
in C/C++, it seems natural to insert algorithm code targeted 
for general purpose processor (GPP) resources into the 

simulation. Additionally, code to control the system and 
implement higher-level protocols which typically is 
implemented on GPP resources could be integrated with the 
FPGA simulation to produce a more complete model of the 
system. 

6. CONCLUSIONS 

By separating the development into distinct abstraction 
levels based on the tools used, developers can focus their 
efforts on the aspects of system design with which they are 
most familiar. System designers are not required to 
understand details of RTL design and the RTL designers 
still have the freedom to leverage the full range of 
implementation choices. Having a well-defined, structured 
approach allows intent and impact to be communicated 
between levels of abstraction. These techniques are 
particularly suited to designs which are intended to be 
portable or reused in the future, since the platform-specific 
portions are isolated to the final level. 
 The supporting environment of scripts and utilities we 
have developed facilitates the structured approach and 
simplifies steps where lower abstractions levels can derive 
information directly from higher levels. Our implementation 
of the HDR-RF Test Waveform helped refine the approach 
and demonstrates its value. 
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