
BRIDGING DESIGN STAGES OF AN FPGA-BASED SYSTEM WITH A STRUCTURED
ABSTRACTION METHODOLOGY

Karl Wagner (The MITRE Corporation, Bedford, MA, USA; kwagner@mitre.org)

ABSTRACT

Modeling a complex system at increasing levels of
abstraction reduces cost and schedule risks by providing
early feedback on the effects of design decisions while also
speeding up the overall design process, but it also
introduces complexities to the design flow. Each level of
abstraction requires a different skill set to design and
analyze. Even the types of tools used vary between the
abstraction levels. Transferring system requirements down
through the levels and propagating results back up can be a
complicated and error-prone process. Using a well-defined
incremental approach with design artifacts that overlap the
abstraction levels simplifies the process while still allowing
designers to leverage the available features of their
abstraction level. The MITRE Programmable Radio
Technology (PRT) Laboratory demonstrated this approach
through the implementation of a highly portable FPGA-
based high bandwidth high throughput (HBHT) high data
rate (HDR) modem.

1. INTRODUCTION

As FPGA-based systems become more complex, often
spanning multiple FPGAs with varied interconnect fabrics,
development methodologies must adapt to maintain
productivity. For designs which must be portable to
disparate hardware platforms, such as software-defined
radio waveforms, the process is even more complicated.
Furthermore, size, weight, and power (SWaP) constraints on
systems require that designs be as efficient as possible. A
robust verification environment, a modular design approach
with a well-defined interface between processing
components, and the ability to optimize the implementation
are key enabling factors which mitigate the complexity of
modern systems [1].
 The MITRE PRT Laboratory is a multidiscipline
electronic system rapid prototyping team focused on risk
reduction and requirements specification with the mission of
assisting the government in the successful acquisition of
state-of-the-art communication and networking systems.
The High Data Rate – Radio Frequency (HDR-RF) Test
Waveform was created to ensure that modem hardware
developed for the HDR-RF program has adequate
computing resources to implement the proposed operational

waveforms. The Test Waveform includes basic elements
common to many HBHT waveforms including acquisition
and tracking, modulation, filtering, strong forward error
correction, and several selectable modes of operation. The
complexity of the Test Waveform requires deployment on
hardware platforms using several FPGAs. Portability and
scalability were primary objectives in the development of
the Test Waveform.
 This paper describes the layered abstraction approach
used in the design of the Test Waveform to enhance the
design process and achieve the goals of portability and
scalability.

2. MODULAR DESIGN AND ABSTRACTION

The development of a complex system can be simplified by
breaking the system down into smaller self-contained
subsystems. In this fashion the system can be isolated into
blocks, each performing distinct aspects of the overall
system. The blocks can be grouped into three categories:
those which perform the algorithm, those which interface to
the platform, and those which connect other blocks. The
algorithm blocks are the most significant for the design of a
portable system and are referred to as components in this
paper. The link to the platform and connections between
components are jointly described as infrastructure. The
components and infrastructure rely on well-defined
interface semantics so that they can be treated uniformly
throughout the development process.
 At each lower level of abstraction, the operation of the
components and infrastructure is approximated in increasing
detail. Modeling components at higher levels of abstraction,
that is with less detail, is a common approach to simplify
complex behaviors [2]. Several benefits are derived from
the reduced detail including: different layers of a system
such as hardware and software processes can be modeled
uniformly; models run faster allowing more design
iterations; and system-dependent decisions are delayed until
late in the process improving the portability of the design.
 One common approach used with high abstraction
models is to directly convert the high-level description to a
hardware implementation. Several commercial tools using a
variety of description methods are based around such a
transformation. When the overall project goal is to produce
a prototype quickly, such methods can be highly effective.
However for complex, robust and efficient designs required
to be easily ported to alternate platforms, direct conversion

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Signal
Processing

Model

Virtual
Platform
Model

Functional
Model

Deployment
Model

System
Specification

Target
Platform

Figure 1: Decreasing Levels of Abstraction

has significant limitations. Lack of standardization between
conversion tools locks a design into a specific tool chain
and limits the flexibility of future implementations. High
level languages such as C/C++ or Matlab/Simulink can
offer a large pool of developers familiar with the language
and well developed supporting environments. However,
often only a specific subset of the high-level language is
supported or a specific usage is required to generate the
most efficient implementation. This limits the familiarity
benefits and requires the high-level designer to understand
the trade-offs made at lower levels.
 Another approach to using high-level models directly is
to build designs from a library of predefined components.
While this approach can provide highly efficient solutions,
only those options designed into the library are available. It
is often cumbersome to develop new algorithms or alternate
approaches. Library-based approaches are also affected by a
lack of standardization, and connecting library components
can require the development of nonstandard infrastructure.
 For high-performance or highly constrained systems,
being able to best leverage the features of the hardware can
have a dramatic impact on the performance and SWaP
characteristics of a design. While experienced FPGA
designers are familiar with the strategies to optimize an
implementation, system designers often are not.

3. CHOICE OF LEVELS

Various descriptions of abstraction levels have been
proposed based on different views of the development
process [2,3]. While any of these choices can benefit
aspects of the process, the levels discussed here (see Figure
1) were chosen specifically for the design of portable and
scalable signal processing applications based primarily in
FPGA devices. The number of levels was kept small to limit
the initial development effort required while still providing
the artifacts necessary to port an application to dissimilar
hardware platforms. This choice of levels and the
terminology to describe them does not preclude other
approaches as it should be possible to map alternate levels
into the broad categories given here.
 Each level encapsulates a particular set of skills and a
distinct methodology used to design an application. By
splitting the levels in this fashion, designers at a given level

can concentrate on a specific aspect of the design and are
not required to make cross-discipline decisions. The
structured approach to the levels facilitates the
communication of requirements and choices between the
different designers. This division is conducive to designing
a portable application since platform-specific decisions are
delayed until the lower levels.

3.1. Signal Processing Model

At the top level, the signal processing aspects of the
application are defined. The operations performed by the
components are modeled while the infrastructure is
completely abstracted. Although our development focused
on FPGA-based processing, design at this level applies
equally to other types of processing. Characteristics such as
spectral containment, signal to noise ratio, and bit error rate
(BER) are simulated and explored. Performance relative to a
specification is visualized and evaluated at this level. The
signal processing architecture including decomposition into
discrete components is also defined.
 Additionally, all design parameters are specified at the
top level of abstraction. Although some parameters are not
used at all levels, centralizing their configuration helps to
streamline the verification process. This top-level
configuration facilitates the scalability of the application
and ensures consistency throughout the lower levels.
 Tools used at this level should target these tasks,
providing libraries of simulation and analysis utilities. A
convenient way to chain components together allows the
signal processing architecture to be explored and elements
to be added to the chain as required. It should be possible to
quickly change between algorithms and adjust their
parameters so the impact of different options can be
explored.

3.2. Functional Model

The functional model bridges the signal processing model to
the virtual platform model. The distinction between
components and infrastructure is more clearly defined and
the components themselves may be modeled in greater
detail. Thorough verification is required to ensure a robust
implementation. This is particularly important when the

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

context of the design may change in the future due to
porting or reuse as with our Test Waveform. The degree to
which the functional model must match the intended
implementation depends on the desired robustness of the
simulation. We chose to produce bit-accurate functional
models so the implementation could be compared exactly
with lower-level models. Even with this constraint, only the
boundaries of the components must match exactly at each
level. The internal algorithm can be structured as
appropriate for the language used by their level. The
infrastructure portion of the system remains highly abstract
being represented as simple connections in the functional
model.
 The algorithms to be implemented and the connections
between them have been defined, so the primary goal of the
functional model is efficient simulation. The functional
model must be able to process large data sets quickly with
differing configurations and limited human interaction.
Compiled software languages such as C/C++ are effective at
this stage, have well established design practices, and can
draw from enable a large pool of experienced designers.
 The supporting environment for the functional model
includes a collection of routines to stimulate and monitor
the design. Since the simulations are intended to run
primarily unattended, the environment does not focus on the

visualization used in the signal processing model, but rather
on collecting long-term metrics of performance. Signal

Processing
Model

Functional
Model

Virtual
Platform
Model

Deployment
Model

Code
Generation

Cosimulation

Test
Vectors

Test
Vectors

Code
Generation

Data
Sets

3.3. Virtual Platform Model

The virtual platform model further refines the operation and
structure of the components. It is based on synthesizable
RTL code. This corresponds to traditional hardware design
with regard to the components. Selecting RTL code restricts
the implementation to FPGA- or ASIC-based processing
resources, although the code still remains independent of
any specific hardware architecture. The interfaces between
components remain abstract, relying strictly on their
prerequisite well-defined interface semantics; thus the
models produced can easily be targeted to alternate
platforms.
 At this level, the hardware implementation of the
algorithms is defined. The designer must have an
understanding of hardware structures and how they can be
arranged. Concepts such as pipelining and parallelism are
important. The goals at this level include minimizing area,
maximizing processing throughput, and reducing power
consumption. Tools to perform netlist synthesis from
languages such as VHDL or Verilog can effectively address
these issues.

3.4. Deployment Model
Figure 2: Paths between Abstraction Levels

The deployment model is ideally where the handoff from
the application developer, who implements the components,
to the porter, who must map the components to a specific
hardware platform, occurs. When further porting is done, it
can begin at this level as well, using the artifacts from the
initial development for the previous levels. At this point in
the process, specific characteristics of the target platform
are introduced. The porter maps the virtual platform model
onto the specific target platform resources. This includes
mapping individual components and the connections
between them to FPGA devices and physical links
respectively. When the components have well-defined
interfaces, it is not necessary to understand the function of
the components; they can be treated as black boxes. Only
the resources required to implement the boxes and the
bandwidth and flow characteristics between the boxes are
important. However, a detailed understanding of the target
platform behavior is required. The abstract models of the
infrastructure are replaced with models which accurately
represent the behavior of the physical links. This might
include writing synthesizable gaskets or wrappers to convert
the well-defined interface used by the components to the
particular protocol used by the target platform as well as
using functional models of the physical hardware. A
detailed simulation of the final system is produced by
combining the platform-specific infrastructure models with

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

the component models developed at the virtual platform
level.
 The resource mapping step lends itself to graphical or
heuristic-based tools working directly from a high-level
block diagram of the application. Since this is the last stage
before moving to the actual hardware platform, the
simulation must accurately represent the timing
characteristics of the system. RTL languages such as VHDL
or Verilog are well suited to this task.

3.5. On-Platform Test

Ultimately, the application is more than just a series of
simulations and must run on an actual hardware platform.
Final integration is unchanged from other traditional
approaches. However, if thorough verification has been
performed at each of the proceeding levels, any
inconsistencies in the design should have already been
identified and corrected. This stage consists of loading the
application onto the target platform and running it. It may
also involve interfacing to analog portions of the design and
testing interoperability with legacy systems.

4. MOVING BETWEEN LEVELS

The paths for communicating design decisions between the
levels must be well-defined to reduce redundancy in the
models while maintaining clean isolation. As illustrated in
Figure 2, several paths were used in our design to move the
information down the levels as well as feed results back up
so they can be evaluated in the most convenient
environment. Consistency is maintained by overlapping the

artifacts from each level. The results of upper levels are
used to validate the implementation of the lower levels, and,
when necessary, the results from lower levels are fed back
for analysis in the upper level.

Figure 3: Artifacts Derived From Architectural Drawing

Architectural Diagram

.XML

Intermediate
Description

.CPP
.H

.VHD

.VHD

.VHD

Deployment
Model

Virtual Platform
Model

Functional
Model

.EXE

Deployment
Testbench

Device
Subsystems

Component
Skeletons

Component
Skeletons

Simulation
Testbench

4.1. Architectural Diagram

Since flexibility and scalability were primary design goals
in our development, the components in our application
contain a variety of configurable properties. The particular
properties available vary by components, but two common
examples are the bit width of the data path and the
parallelism of the component algorithms. The bit width
property is used to trade between resources required and
signal processing performance. Increasing the bit width
provides more precision, adding less noise to the
calculations, but requires more resources to compute and
required interconnection bandwidth. The parallelism
property is used to trade between resources required and
FPGA clocks rate used to achieve the required maximum
throughput. Each of these properties is a good example of a
design decision which spans abstraction levels. The benefit
can most easily be evaluated at the top level while the cost
is not seen until the lower levels.
 All component properties and simulation settings are
specified in the top-level architectural diagram. These
settings are propagated through to the lower levels, which
accept the configured values as illustrated in Figure 3. For
our development, the architectural diagram was specified in
the Simulink™ design tool from The MathWorks. The
graphical interface allows easy visualization of the structure
and a convenient method to navigate the various settings.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

We use an XML-based intermediate structure to capture the
information for parsing by scripts used in the lower levels.
 The graphical interface of the architectural diagram is
leveraged further to allocate components to processing
elements during deployment. The components in a flattened
diagram can be grouped to indicate device subsystem
boundaries. A porter can take the same flattened diagram
and quickly choose a different grouping appropriate for
their target platform.

4.2. Code Generation

Implementing the algorithmic code separately at each level
of abstraction using the language and architecture
appropriate for that level can give further insight into the
algorithm. It can also provide verification that the
specification for the algorithm is correctly interpreted.
However, implementing the structural code for each level
can be tedious and error prone and provides no additional
insight. Working from the architectural diagram, skeletons
containing the structural code for each component are
generated. By parameterizing the models, the configuration
information defined at the top level is passed down allowing
the design decisions to be incorporated and designers to
focus on the tasks their level is suited to handle.
 The component skeletons and supporting code for the
functional model is generated from the XML representation
of the architectural diagram. This includes all of the
interface code to customize and connect each component to
the simulation infrastructure. The component developer
writes the underlying parameterized algorithm model as a
simple C++ object. If a porter chooses to modify
configurable parameter settings to fit their target platform,
the code generation updates the simulation without
modification to the algorithm model. As with the functional
model, the XML representation is used to generate
component skeletons for the virtual platform model. The
developer fills in the algorithm using standard HDL code.
The porter can later adjust parameters from the top level
without touching the underlying code. Finally, at the
deployment level, structural RTL code including the
required internal infrastructure code is generated based on
the device boundaries selected in the architectural diagram.
The developer or porter is presented with a single aggregate
component subsystem which he connects to his platform-
specific infrastructure to complete the design.
 The generation of component skeletons and supporting
code removes the tedium of generating the connecting
structural code but leaves the developers free to leverage the
full language used for each level in the development of the
algorithm. Code generation also allows all configuration
information to be quickly fed from the top-level description
without requiring the individual model levels to be modified
directly.

4.3. Simulation

Verification is performed by the developer to ensure that the
design operates as expected. Similarly, the porter must
verify the deployment model to ensure the platform-specific
infrastructure does not impact the behavior. Another
important aspect of verification for the porter is to ensure
confidence that the design operates as advertised. Being
able to quickly generate and run a simulation helps satisfy
these simulation goals.
 The primary algorithm verification is done between the
functional and virtual platform models. The infrastructure
for the functional model is written using SystemC, a system-
level language layered on top of C/C++ [4]. SystemC
provides a convenient mechanism to directly compare the
functional and virtual platform models. The functional
models written in C/C++ can be simultaneously simulated
with the RTL virtual platform models using commercial co-
simulation tools. The user can enable co-simulation on a
per-component basis from the architectural diagram to
optimize a simulation for coverage or speed. Scripts allow
the simulation to be configured, built, and executed with a
single command to rapidly run through various scenarios.
 The signal processing model and deployment model are
linked to the functional/virtual platform models using more
traditional test vector sets. Sample data sets and their
expected results are generated by running a simulation at the
higher level. The input data is then used to stimulate the
lower-level simulation and the output is verified against the
expected results. Using simple test vectors provides the
highest degree of compatibility among tool sets used by
potential porters. Although fixed vectors can limit test
coverage, being able to quickly generate new sets for
different configuration helps mitigate this shortcoming.
 We have designed our infrastructure to facilitate use of
test vector files by selectively overriding each component’s
input and capturing or comparing each component’s output.
As with other configuration settings, these selections are
made from the architectural diagram and passed to the
simulation via generated code. Parsing the captured data in
the signal processing model also allows visualization of the
results from other levels.

4.4. Actual Performance Evaluation

When a new target platform is more resource-constrained
than the original platform, it may not be possible to match
the performance of the original design, but it is still useful
to port the design with reduced performance for partial
compatibility. Using the top-down, layered approach,
alternate settings can quickly be selected and fed through to
low-level simulations. The captured results can then be
inserted into the top-level model to characterize the impact

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

of the changes and evaluated against modified system
constraints.
 Low-level model feedback is also used when the
system or functional models do not provide a bit accurate
representation of the RTL algorithm. While we chose to use
bit-accurate models throughout the process, it may be easier
to quickly generate higher-level models which merely
approximate the end results. The simulation feedback is
used to characterize the actual performance compared to the
initial approximation. The simulation environment we
developed can still be used to verify the design by switching
from an exact comparison to a windowed one. Although co-
simulation will be less thorough since small inconsistencies
may pass undetected and the run time of each configuration
permutation increases since the results must be passed back
to the top abstraction level for analysis, this approach may
be reasonable for some designs.

5. FUTURE WORK

One of the criticisms of existing commercial tools is the
lack of standardization which limits flexibility when porting
a design. While the process and artifacts used here have
greater flexibility of tool choice and target platform, they
still rely on a customized environment. Several standards
exist which address different aspects of the design process.
For example, specifications from the Object Management
Group (OMG) [5] present a way to describe the architecture
of an SDR application. The IP-XACT specification from the
SPIRIT Consortium [6] addresses representing and passing
configuration information between different tools. Adapting
our environment to leverage these standards would extend
the flexibility of our approach. Also, as commercial tools
for various aspects of the approach converge on standards,
they could be integrated into the overall flow.
 Raising the simulation integration to include both
hardware and software aspects of a system also provides an
interesting possibility. Since the functional model is written
in C/C++, it seems natural to insert algorithm code targeted
for general purpose processor (GPP) resources into the

simulation. Additionally, code to control the system and
implement higher-level protocols which typically is
implemented on GPP resources could be integrated with the
FPGA simulation to produce a more complete model of the
system.

6. CONCLUSIONS

By separating the development into distinct abstraction
levels based on the tools used, developers can focus their
efforts on the aspects of system design with which they are
most familiar. System designers are not required to
understand details of RTL design and the RTL designers
still have the freedom to leverage the full range of
implementation choices. Having a well-defined, structured
approach allows intent and impact to be communicated
between levels of abstraction. These techniques are
particularly suited to designs which are intended to be
portable or reused in the future, since the platform-specific
portions are isolated to the final level.
 The supporting environment of scripts and utilities we
have developed facilitates the structured approach and
simplifies steps where lower abstractions levels can derive
information directly from higher levels. Our implementation
of the HDR-RF Test Waveform helped refine the approach
and demonstrates its value.

7. REFERENCES

[1] K. Skey, J. Bradley, and K. Wagner, “A Reuse Approach for
FPGA-Based SDR Waveforms,” Milcom 2006, October,
2006.

[2] D.C.Black amd J. Donovan, SystemC: From The Ground Up,
Springer, 2004.

[3] T. Kogel, A. Naverinen, and J. Aldis, “OCP TLM for
Architectural Modeling”, July, 2005.

[4] IEEE Standard SystemC Language Reference Manual, IEEE
Standard 1666-2005, 2006

[5] The Object Management Group, “PIM and PSM for Software
Radio Components Specification”, Version 1.0, March, 2007.

[6] The SPIRIT Consortium, “IP-XACT v1.4: A Specification for
XML Meta-data and Tool Interfaces”, March, 2008.

	Home
	Papers By Alpha
	Papers By Session

