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ABSTRACT 

 

A challenge in component-based design is reliably and 

efficiently instantiating the transport and any translation 

functions required to transfer data between each component 

comprising the entire system. While the components may 

involve complicated manipulation of the data stream, the 

transport between them is typically much simpler. It can be 

abstractly defined in terms of data flow characteristics 

qualified by various properties of the targeted hardware 

platform. If the interface between the components of the 

system is well defined, automated tools can easily create the 

required transport based on a high level structural view of 

the system. This paper will describe a complete solution for 

automating the process of interconnecting all components of 

a system. First, we defined a set of three component 

interfaces based on Open Core Protocol (a low-level 

hardware interface definition standard) that, as a group, we 

refer to as Common Interfaces. Next, we defined an XML 

representation and created a GUI for describing the high-

level characteristics of the component interfaces and the 

interconnection of the components within the system. 

Lastly, we developed scripts to generate hardware 

description language source for the entire system besides the 

components. In so doing, we have freed the system designer 

to focus on developing the components, the heart of the 

system. 

 

 

1. INTRODUCTION 

 

The MITRE Programmable Radio Technology (PRT) 

Laboratory is a multidiscipline electronic system rapid 

prototyping team dedicated to performing risk reduction and 

requirements specification with the mission of assisting the 

government in the successful acquisition of state-of-the-art 

communication and networking systems. A particular focus 

is the development of strategies for the efficient reuse of 

FPGA-based software-defined radio (SDR) waveforms [1]. 

To vet these strategies, we developed the High Data Rate – 

Radio Frequency (HDR-RF) Test Waveform, the primary 

purpose of which is to ensure that the modem hardware 

platforms developed by multiple contractors for the HDR-

RF program have adequate computing resources to 

implement the proposed operational waveforms. The Test 

Waveform includes basic elements common to many high-

bandwidth, high-throughput (HBHT) waveforms, including 

acquisition and tracking, modulation, filtering, strong 

forward error correction, and several selectable modes of 

operation. The complexity of the Test Waveform requires 

deployment on hardware platforms using several FPGAs. 

 To aid in the rapid deployment of this system on 

multiple hardware platforms, the PRT Laboratory adopted 

and implemented the concept of designing processing 

components with a well-defined set of interfaces. This paper 

describes the details of this approach. 

 

2. COMPONENT-BASED DESIGN 

 

There are a number of advantages to component-based 

design, in which a complex system is broken down into less 

complex components, the components are designed 

separately, and then they are integrated to form the complex 

system [2]. A primary advantage is that appropriately-sized 

components of a system can be dispersed across multiple 

FPGAs on platforms with FPGAs that have a range of 

available resources. That is, generally a less complex design 

will require fewer hardware resources to implement than a 

more complex design. By breaking down the system into 

constituent components each of which consumes at most 

50% of the resources of the least capable FPGA that the 

system might be targeted to, the designer has the freedom to 

deploy the system on any platform that has FPGAs meeting 

the minimum capability requirements. 

 A consequence of component-based design is that the 

components must be connected to each other in order to 

perform the overall function of the system. If all the 

interfaces of the components conform to some standard, 

several benefits arise and will be outlined throughout this 

paper. 

 

3. COMMON INTERFACING 

 

While the functions of any two components may be 

drastically different and the types of information that are 

transferred through the components’ interfaces are 

dissimilar, these components can share a simple, well-

defined set of interfaces. For our hardware designs, we 

defined a set of three component interfaces that provide for 

all interaction between components and their external 

environment based on our previous experience creating 

custom interfaces. 
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 The first is an interface that provides the means to 

manage the overall operation of the component. It allows 

control of the state of the component, the reception of error 

and interrupt indications, and the transfer of debugging 

information. 

 The second is a memory-type interface that provides 

straightforward, efficient read and write access to 

addressable memory locations. The core signals of this 

interface are address and data busses. 

 The last is an interface that provides a simple, 

unidirectional streaming data transfer mechanism. It is 

optimized for implementation efficiency and continuous 

data transfer with basic flow control. 

 With combinations of these three interfaces, a wide 

range of components can be interfaced to. If all component 

interfaces are restricted to this set, the interconnection of 

any compatible components is easily achieved. Furthermore, 

the system-level control of the collection of components is 

simple since a single controller can manage all of the 

components with a single interface type by simply 

replicating instantiations of that interface. Also, by ensuring 

that all components only use these interfaces, the designer 

will only need to create a single adapter for each 

combination of the three interfaces and the associated 

interface of the external environment resources specific to 

the hardware platform, such as onboard memory or high-

speed data links. 

 We have termed adherence to this practice as Common 

Interfacing. For our set of Common Interfaces, we selected 

an open standard to which we would conform. 

 

4. OCP-COMPLIANT INTERFACES 

 

Adopting an open standard for the component interfaces 

may seem like a decision that would limit the flexibility of 

the interfaces or demand significant effort to implement. 

The Open Core Protocol (OCP), an openly-licensed, core-

centric protocol developed by the OCP International 

Partnership (OCP-IP), addresses both of these concerns. 

 The OCP standard defines a set of fundamental signals 

that can be combined and configured to implement almost 

any conceivable interface. Rather than defining some 

number of standard interfaces from which designers can 

choose, the standard provides a structured means for 

describing the configuration of any interface that can be 

constructed from the OCP signals. The specification of a 

particular interface is referred to as a profile. The profile 

completely documents the interface, greatly simplifying the 

task of describing the component interfaces. 

 Since the features of an OCP-compliant interface are 

entirely determined by the designer, the interface can be as 

simple or as complex as the design warrants. By specifying 

the interface profile, the designer determines the effort and 

resources that will be required to implement the interface. 

Since the OCP signals are so fundamental and the minimum 

set of required signals is so basic, extremely simple 

interfaces can be created 

 We used the OCP to define three profiles to implement 

the interfaces described in Section 3. The profiles are named 

System, Memory, and Dataflow, respectively. The 

following three subsections describe the interfaces and the 

signals that comprise them. For an explanation of the 

function of the individual OCP signals in these profiles see 

the OCP Specification [3]. 

 

4.1. System 

 

The System profile provides overall control of the operation 

of the component. Figure 1 shows the OCP signals included 

in the profile. OCP connections are point-to-point only, 

having a single Master interface, which initiates all accesses 

that utilize the data busses using write or read commands, 
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Figure 1: System OCP Profile 
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and one Slave interface.  In the case of the System profile, 

the interface on the component is the Slave and a system 

controller would implement the corresponding Master 

interface. 

 To facilitate the platform concepts of resource 

allocation and power management, a set of operational 

states are defined. Figure 2 shows the typical state transition 

flow. These states are based on those used for software 

components in the Software Communications Architecture 

(SCA).  The system controller directs the component into 

the various states by writes in which the initialize, start, 

stop, test, and release directives are encoded on the mData 

bus. The controller can query the component as to its current 

state by reads in which the Inactive, Configure, Active, and 

Test states are encoded on the sData bus. 

 The profile also provides several out-of-band Slave 

signals, Status, sInterrupt, and sError, with which the 

component can immediately inform the system controller of 

a condition without a query from the Master side of the 

connection. 

 

4.2. Memory 

 

The Memory profile was chosen to provide a full-featured 

interface while bounding overhead and implementation 

effort by excluding more complex features available in 

OCP. Figure 3 shows the signals included in the profile. 

Both read and write access is provided to an addressable 

memory space. This type of access is typical for memory-

mapped peripherals. In our design, a Memory interface is 

typically used to set properties and query status for a 

component. In this case the component implements the 

Slave side of the interface and a system controller has the 

Master. 

 Any unused signals for a particular instance of a profile 

can be tied off to a benign default value. For instance, we 

set the mAddrSpace, mDataInfo, and sDataInfo signals all 

to default values for our design.  However, if we develop 

new components that use these signals they will still be 

compatible with the original components. 

 

4.3. Dataflow 

 

The Dataflow profile was chosen to provide a high 

performance path with minimal overhead. The resources 

required for a Dataflow interface will be on the same order 

as those required for a basic custom interface 

implementation. Figure 4 shows the signals included in the 

profile. The inclusion of the sCmdAccept signal allows a 

Slave to throttle the rate at which data is transferred over a 

Dataflow connection, effectively enabling flow control. 

 In our design, the Dataflow interface is the most 

common means for components to interact. A component 

that generates data outputs it via a Master interface, and a 

component that consumes data receives it via a Slave 

interface. Many components are connected together in series 

with Dataflow connections and via the flow control 

provided by the interfaces the processing throughput rate is 

regulated by the slowest connection or component. 

 

4.4. Usage Details 

 

Each component will have one System interface and zero or 

more each of the Memory and Dataflow interfaces. Each 

interface defines a distinct interaction with the component. 

While the configuration of the signals, e.g. the number of 

bits in the mData bus, is fixed for the System profile, the 

signal configurations for the Memory and Dataflow could 

vary for each interface of each component. However, to 

simplify the process of connecting the interfaces between 

two components, we set a global OCP bus width for a 

design. For example mData is 256 bits wide for all Dataflow 

interfaces, therefore the mData master port on a component 

can be directly connected to any mData slave port. The 

width of the actual data to be transferred over the mData bus 

is determined by the components on either side of the bus. 
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Figure 3: Memory OCP Profile Figure 4: Dataflow OCP Profile 
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While the full 256-bit bus is present in simulation, the 

unused bits are optimized away in synthesis. 

 

5. BEYOND PROTOCOL 

 

The OCP profiles describe the signals present in an interface 

and the protocol they use to transfer data. This is all that is 

required for transport of the data between components. 

However, for components to manipulate the data they must 

have a common interpretation of what the data is. For the 

System profile, the data signal uses a specific encoding to 

define the various transitions and states, but the other 

profiles define the data signal based on the requirements of 

the component. 

 Working from the practices used for SCA software 

components, the data encoding used by each interface is 

defined using Common Object Request Broker Architecture 

(CORBA) Interface Definition Language (IDL). Each 

interface defines some number of functions each taking 

some number of arguments. These arguments are 

concatenated with an ordinal value specifying the function 

to form the data signal of the profile. The generated code for 

the component provides a routine to convert between a 

structure containing each argument and the flattened 

representation used by the data signal. Although any set of 

functions can be defined, to maximize the flexibility in 

connecting components, the interface definition should be 

kept as general as possible. Only those components which 

use the same profile and same interface definition can be 

directly connected. 

 Since parallelism of component algorithms is of special 

importance to achieve high throughput while allowing the 

proper balance of clock rate to resources, multiple function 

calls can also be mapped into the same transaction. This 

does not require a new interface and components with 

different levels of parallelism can be connected using a 

simple generic adapter.  

 

6. XML SYSTEM DESCRIPTION 

 

The use of the Common Interfacing concept alone is helpful 

in the process of instantiating and interconnecting 

components into a system by hand. However, greater benefit 

can be gained by leveraging the consistent, structured nature 

of the interfaces. We created a set of tools to automate the 

instantiation and interconnection process of components 

based on a structured description of their interfaces and 

connections within the system. 

 We created a set of XML schema to describe the 

interfaces and other characteristics, e.g. VHDL generics, of 

each component and to describe the connection of multiple 

components to form a system. Concurrently, The SPIRIT 

Consortium was undertaking a similar yet much larger-

scoped effort. This consortium of companies has released a 

specification, IP-XACT, which provides the definition of 

XML schema to neutrally describe intellectual property (IP) 

[4]. This IP can be a component or a system of components. 

A common goal we have is to completely describe the 

interfaces of a component in a standard way so that tools 

can be used to automatically integrate components into a 

verification environment or into a system that can be 

deployed to hardware. We have not yet determined the 

effort required to transition to the IP-XACT schema, but we 

are interested in exploring that option. 

 In the mean time, we are using our schema with 

success. In addition to describing the component interfaces, 

the XML specifies build-time variable parameters of the 

components, for instance, selecting the method of 

modulation that a modulator component will perform. Also, 

the XML specifies how components are interconnected to 

form a complete system that can be synthesized. This 

function is extended to serve as the basis for an 

automatically-generated verification environment. 

 To make the task of creating and modifying the XML 

description of the components and the system we leveraged 

a graphical schematic entry tool. This GUI presents a means 

for the designer to create components, interfaces, 

subsystems, and systems and set properties for each. 

Components can be connected to form a system, and the 

system can be partitioned into subsystems. The designer can 

create libraries of these components and systems to facilitate 

the rapid creation of new systems. 

 Additionally, in the system-level view the designer can 

include various models of a particular component and 

connect them to verification objects. This information is 

also captured in the XML system description and utilized by 

downstream tools for the automatic generation of source 

code. 

 

7. AUTOMATIC GENERATION 

 

7.1. Simulation Environment Generation 

 

A significant focus of our system implementation process is 

the functional verification of the system via simulation. To 

aid in the execution of this stage of the process, we 

automated the task of creating a simulation environment that 

incorporates various models of the components. The 

system-level XML specifies which models of a component, 

e.g. high-level SystemC or synthesizable VHDL are 

included in the simulation. Each component can use a 

different level of model or multiple levels for integrated 

runtime verification. A collection of scripts processes the 

XML, pulls in the appropriate component worker models, 

and creates a SystemC-based, mixed-language simulation. 

Figure 5 depicts the inputs and a high-level view of the 

output simulation environment. A set of configuration files 

specify Dataflow interfaces that should be compared and 
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Dataflow interfaces that should be sourced from or sunk to a 

file. The component Common Interfaces allowed for a 

standard set of adapters to be created to integrate the 

component worker models into the simulation environment. 

 

7.2. Synthesizable System Generation 

 

The same system-level XML that is used to construct the 

simulation environment is also used to generate an OCP-

compliant system in synthesizable VHDL. Figure 6 shows 

the flow. The automatic generation scripts pull in 

component worker VHDL, and, based on the system-level 

XML, they completely construct an OCP-compliant VHDL 

entity that instantiates and interconnects all the components. 

 The XML system description is used to collect 

components into subsystems. These subsystems can 

correspond, for instance, to a single FPGA in a multi-FPGA 

platform. The scripts will generate OCP-compliant VHDL 

entities that implement the subsystems. Each of these 

entities is ready for instantiation in the application area of an 

FPGA on the target hardware platform. Components can be 

rapidly redistributed amongst a number of subsystems to 

target the design to platforms possessing different FPGA 

resources or simply to adjust the distribution of components 

on the same hardware platform as components are added to 

or removed from the design. 

 

8. CONCLUSIONS 

 

Adhering to a set of common interfaces for components has 

several advantages. Interconnecting these components 

becomes trivial, even to the point that scripts can automate 

the process. Component interfaces are easily adapted to 

platform-specific interfaces once per platform rather than 

once per platform per component per interface. 

Documenting a specific component’s interfaces is reduced 

to providing a description of the data types or memory maps 

on its interfaces, since the details of the signaling on the 

three Common Interfaces can be specified once for all 

components. Furthermore, Common Interfacing encourages 

component reuse. By making a small sacrifice in flexibility, 

significant benefits are realized. 
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