
Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

AUTOMATING FPGA-BASED SYSTEM IMPLEMENTATION WITH

COMMON INTERFACING

John Bradley (The MITRE Corporation, Bedford MA USA, jbradley@mitre.org);

Karl Wagner (The MITRE Corporation, Bedford MA USA, kwagner@mitre.org)

ABSTRACT

A challenge in component-based design is reliably and

efficiently instantiating the transport and any translation

functions required to transfer data between each component

comprising the entire system. While the components may

involve complicated manipulation of the data stream, the

transport between them is typically much simpler. It can be

abstractly defined in terms of data flow characteristics

qualified by various properties of the targeted hardware

platform. If the interface between the components of the

system is well defined, automated tools can easily create the

required transport based on a high level structural view of

the system. This paper will describe a complete solution for

automating the process of interconnecting all components of

a system. First, we defined a set of three component

interfaces based on Open Core Protocol (a low-level

hardware interface definition standard) that, as a group, we

refer to as Common Interfaces. Next, we defined an XML

representation and created a GUI for describing the high-

level characteristics of the component interfaces and the

interconnection of the components within the system.

Lastly, we developed scripts to generate hardware

description language source for the entire system besides the

components. In so doing, we have freed the system designer

to focus on developing the components, the heart of the

system.

1. INTRODUCTION

The MITRE Programmable Radio Technology (PRT)

Laboratory is a multidiscipline electronic system rapid

prototyping team dedicated to performing risk reduction and

requirements specification with the mission of assisting the

government in the successful acquisition of state-of-the-art

communication and networking systems. A particular focus

is the development of strategies for the efficient reuse of

FPGA-based software-defined radio (SDR) waveforms [1].

To vet these strategies, we developed the High Data Rate –

Radio Frequency (HDR-RF) Test Waveform, the primary

purpose of which is to ensure that the modem hardware

platforms developed by multiple contractors for the HDR-

RF program have adequate computing resources to

implement the proposed operational waveforms. The Test

Waveform includes basic elements common to many high-

bandwidth, high-throughput (HBHT) waveforms, including

acquisition and tracking, modulation, filtering, strong

forward error correction, and several selectable modes of

operation. The complexity of the Test Waveform requires

deployment on hardware platforms using several FPGAs.

 To aid in the rapid deployment of this system on

multiple hardware platforms, the PRT Laboratory adopted

and implemented the concept of designing processing

components with a well-defined set of interfaces. This paper

describes the details of this approach.

2. COMPONENT-BASED DESIGN

There are a number of advantages to component-based

design, in which a complex system is broken down into less

complex components, the components are designed

separately, and then they are integrated to form the complex

system [2]. A primary advantage is that appropriately-sized

components of a system can be dispersed across multiple

FPGAs on platforms with FPGAs that have a range of

available resources. That is, generally a less complex design

will require fewer hardware resources to implement than a

more complex design. By breaking down the system into

constituent components each of which consumes at most

50% of the resources of the least capable FPGA that the

system might be targeted to, the designer has the freedom to

deploy the system on any platform that has FPGAs meeting

the minimum capability requirements.

 A consequence of component-based design is that the

components must be connected to each other in order to

perform the overall function of the system. If all the

interfaces of the components conform to some standard,

several benefits arise and will be outlined throughout this

paper.

3. COMMON INTERFACING

While the functions of any two components may be

drastically different and the types of information that are

transferred through the components’ interfaces are

dissimilar, these components can share a simple, well-

defined set of interfaces. For our hardware designs, we

defined a set of three component interfaces that provide for

all interaction between components and their external

environment based on our previous experience creating

custom interfaces.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

 The first is an interface that provides the means to

manage the overall operation of the component. It allows

control of the state of the component, the reception of error

and interrupt indications, and the transfer of debugging

information.

 The second is a memory-type interface that provides

straightforward, efficient read and write access to

addressable memory locations. The core signals of this

interface are address and data busses.

 The last is an interface that provides a simple,

unidirectional streaming data transfer mechanism. It is

optimized for implementation efficiency and continuous

data transfer with basic flow control.

 With combinations of these three interfaces, a wide

range of components can be interfaced to. If all component

interfaces are restricted to this set, the interconnection of

any compatible components is easily achieved. Furthermore,

the system-level control of the collection of components is

simple since a single controller can manage all of the

components with a single interface type by simply

replicating instantiations of that interface. Also, by ensuring

that all components only use these interfaces, the designer

will only need to create a single adapter for each

combination of the three interfaces and the associated

interface of the external environment resources specific to

the hardware platform, such as onboard memory or high-

speed data links.

 We have termed adherence to this practice as Common

Interfacing. For our set of Common Interfaces, we selected

an open standard to which we would conform.

4. OCP-COMPLIANT INTERFACES

Adopting an open standard for the component interfaces

may seem like a decision that would limit the flexibility of

the interfaces or demand significant effort to implement.

The Open Core Protocol (OCP), an openly-licensed, core-

centric protocol developed by the OCP International

Partnership (OCP-IP), addresses both of these concerns.

 The OCP standard defines a set of fundamental signals

that can be combined and configured to implement almost

any conceivable interface. Rather than defining some

number of standard interfaces from which designers can

choose, the standard provides a structured means for

describing the configuration of any interface that can be

constructed from the OCP signals. The specification of a

particular interface is referred to as a profile. The profile

completely documents the interface, greatly simplifying the

task of describing the component interfaces.

 Since the features of an OCP-compliant interface are

entirely determined by the designer, the interface can be as

simple or as complex as the design warrants. By specifying

the interface profile, the designer determines the effort and

resources that will be required to implement the interface.

Since the OCP signals are so fundamental and the minimum

set of required signals is so basic, extremely simple

interfaces can be created

 We used the OCP to define three profiles to implement

the interfaces described in Section 3. The profiles are named

System, Memory, and Dataflow, respectively. The

following three subsections describe the interfaces and the

signals that comprise them. For an explanation of the

function of the individual OCP signals in these profiles see

the OCP Specification [3].

4.1. System

The System profile provides overall control of the operation

of the component. Figure 1 shows the OCP signals included

in the profile. OCP connections are point-to-point only,

having a single Master interface, which initiates all accesses

that utilize the data busses using write or read commands,

release

release

release

start start stop

test initialize

Inactive

Test

release

Configure
stop,

initialize

Active start

Figure 2: System OCP Profile States

Slave

Master

m
R

e
s
e
t_

n

m
D

a
ta

m
C

m
d

C
lk

s
C

m
d

A
c
c
e
p
t

s
D

a
ta

s
R

e
s
p

s
E

rr
o
r

s
In

te
rr

u
p
t

S
ta

tu
s

Figure 1: System OCP Profile

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

and one Slave interface. In the case of the System profile,

the interface on the component is the Slave and a system

controller would implement the corresponding Master

interface.

 To facilitate the platform concepts of resource

allocation and power management, a set of operational

states are defined. Figure 2 shows the typical state transition

flow. These states are based on those used for software

components in the Software Communications Architecture

(SCA). The system controller directs the component into

the various states by writes in which the initialize, start,

stop, test, and release directives are encoded on the mData

bus. The controller can query the component as to its current

state by reads in which the Inactive, Configure, Active, and

Test states are encoded on the sData bus.

 The profile also provides several out-of-band Slave

signals, Status, sInterrupt, and sError, with which the

component can immediately inform the system controller of

a condition without a query from the Master side of the

connection.

4.2. Memory

The Memory profile was chosen to provide a full-featured

interface while bounding overhead and implementation

effort by excluding more complex features available in

OCP. Figure 3 shows the signals included in the profile.

Both read and write access is provided to an addressable

memory space. This type of access is typical for memory-

mapped peripherals. In our design, a Memory interface is

typically used to set properties and query status for a

component. In this case the component implements the

Slave side of the interface and a system controller has the

Master.

 Any unused signals for a particular instance of a profile

can be tied off to a benign default value. For instance, we

set the mAddrSpace, mDataInfo, and sDataInfo signals all

to default values for our design. However, if we develop

new components that use these signals they will still be

compatible with the original components.

4.3. Dataflow

The Dataflow profile was chosen to provide a high

performance path with minimal overhead. The resources

required for a Dataflow interface will be on the same order

as those required for a basic custom interface

implementation. Figure 4 shows the signals included in the

profile. The inclusion of the sCmdAccept signal allows a

Slave to throttle the rate at which data is transferred over a

Dataflow connection, effectively enabling flow control.

 In our design, the Dataflow interface is the most

common means for components to interact. A component

that generates data outputs it via a Master interface, and a

component that consumes data receives it via a Slave

interface. Many components are connected together in series

with Dataflow connections and via the flow control

provided by the interfaces the processing throughput rate is

regulated by the slowest connection or component.

4.4. Usage Details

Each component will have one System interface and zero or

more each of the Memory and Dataflow interfaces. Each

interface defines a distinct interaction with the component.

While the configuration of the signals, e.g. the number of

bits in the mData bus, is fixed for the System profile, the

signal configurations for the Memory and Dataflow could

vary for each interface of each component. However, to

simplify the process of connecting the interfaces between

two components, we set a global OCP bus width for a

design. For example mData is 256 bits wide for all Dataflow

interfaces, therefore the mData master port on a component

can be directly connected to any mData slave port. The

width of the actual data to be transferred over the mData bus

is determined by the components on either side of the bus.

Slave

Master

m
C

m
d

C
lk

s
C

m
d

A
c
c
e
p
t

s
D

a
ta

m
A

d
d
r

m
D

a
ta

In
fo

m
A

d
d
rS

p
a
c
e

m
D

a
ta

s
D

a
ta

In
fo

s
R

e
s
p

m
R

e
s
e
t_

n

Figure 3: Memory OCP Profile Figure 4: Dataflow OCP Profile

Slave

Master

m
R

e
s
e
t_

n

m
C

m
d
 (

W
ri
te

)

C
lk

s
C

m
d

A
c
c
e
p
t

m
D

a
ta

m
D

a
ta

In
fo

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

While the full 256-bit bus is present in simulation, the

unused bits are optimized away in synthesis.

5. BEYOND PROTOCOL

The OCP profiles describe the signals present in an interface

and the protocol they use to transfer data. This is all that is

required for transport of the data between components.

However, for components to manipulate the data they must

have a common interpretation of what the data is. For the

System profile, the data signal uses a specific encoding to

define the various transitions and states, but the other

profiles define the data signal based on the requirements of

the component.

 Working from the practices used for SCA software

components, the data encoding used by each interface is

defined using Common Object Request Broker Architecture

(CORBA) Interface Definition Language (IDL). Each

interface defines some number of functions each taking

some number of arguments. These arguments are

concatenated with an ordinal value specifying the function

to form the data signal of the profile. The generated code for

the component provides a routine to convert between a

structure containing each argument and the flattened

representation used by the data signal. Although any set of

functions can be defined, to maximize the flexibility in

connecting components, the interface definition should be

kept as general as possible. Only those components which

use the same profile and same interface definition can be

directly connected.

 Since parallelism of component algorithms is of special

importance to achieve high throughput while allowing the

proper balance of clock rate to resources, multiple function

calls can also be mapped into the same transaction. This

does not require a new interface and components with

different levels of parallelism can be connected using a

simple generic adapter.

6. XML SYSTEM DESCRIPTION

The use of the Common Interfacing concept alone is helpful

in the process of instantiating and interconnecting

components into a system by hand. However, greater benefit

can be gained by leveraging the consistent, structured nature

of the interfaces. We created a set of tools to automate the

instantiation and interconnection process of components

based on a structured description of their interfaces and

connections within the system.

 We created a set of XML schema to describe the

interfaces and other characteristics, e.g. VHDL generics, of

each component and to describe the connection of multiple

components to form a system. Concurrently, The SPIRIT

Consortium was undertaking a similar yet much larger-

scoped effort. This consortium of companies has released a

specification, IP-XACT, which provides the definition of

XML schema to neutrally describe intellectual property (IP)

[4]. This IP can be a component or a system of components.

A common goal we have is to completely describe the

interfaces of a component in a standard way so that tools

can be used to automatically integrate components into a

verification environment or into a system that can be

deployed to hardware. We have not yet determined the

effort required to transition to the IP-XACT schema, but we

are interested in exploring that option.

 In the mean time, we are using our schema with

success. In addition to describing the component interfaces,

the XML specifies build-time variable parameters of the

components, for instance, selecting the method of

modulation that a modulator component will perform. Also,

the XML specifies how components are interconnected to

form a complete system that can be synthesized. This

function is extended to serve as the basis for an

automatically-generated verification environment.

 To make the task of creating and modifying the XML

description of the components and the system we leveraged

a graphical schematic entry tool. This GUI presents a means

for the designer to create components, interfaces,

subsystems, and systems and set properties for each.

Components can be connected to form a system, and the

system can be partitioned into subsystems. The designer can

create libraries of these components and systems to facilitate

the rapid creation of new systems.

 Additionally, in the system-level view the designer can

include various models of a particular component and

connect them to verification objects. This information is

also captured in the XML system description and utilized by

downstream tools for the automatic generation of source

code.

7. AUTOMATIC GENERATION

7.1. Simulation Environment Generation

A significant focus of our system implementation process is

the functional verification of the system via simulation. To

aid in the execution of this stage of the process, we

automated the task of creating a simulation environment that

incorporates various models of the components. The

system-level XML specifies which models of a component,

e.g. high-level SystemC or synthesizable VHDL are

included in the simulation. Each component can use a

different level of model or multiple levels for integrated

runtime verification. A collection of scripts processes the

XML, pulls in the appropriate component worker models,

and creates a SystemC-based, mixed-language simulation.

Figure 5 depicts the inputs and a high-level view of the

output simulation environment. A set of configuration files

specify Dataflow interfaces that should be compared and

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Dataflow interfaces that should be sourced from or sunk to a

file. The component Common Interfaces allowed for a

standard set of adapters to be created to integrate the

component worker models into the simulation environment.

7.2. Synthesizable System Generation

The same system-level XML that is used to construct the

simulation environment is also used to generate an OCP-

compliant system in synthesizable VHDL. Figure 6 shows

the flow. The automatic generation scripts pull in

component worker VHDL, and, based on the system-level

XML, they completely construct an OCP-compliant VHDL

entity that instantiates and interconnects all the components.

 The XML system description is used to collect

components into subsystems. These subsystems can

correspond, for instance, to a single FPGA in a multi-FPGA

platform. The scripts will generate OCP-compliant VHDL

entities that implement the subsystems. Each of these

entities is ready for instantiation in the application area of an

FPGA on the target hardware platform. Components can be

rapidly redistributed amongst a number of subsystems to

target the design to platforms possessing different FPGA

resources or simply to adjust the distribution of components

on the same hardware platform as components are added to

or removed from the design.

8. CONCLUSIONS

Adhering to a set of common interfaces for components has

several advantages. Interconnecting these components

becomes trivial, even to the point that scripts can automate

the process. Component interfaces are easily adapted to

platform-specific interfaces once per platform rather than

once per platform per component per interface.

Documenting a specific component’s interfaces is reduced

to providing a description of the data types or memory maps

on its interfaces, since the details of the signaling on the

three Common Interfaces can be specified once for all

components. Furthermore, Common Interfacing encourages

component reuse. By making a small sacrifice in flexibility,

significant benefits are realized.

9. REFERENCES

 [1] K. Skey, J. Bradley, and K. Wagner, “A Reuse Approach for

FPGA-Based SDR Waveforms,” Milcom 2006, October
2006.

[2] J. Hogg and F. Bordeleau, “Optimizing Portable SDR
Software,” SDR Forum Technical Conference, 2007.

[3] OCP International Partnership, “Open Core Protocol
Specification, Release 2.2”, January 2007.

[4] The SPIRIT Consortium, “IP-XACT v1.4: A Specification for
XML Meta-data and Tool Interfaces”, March 2008.

Figure 5: Simulation Environment Generation

Worker
C

XML

Scripts

 Worker
VHDL

Simulation Environment

√
•••

Manager

Figure 6: Synthesizable System Generation

XML

 OCP-compliant System(s)

Scripts

 Worker
VHDL

	Home
	Papers By Alpha
	Papers By Session

