
Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved  

  

APPLYING DESIGN PATTERNS TO SCA IMPLEMENTATIONS 

 

Adem Zumbul (TUBITAK-UEKAE, Kocaeli, Turkey, ademz@uekae.tubitak.gov.tr); 

Tuna Tugcu (Bogazici University, Istanbul, Turkey, tugcu@boun.edu.tr) 
 
 

ABSTRACT 

 

This paper provides insights into applying common design 

patterns while developing SCA compliant Core Frameworks 

and Waveforms. This paper also presents an approach to 

leverage SCA as a means of abstracting the Core Framework 

and Waveform implementations from the Operating System 

and Object Request Brokers. In addition to these, the 

experimental results of implementing a fully functional SCA 

Core Framework and some Waveforms in ACE/TAO and 

ORBExpress Object Request Brokers on Linux and VxWorks 

operating systems in terms of applying common design 

patterns are summarized. 

 

1. INTRODUCTION 

 

The sharp increase rate of technology behind the processors  

leads techniques to define radio behavior by using software 

and introduces Software Defined Radio (SDR) [1] concept. 

Software Defined Radios are flexible communication devices 

that can operate as different radios depending on the 

installed Waveforms. Since the hardware and software 

components of this evolving concept have not been fully 

standardized, the implemented SDR applications have lots of 

question marks on portability, reconfigurability and 

reusability issues. Software Communications Architecture 

(SCA) [2] is a standard that is intended to address these 

problems. It basically provides high level CORBA interfaces  

SDR applications. These interfaces contain common 

operations that every SDR application should implement. It 

also provides some guidelines to define behavioral details of 

these operations. Although the SCA standard tells 

developers “what to implement” it does not deal with “how 

to implement.” Most of the implementation details are 

intentionally left to the developers in order not to make the 

SCA harder to understand.  

 

In order to derive the most benefit from SCA in terms of 

portability, reconfigurability and reusability, it is imperative 

to be familiar with the software engineering concepts such 

as Object Oriented Programming (OOP) [3] and design 

patterns [4]. The design patterns are optimum solutions to 

common software engineering problems. Applying design 

patterns can speed up the development proces s by 

providing tested, proven development paradigms. Effective 

software design requires considering issues that may not 

become visible until later in the implementation. Reusing 

design patterns helps to prevent subtle issues that can 

cause major problems, and it also improves code readability 

for coders and architects who are familiar with the patterns. 

 

The rest of the paper is organized as the following. Chapter 2 

provides some background information on design pattern 

concept. Chapter 3 presents the usage of common design 

patterns in SCA compliant SDR implementations and then 

the paper concludes. 

 

2. DESIGN PATTERNS 

 

Design patterns as a whole can help people learn object-

oriented thinking: how to leverage polymorphism, design for 

composition, delegation, balance responsibilities, and 

provide pluggable behavior. The importance of using 

suitable software design patterns has been understood 

better after the publication of the book Design Patterns: 

Elements of Reusable Object-Oriented Software [5]. The 

authors of it are often referred to as the GoF, or Gang of 

Four. In their book, they present 23 design patterns 

organized into three categories:  

 

2.1. Creational Patterns 

 

Creational patterns deal with object instantiation problems. 

There are 5 creational patterns including Abstract factory, 

Builder, Factory, Prototype and Singleton. They are intended 

to solve object creation problem. 

 

2.2. Structural Patterns  

 

Structural patterns consist of Adapter, Bridge, Composite, 

Decorator, Facade, Flyweight and Proxy. These patterns 

concern class and object composition. They use inheritance 

to compose interfaces and define ways to compose objects 

to obtain new functionality. These patterns may be applied 

while designing a new system from scratch or while 

modifying existing codes to port from one system to another. 

 

 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved  

2.3. Behavioral Patterns  

 

Behavioral patterns including Chain of responsibility, 

Command, Interpreter, Iterator, Mediator, Memento, 

Observer, State, Strategy, Template method, and Visitor, 

solve object communication problems and depicts how 

objects act together. All of these patterns help developers to 

design their software better in terms of quality, reusability 

and understandability. Basically, all of the design patterns 

tell the following golden rules in common: 

 

a- All client objects should always call the abstraction 

(interface) and not the exact implementation.  

 

b- Future changes should not impact the existing system.  

 

c- Change always what is changing.  

 

d- Have loose coupling between objects. 

 

 

3. APPLYING DESIGN PATTERNS TO SCA 

 

In this section, we present some guidelines to apply common 

design patterns while developing SCA compliant SDR 

applications such as Core Framework and Waveforms and 

we provide some of the possible application areas. 

 

3.1. Factory Method 

 

Factory Method pattern defines an interface for creating an 

object, but let subclasses decide which class to instantiate. 

It lets a class defer instantiation to subclasses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As Figure 1 shows, the pattern uses two types of classes . 

The Product classes, which are the classes that make up the 

application and the Creator classes, which are responsible 

for defining the Factory methods used to create instances of 

Product objects. The Creator class defines the factory 

method, which returns an object of type Product. The 

Concrete classes provide the appropriate implementation for 

their respective base class.  

 

Factory method is very useful and common design pattern to 

solve portability problems. It can be used to separate 

Operating System and Object Request Broker specific 

implementations with the rest of the system. Factory pattern 

uses a factory which decides which specific subclass to 

handle the request of the client.  

 

This pattern is also suitable to manage configuration specific 

issues. Factory class may be used to check the configuration 

value when returning the possible concrete handler class. It 

is obvious that changing the configuration parameter will 

make the factory to return a new appropriate concrete 

handler. Also the factory class may keep a list of the created 

objects and can be used to kill or modify them by only 

traversing the managed list of instances. 

 

 

 

Figure 1: Factory Method Pattern. 

Figure 2: Example Usage of Factory Method Pattern. 

(a) 

(b) 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved  

Figure 2 shows an example scenario where Factory Method 

pattern is used to separate OS specific codes from the rest of 

the system. In this diagram, Process is the interface class 

that defines mandatory functions that every derived class 

should implement. ProcessLinux and ProcessVxWorks 

classes concretely defines OS specific execute and terminate 

functions and overrides generic Process interface.  In this 

scenario, ProcessFactory checks the OS configuration 

parameter of the Core Framework and returns appropriate 

Process class. Regardless of the returning concrete Process 

class, the client can call execute and terminate operations on 

the returned object.  

 

Figure 2-b shows an example usage of the Factory pattern to 

decouple the applications from ORB specific functions. 

ORBFactory class has a getORBLibrary method which 

checks the configuration parameter of the Core Framework 

and returns the concrete ORBLibrary class so that the clients 

that need CORBA functions can call ORB functions 

independently. 

 

It is worth noting that Factory Method pattern is very 

helpful to deal with possible future changes. Changing the 

configuration parameter of the factory makes the system to 

behave according to the new situation without affecting the 

existing codes. This also allows the system to extend by 

defining new derived concrete classes.  

 

3.2. Chain of Responsibility 

 

Chain of Responsibility pattern is used to avoid coupling the 

sender of a request to its receiver by giving more than one 

object a chance to handle the request. It chains the receiving 

objects and passes the request along the chain until an 

object handles it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This pattern can be applied to many cases while developing 

software for SDR systems. SCA standard tells developers to 

design their system in a hierarchical manner which means 

dividing the software architecture into collaborating 

components. Such a distributed system requires a strong 

management mechanism for the responsibilities of the 

components. From that point of view, this design pattern can 

be considered to be a useful blue print to handle 

responsibility related issues. 

 

SCA interfaces defines port concept as a communication 

mechanism between components. A port represents a 

CORBA interface of which reference can be transferred 

between components  so that distributed components can 

make CORBA calls on each other. Efficient use of port 

mechanism in conjunction with Chain of Responsibility 

pattern can let developers to manage object responsibilities 

even the objects are distributed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 illustrates a generic usage scenario which can be 

applied to similar situations. In this figure, four components 

of a Waveform are shown. They are all connected to each 

other by using port mechanism. In this layout, DataSource 

component is responsible to get some data to be processed 

by the Waveform and the other three components are 

chained each other and each of the component implements a 

different algorithm to process the data. In this example 

scenario, DataSource component is not aware of which 

component in the chain will handle the request and it does 

not have to. It only concentrates on the job of fetching the 

data to push to the chain. In this scenario, each DataHandler 

component checks some internal or external parameters to 

decide whether to handle the incoming data or not. The 

parameters that can be checked during deciding stage can be 

permissions, capacity values , priorities, dependencies, 

performance requirements and structural properties of the 

incoming data or so on. 

Figure 3: Chain of Responsibility Pattern. 

Figure 4: Example Usage of Chain of Responsibility Pattern. 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved  

It is obvious that this pattern lets insertion of new handlers 

into the chain without affecting the rest of the system. It is 

also valid for the removal case. The developer does not have 

to modify any component for any changes. This behavior 

can be life saving for the systems that requires frequent 

modification of the code according to changing conditions 

such as development phases. It can also be an interesting 

idea to chain the instantiations of the same component to 

balance the work load among different processors. 

 

3.3. Adapter 

 

Adapter pattern is used to convert the interface of a class 

into another interface clients expect. Adapter lets classes 

work together that couldn't otherwise because of 

incompatible interfaces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapter pattern has also very common usage in SCA 

implementations. It allows legacy codes that do not support 

SCA interfaces to work together with the SCA codes. It 

simply adapts the old interface to the new one.  

 

Adapter pattern is typically not used when designing a new 

system from scratch but rather used to port existing codes 

from one interface to another.  

 

Figure 6 shows an example usage of the Adapter pattern. In 

this scenario adapter class adapts configure methods  of 

different audio device interfaces. As shown in the figure, 

legacy PhysicalAudioDevice class has a configure method 

which accepts integer configuration parameters , whereas 

SCA compliant AudioDevice class accepts Properties 

structure as input. AudioDeviceAdapter class translates 

parameters of these classes between each other so that they 

can work together. 

 

3.4. Singleton 

 

Singleton pattern is applied to ensure a class only has one 

instance, and provide a global point of access to it. It is a 

relatively simple pattern to apply. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the programming domain, it is a very common situation 

that a class is required to have only one instance. For the 

SCA point of view, Singleton pattern can be frequently used. 

For example, Device classes that wraps a specific hardware 

usually requires to have only one instance, because the 

managed device usually cannot be initialized more than once 

and the capacity values should be under control of a single 

capacity manager. Another example can be the ORBLibrary 

classes that initialize and manage POA (Portable Object 

Adapter) according to a specific ORB policy. Singleton 

pattern can be used together with the Factory Method 

pattern to ensure returned concrete classes to have only one 

instance. In this case, Factory class can check the instance 

count of the singleton objects and return the same object 

whenever it creates an instance. 

 

3.5. State 

 

State pattern allows an object to alter its behavior when it’s 

internal state changes. The benefit of State pattern is that 

state specific code is localized in the class that represents 

that state. 

 

 

 

Figure 5: Adapter Pattern. 

Figure 6: Example Usage of Adapter Pattern. 

Figure 7: Singleton Pattern. 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCA defines three types of state types for Device classes. 

They are OperationalState, AdminState and UsageState. 

OperationalState can be ENABLED or DISABLED and 

indicates whether the device is functioning or not. 

AdminState keeps track of the permission or prohibition 

against using the device and it can take values of LOCKED, 

SHUTTING_DOWN or UNLOCKED. Finally, UsageState 

defines Device’s usage state and can be IDLE, ACTIVE or 

BUSY. IDLE means that Device is not in use, BUSY 

corresponds to Device is in use and no capacity is left for 

allocation and ACTIVE shows that Device is in use and it 

still has some capacity for allocation. In addition to built-in 

states, it is possible to add user defined states for different 

situations of the components. 

 

Applying State pattern helps developers to separate state 

dependent operations from the rest of the functional code of 

the components and it reduces complexity. 

 

3.6. Facade 

 

Facade pattern provides a unified interface to a set of 

interfaces in a subsystem. Facade defines a higher-level 

interface that makes the subsystem easier to use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It also simplifies and beautifies an existing cumbersome class  

by behaving as a door to its complex interface. It means it 

works as an intermediator between the client and the 

subsystem. Facade should not be the part of the subsystem, 

if this is the case it should move to the subsystem and a new 

Facade class should be generated. 

 

From SCA point of view, Facade pattern can be applied while 

porting non-SCA legacy codes to SCA compliant wrapper 

codes. SCA wrapper codes may use Facade classes to 

access the legacy parts so that the developer may not spent 

time to re-implement already existing functional codes. Also 

Façade pattern may be applied to collect separate CORBA 

interfaces into a single CORBA interface which may reduce 

complexity. 

 

4. CONCLUSION 

 

In this paper, we summarize design pattern concept in 

general and provide example application areas  for some of 

them to the SDR and SCA applications . We present the 

usage of Factory Method, Chain of Responsibility, Adapter, 

State, Singleton, and Facade patterns and provide some 

UML diagrams to illustrate our ideas. In addition to our 

work, application areas of the rest of the 23 design patterns  

may also be explored as a future work.  

 

As part of a project in TUBITAK, we have developed SCA 

compliant Core Framework and some Waveforms to run on 

Linux and VxWorks operating systems on ACETAO and 

ORBExpress object request brokers. During development 

stage we have investigated suitable design patterns and 

applied them to our code in order to capitalize the benefits of 

SCA. Applying design patterns dramatically supported our 

development stages and the developed code has been 

tested against portability between different operating 

environments. By only changing some configuration 

parameters and recompiling the existing codes we have 

achieved to run our Core Framework on different platforms. 

 

5. REFERENCES 

 
[1] Software defined radio: architectures, systems, and functions. 

Dillinger, Madani, Alonistioti. Wiley, 2003. 454 pages. ISBN 
0470851643 ISBN-13: 9780470851647. 

[2] Joint Tactical Radio System, “Software communications 
architecture specification-Final”, Version 2.2.2, Space and 
Naval Warfare System Center, San Diego CA, 15 May 2006. 

[3] (1995) Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley. ISBN 0-201-63361-2. 

[4] Fowler, Martin (2006-08-01). Writing Software Patterns. 
Retrieved on 2007-03-06. 

[5] Design Patterns: Elements of Reusable Object-Oriented 
Software. Erich Gamma, Richard Helm, Ralph Johnson, and 
John Vlissides in 1995. 

 

Figure 8: State Pattern. 

Figure 9: Facade Pattern. 



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved  

Copyright Transfer Agreement: The following Copyright Transfer Agreement must be included on the cover 
sheet for the paper (either email or fax)—not on the paper itself.   
 
“The authors represent that the work is original and they are the author or authors of the work, except for material 
quoted and referenced as text passages. Authors acknowledge that they are willing to transfer the copyright of the 
abstract and the completed paper to the SDR Forum for purposes of publication in the SDR Forum Conference 
Proceedings, on associated CD ROMS, on SDR Forum Web pages, and compilations and derivative works related 
to this conference, should the paper be accepted for the conference. Authors are permitted to reproduce their 
work, and to reuse material in whole or in part from their work; for derivative works, however, such authors may 
not grant third party requests for reprints or republishing.” 
 
Government employees whose work is not subject to copyright should so certify. For work performed under a 
U.S. Government contract, the U.S. Government has royalty-free permission to reproduce the author's work for 
official U.S. Government purposes. 




	Home
	Papers By Alpha
	Papers By Session



